xref: /openbmc/linux/arch/powerpc/kernel/eeh.c (revision 96ac6d43)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright IBM Corporation 2001, 2005, 2006
4  * Copyright Dave Engebretsen & Todd Inglett 2001
5  * Copyright Linas Vepstas 2005, 2006
6  * Copyright 2001-2012 IBM Corporation.
7  *
8  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/sched.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/pci.h>
16 #include <linux/iommu.h>
17 #include <linux/proc_fs.h>
18 #include <linux/rbtree.h>
19 #include <linux/reboot.h>
20 #include <linux/seq_file.h>
21 #include <linux/spinlock.h>
22 #include <linux/export.h>
23 #include <linux/of.h>
24 
25 #include <linux/atomic.h>
26 #include <asm/debugfs.h>
27 #include <asm/eeh.h>
28 #include <asm/eeh_event.h>
29 #include <asm/io.h>
30 #include <asm/iommu.h>
31 #include <asm/machdep.h>
32 #include <asm/ppc-pci.h>
33 #include <asm/rtas.h>
34 #include <asm/pte-walk.h>
35 
36 
37 /** Overview:
38  *  EEH, or "Enhanced Error Handling" is a PCI bridge technology for
39  *  dealing with PCI bus errors that can't be dealt with within the
40  *  usual PCI framework, except by check-stopping the CPU.  Systems
41  *  that are designed for high-availability/reliability cannot afford
42  *  to crash due to a "mere" PCI error, thus the need for EEH.
43  *  An EEH-capable bridge operates by converting a detected error
44  *  into a "slot freeze", taking the PCI adapter off-line, making
45  *  the slot behave, from the OS'es point of view, as if the slot
46  *  were "empty": all reads return 0xff's and all writes are silently
47  *  ignored.  EEH slot isolation events can be triggered by parity
48  *  errors on the address or data busses (e.g. during posted writes),
49  *  which in turn might be caused by low voltage on the bus, dust,
50  *  vibration, humidity, radioactivity or plain-old failed hardware.
51  *
52  *  Note, however, that one of the leading causes of EEH slot
53  *  freeze events are buggy device drivers, buggy device microcode,
54  *  or buggy device hardware.  This is because any attempt by the
55  *  device to bus-master data to a memory address that is not
56  *  assigned to the device will trigger a slot freeze.   (The idea
57  *  is to prevent devices-gone-wild from corrupting system memory).
58  *  Buggy hardware/drivers will have a miserable time co-existing
59  *  with EEH.
60  *
61  *  Ideally, a PCI device driver, when suspecting that an isolation
62  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
63  *  whether this is the case, and then take appropriate steps to
64  *  reset the PCI slot, the PCI device, and then resume operations.
65  *  However, until that day,  the checking is done here, with the
66  *  eeh_check_failure() routine embedded in the MMIO macros.  If
67  *  the slot is found to be isolated, an "EEH Event" is synthesized
68  *  and sent out for processing.
69  */
70 
71 /* If a device driver keeps reading an MMIO register in an interrupt
72  * handler after a slot isolation event, it might be broken.
73  * This sets the threshold for how many read attempts we allow
74  * before printing an error message.
75  */
76 #define EEH_MAX_FAILS	2100000
77 
78 /* Time to wait for a PCI slot to report status, in milliseconds */
79 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
80 
81 /*
82  * EEH probe mode support, which is part of the flags,
83  * is to support multiple platforms for EEH. Some platforms
84  * like pSeries do PCI emunation based on device tree.
85  * However, other platforms like powernv probe PCI devices
86  * from hardware. The flag is used to distinguish that.
87  * In addition, struct eeh_ops::probe would be invoked for
88  * particular OF node or PCI device so that the corresponding
89  * PE would be created there.
90  */
91 int eeh_subsystem_flags;
92 EXPORT_SYMBOL(eeh_subsystem_flags);
93 
94 /*
95  * EEH allowed maximal frozen times. If one particular PE's
96  * frozen count in last hour exceeds this limit, the PE will
97  * be forced to be offline permanently.
98  */
99 u32 eeh_max_freezes = 5;
100 
101 /*
102  * Controls whether a recovery event should be scheduled when an
103  * isolated device is discovered. This is only really useful for
104  * debugging problems with the EEH core.
105  */
106 bool eeh_debugfs_no_recover;
107 
108 /* Platform dependent EEH operations */
109 struct eeh_ops *eeh_ops = NULL;
110 
111 /* Lock to avoid races due to multiple reports of an error */
112 DEFINE_RAW_SPINLOCK(confirm_error_lock);
113 EXPORT_SYMBOL_GPL(confirm_error_lock);
114 
115 /* Lock to protect passed flags */
116 static DEFINE_MUTEX(eeh_dev_mutex);
117 
118 /* Buffer for reporting pci register dumps. Its here in BSS, and
119  * not dynamically alloced, so that it ends up in RMO where RTAS
120  * can access it.
121  */
122 #define EEH_PCI_REGS_LOG_LEN 8192
123 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
124 
125 /*
126  * The struct is used to maintain the EEH global statistic
127  * information. Besides, the EEH global statistics will be
128  * exported to user space through procfs
129  */
130 struct eeh_stats {
131 	u64 no_device;		/* PCI device not found		*/
132 	u64 no_dn;		/* OF node not found		*/
133 	u64 no_cfg_addr;	/* Config address not found	*/
134 	u64 ignored_check;	/* EEH check skipped		*/
135 	u64 total_mmio_ffs;	/* Total EEH checks		*/
136 	u64 false_positives;	/* Unnecessary EEH checks	*/
137 	u64 slot_resets;	/* PE reset			*/
138 };
139 
140 static struct eeh_stats eeh_stats;
141 
142 static int __init eeh_setup(char *str)
143 {
144 	if (!strcmp(str, "off"))
145 		eeh_add_flag(EEH_FORCE_DISABLED);
146 	else if (!strcmp(str, "early_log"))
147 		eeh_add_flag(EEH_EARLY_DUMP_LOG);
148 
149 	return 1;
150 }
151 __setup("eeh=", eeh_setup);
152 
153 /*
154  * This routine captures assorted PCI configuration space data
155  * for the indicated PCI device, and puts them into a buffer
156  * for RTAS error logging.
157  */
158 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
159 {
160 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
161 	u32 cfg;
162 	int cap, i;
163 	int n = 0, l = 0;
164 	char buffer[128];
165 
166 	if (!pdn) {
167 		pr_warn("EEH: Note: No error log for absent device.\n");
168 		return 0;
169 	}
170 
171 	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
172 		       pdn->phb->global_number, pdn->busno,
173 		       PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
174 	pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
175 		pdn->phb->global_number, pdn->busno,
176 		PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
177 
178 	eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
179 	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
180 	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
181 
182 	eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
183 	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
184 	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
185 
186 	/* Gather bridge-specific registers */
187 	if (edev->mode & EEH_DEV_BRIDGE) {
188 		eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
189 		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
190 		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
191 
192 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
193 		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
194 		pr_warn("EEH: Bridge control: %04x\n", cfg);
195 	}
196 
197 	/* Dump out the PCI-X command and status regs */
198 	cap = edev->pcix_cap;
199 	if (cap) {
200 		eeh_ops->read_config(pdn, cap, 4, &cfg);
201 		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
202 		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
203 
204 		eeh_ops->read_config(pdn, cap+4, 4, &cfg);
205 		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
206 		pr_warn("EEH: PCI-X status: %08x\n", cfg);
207 	}
208 
209 	/* If PCI-E capable, dump PCI-E cap 10 */
210 	cap = edev->pcie_cap;
211 	if (cap) {
212 		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
213 		pr_warn("EEH: PCI-E capabilities and status follow:\n");
214 
215 		for (i=0; i<=8; i++) {
216 			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
217 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
218 
219 			if ((i % 4) == 0) {
220 				if (i != 0)
221 					pr_warn("%s\n", buffer);
222 
223 				l = scnprintf(buffer, sizeof(buffer),
224 					      "EEH: PCI-E %02x: %08x ",
225 					      4*i, cfg);
226 			} else {
227 				l += scnprintf(buffer+l, sizeof(buffer)-l,
228 					       "%08x ", cfg);
229 			}
230 
231 		}
232 
233 		pr_warn("%s\n", buffer);
234 	}
235 
236 	/* If AER capable, dump it */
237 	cap = edev->aer_cap;
238 	if (cap) {
239 		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
240 		pr_warn("EEH: PCI-E AER capability register set follows:\n");
241 
242 		for (i=0; i<=13; i++) {
243 			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
244 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
245 
246 			if ((i % 4) == 0) {
247 				if (i != 0)
248 					pr_warn("%s\n", buffer);
249 
250 				l = scnprintf(buffer, sizeof(buffer),
251 					      "EEH: PCI-E AER %02x: %08x ",
252 					      4*i, cfg);
253 			} else {
254 				l += scnprintf(buffer+l, sizeof(buffer)-l,
255 					       "%08x ", cfg);
256 			}
257 		}
258 
259 		pr_warn("%s\n", buffer);
260 	}
261 
262 	return n;
263 }
264 
265 static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
266 {
267 	struct eeh_dev *edev, *tmp;
268 	size_t *plen = flag;
269 
270 	eeh_pe_for_each_dev(pe, edev, tmp)
271 		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
272 					  EEH_PCI_REGS_LOG_LEN - *plen);
273 
274 	return NULL;
275 }
276 
277 /**
278  * eeh_slot_error_detail - Generate combined log including driver log and error log
279  * @pe: EEH PE
280  * @severity: temporary or permanent error log
281  *
282  * This routine should be called to generate the combined log, which
283  * is comprised of driver log and error log. The driver log is figured
284  * out from the config space of the corresponding PCI device, while
285  * the error log is fetched through platform dependent function call.
286  */
287 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
288 {
289 	size_t loglen = 0;
290 
291 	/*
292 	 * When the PHB is fenced or dead, it's pointless to collect
293 	 * the data from PCI config space because it should return
294 	 * 0xFF's. For ER, we still retrieve the data from the PCI
295 	 * config space.
296 	 *
297 	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
298 	 * 0xFF's is always returned from PCI config space.
299 	 *
300 	 * When the @severity is EEH_LOG_PERM, the PE is going to be
301 	 * removed. Prior to that, the drivers for devices included in
302 	 * the PE will be closed. The drivers rely on working IO path
303 	 * to bring the devices to quiet state. Otherwise, PCI traffic
304 	 * from those devices after they are removed is like to cause
305 	 * another unexpected EEH error.
306 	 */
307 	if (!(pe->type & EEH_PE_PHB)) {
308 		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
309 		    severity == EEH_LOG_PERM)
310 			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
311 
312 		/*
313 		 * The config space of some PCI devices can't be accessed
314 		 * when their PEs are in frozen state. Otherwise, fenced
315 		 * PHB might be seen. Those PEs are identified with flag
316 		 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
317 		 * is set automatically when the PE is put to EEH_PE_ISOLATED.
318 		 *
319 		 * Restoring BARs possibly triggers PCI config access in
320 		 * (OPAL) firmware and then causes fenced PHB. If the
321 		 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
322 		 * pointless to restore BARs and dump config space.
323 		 */
324 		eeh_ops->configure_bridge(pe);
325 		if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
326 			eeh_pe_restore_bars(pe);
327 
328 			pci_regs_buf[0] = 0;
329 			eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
330 		}
331 	}
332 
333 	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
334 }
335 
336 /**
337  * eeh_token_to_phys - Convert EEH address token to phys address
338  * @token: I/O token, should be address in the form 0xA....
339  *
340  * This routine should be called to convert virtual I/O address
341  * to physical one.
342  */
343 static inline unsigned long eeh_token_to_phys(unsigned long token)
344 {
345 	pte_t *ptep;
346 	unsigned long pa;
347 	int hugepage_shift;
348 
349 	/*
350 	 * We won't find hugepages here(this is iomem). Hence we are not
351 	 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
352 	 * page table free, because of init_mm.
353 	 */
354 	ptep = find_init_mm_pte(token, &hugepage_shift);
355 	if (!ptep)
356 		return token;
357 	WARN_ON(hugepage_shift);
358 	pa = pte_pfn(*ptep) << PAGE_SHIFT;
359 
360 	return pa | (token & (PAGE_SIZE-1));
361 }
362 
363 /*
364  * On PowerNV platform, we might already have fenced PHB there.
365  * For that case, it's meaningless to recover frozen PE. Intead,
366  * We have to handle fenced PHB firstly.
367  */
368 static int eeh_phb_check_failure(struct eeh_pe *pe)
369 {
370 	struct eeh_pe *phb_pe;
371 	unsigned long flags;
372 	int ret;
373 
374 	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
375 		return -EPERM;
376 
377 	/* Find the PHB PE */
378 	phb_pe = eeh_phb_pe_get(pe->phb);
379 	if (!phb_pe) {
380 		pr_warn("%s Can't find PE for PHB#%x\n",
381 			__func__, pe->phb->global_number);
382 		return -EEXIST;
383 	}
384 
385 	/* If the PHB has been in problematic state */
386 	eeh_serialize_lock(&flags);
387 	if (phb_pe->state & EEH_PE_ISOLATED) {
388 		ret = 0;
389 		goto out;
390 	}
391 
392 	/* Check PHB state */
393 	ret = eeh_ops->get_state(phb_pe, NULL);
394 	if ((ret < 0) ||
395 	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
396 		ret = 0;
397 		goto out;
398 	}
399 
400 	/* Isolate the PHB and send event */
401 	eeh_pe_mark_isolated(phb_pe);
402 	eeh_serialize_unlock(flags);
403 
404 	pr_err("EEH: PHB#%x failure detected, location: %s\n",
405 		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
406 	dump_stack();
407 	eeh_send_failure_event(phb_pe);
408 
409 	return 1;
410 out:
411 	eeh_serialize_unlock(flags);
412 	return ret;
413 }
414 
415 /**
416  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
417  * @edev: eeh device
418  *
419  * Check for an EEH failure for the given device node.  Call this
420  * routine if the result of a read was all 0xff's and you want to
421  * find out if this is due to an EEH slot freeze.  This routine
422  * will query firmware for the EEH status.
423  *
424  * Returns 0 if there has not been an EEH error; otherwise returns
425  * a non-zero value and queues up a slot isolation event notification.
426  *
427  * It is safe to call this routine in an interrupt context.
428  */
429 int eeh_dev_check_failure(struct eeh_dev *edev)
430 {
431 	int ret;
432 	unsigned long flags;
433 	struct device_node *dn;
434 	struct pci_dev *dev;
435 	struct eeh_pe *pe, *parent_pe, *phb_pe;
436 	int rc = 0;
437 	const char *location = NULL;
438 
439 	eeh_stats.total_mmio_ffs++;
440 
441 	if (!eeh_enabled())
442 		return 0;
443 
444 	if (!edev) {
445 		eeh_stats.no_dn++;
446 		return 0;
447 	}
448 	dev = eeh_dev_to_pci_dev(edev);
449 	pe = eeh_dev_to_pe(edev);
450 
451 	/* Access to IO BARs might get this far and still not want checking. */
452 	if (!pe) {
453 		eeh_stats.ignored_check++;
454 		pr_debug("EEH: Ignored check for %s\n",
455 			eeh_pci_name(dev));
456 		return 0;
457 	}
458 
459 	if (!pe->addr && !pe->config_addr) {
460 		eeh_stats.no_cfg_addr++;
461 		return 0;
462 	}
463 
464 	/*
465 	 * On PowerNV platform, we might already have fenced PHB
466 	 * there and we need take care of that firstly.
467 	 */
468 	ret = eeh_phb_check_failure(pe);
469 	if (ret > 0)
470 		return ret;
471 
472 	/*
473 	 * If the PE isn't owned by us, we shouldn't check the
474 	 * state. Instead, let the owner handle it if the PE has
475 	 * been frozen.
476 	 */
477 	if (eeh_pe_passed(pe))
478 		return 0;
479 
480 	/* If we already have a pending isolation event for this
481 	 * slot, we know it's bad already, we don't need to check.
482 	 * Do this checking under a lock; as multiple PCI devices
483 	 * in one slot might report errors simultaneously, and we
484 	 * only want one error recovery routine running.
485 	 */
486 	eeh_serialize_lock(&flags);
487 	rc = 1;
488 	if (pe->state & EEH_PE_ISOLATED) {
489 		pe->check_count++;
490 		if (pe->check_count % EEH_MAX_FAILS == 0) {
491 			dn = pci_device_to_OF_node(dev);
492 			if (dn)
493 				location = of_get_property(dn, "ibm,loc-code",
494 						NULL);
495 			printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
496 				"location=%s driver=%s pci addr=%s\n",
497 				pe->check_count,
498 				location ? location : "unknown",
499 				eeh_driver_name(dev), eeh_pci_name(dev));
500 			printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
501 				eeh_driver_name(dev));
502 			dump_stack();
503 		}
504 		goto dn_unlock;
505 	}
506 
507 	/*
508 	 * Now test for an EEH failure.  This is VERY expensive.
509 	 * Note that the eeh_config_addr may be a parent device
510 	 * in the case of a device behind a bridge, or it may be
511 	 * function zero of a multi-function device.
512 	 * In any case they must share a common PHB.
513 	 */
514 	ret = eeh_ops->get_state(pe, NULL);
515 
516 	/* Note that config-io to empty slots may fail;
517 	 * they are empty when they don't have children.
518 	 * We will punt with the following conditions: Failure to get
519 	 * PE's state, EEH not support and Permanently unavailable
520 	 * state, PE is in good state.
521 	 */
522 	if ((ret < 0) ||
523 	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
524 		eeh_stats.false_positives++;
525 		pe->false_positives++;
526 		rc = 0;
527 		goto dn_unlock;
528 	}
529 
530 	/*
531 	 * It should be corner case that the parent PE has been
532 	 * put into frozen state as well. We should take care
533 	 * that at first.
534 	 */
535 	parent_pe = pe->parent;
536 	while (parent_pe) {
537 		/* Hit the ceiling ? */
538 		if (parent_pe->type & EEH_PE_PHB)
539 			break;
540 
541 		/* Frozen parent PE ? */
542 		ret = eeh_ops->get_state(parent_pe, NULL);
543 		if (ret > 0 && !eeh_state_active(ret)) {
544 			pe = parent_pe;
545 			pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
546 			       pe->phb->global_number, pe->addr,
547 			       pe->phb->global_number, parent_pe->addr);
548 		}
549 
550 		/* Next parent level */
551 		parent_pe = parent_pe->parent;
552 	}
553 
554 	eeh_stats.slot_resets++;
555 
556 	/* Avoid repeated reports of this failure, including problems
557 	 * with other functions on this device, and functions under
558 	 * bridges.
559 	 */
560 	eeh_pe_mark_isolated(pe);
561 	eeh_serialize_unlock(flags);
562 
563 	/* Most EEH events are due to device driver bugs.  Having
564 	 * a stack trace will help the device-driver authors figure
565 	 * out what happened.  So print that out.
566 	 */
567 	phb_pe = eeh_phb_pe_get(pe->phb);
568 	pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
569 	       pe->phb->global_number, pe->addr);
570 	pr_err("EEH: PE location: %s, PHB location: %s\n",
571 	       eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
572 	dump_stack();
573 
574 	eeh_send_failure_event(pe);
575 
576 	return 1;
577 
578 dn_unlock:
579 	eeh_serialize_unlock(flags);
580 	return rc;
581 }
582 
583 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
584 
585 /**
586  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
587  * @token: I/O address
588  *
589  * Check for an EEH failure at the given I/O address. Call this
590  * routine if the result of a read was all 0xff's and you want to
591  * find out if this is due to an EEH slot freeze event. This routine
592  * will query firmware for the EEH status.
593  *
594  * Note this routine is safe to call in an interrupt context.
595  */
596 int eeh_check_failure(const volatile void __iomem *token)
597 {
598 	unsigned long addr;
599 	struct eeh_dev *edev;
600 
601 	/* Finding the phys addr + pci device; this is pretty quick. */
602 	addr = eeh_token_to_phys((unsigned long __force) token);
603 	edev = eeh_addr_cache_get_dev(addr);
604 	if (!edev) {
605 		eeh_stats.no_device++;
606 		return 0;
607 	}
608 
609 	return eeh_dev_check_failure(edev);
610 }
611 EXPORT_SYMBOL(eeh_check_failure);
612 
613 
614 /**
615  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
616  * @pe: EEH PE
617  *
618  * This routine should be called to reenable frozen MMIO or DMA
619  * so that it would work correctly again. It's useful while doing
620  * recovery or log collection on the indicated device.
621  */
622 int eeh_pci_enable(struct eeh_pe *pe, int function)
623 {
624 	int active_flag, rc;
625 
626 	/*
627 	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
628 	 * Also, it's pointless to enable them on unfrozen PE. So
629 	 * we have to check before enabling IO or DMA.
630 	 */
631 	switch (function) {
632 	case EEH_OPT_THAW_MMIO:
633 		active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
634 		break;
635 	case EEH_OPT_THAW_DMA:
636 		active_flag = EEH_STATE_DMA_ACTIVE;
637 		break;
638 	case EEH_OPT_DISABLE:
639 	case EEH_OPT_ENABLE:
640 	case EEH_OPT_FREEZE_PE:
641 		active_flag = 0;
642 		break;
643 	default:
644 		pr_warn("%s: Invalid function %d\n",
645 			__func__, function);
646 		return -EINVAL;
647 	}
648 
649 	/*
650 	 * Check if IO or DMA has been enabled before
651 	 * enabling them.
652 	 */
653 	if (active_flag) {
654 		rc = eeh_ops->get_state(pe, NULL);
655 		if (rc < 0)
656 			return rc;
657 
658 		/* Needn't enable it at all */
659 		if (rc == EEH_STATE_NOT_SUPPORT)
660 			return 0;
661 
662 		/* It's already enabled */
663 		if (rc & active_flag)
664 			return 0;
665 	}
666 
667 
668 	/* Issue the request */
669 	rc = eeh_ops->set_option(pe, function);
670 	if (rc)
671 		pr_warn("%s: Unexpected state change %d on "
672 			"PHB#%x-PE#%x, err=%d\n",
673 			__func__, function, pe->phb->global_number,
674 			pe->addr, rc);
675 
676 	/* Check if the request is finished successfully */
677 	if (active_flag) {
678 		rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
679 		if (rc < 0)
680 			return rc;
681 
682 		if (rc & active_flag)
683 			return 0;
684 
685 		return -EIO;
686 	}
687 
688 	return rc;
689 }
690 
691 static void *eeh_disable_and_save_dev_state(struct eeh_dev *edev,
692 					    void *userdata)
693 {
694 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
695 	struct pci_dev *dev = userdata;
696 
697 	/*
698 	 * The caller should have disabled and saved the
699 	 * state for the specified device
700 	 */
701 	if (!pdev || pdev == dev)
702 		return NULL;
703 
704 	/* Ensure we have D0 power state */
705 	pci_set_power_state(pdev, PCI_D0);
706 
707 	/* Save device state */
708 	pci_save_state(pdev);
709 
710 	/*
711 	 * Disable device to avoid any DMA traffic and
712 	 * interrupt from the device
713 	 */
714 	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
715 
716 	return NULL;
717 }
718 
719 static void *eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
720 {
721 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
722 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
723 	struct pci_dev *dev = userdata;
724 
725 	if (!pdev)
726 		return NULL;
727 
728 	/* Apply customization from firmware */
729 	if (pdn && eeh_ops->restore_config)
730 		eeh_ops->restore_config(pdn);
731 
732 	/* The caller should restore state for the specified device */
733 	if (pdev != dev)
734 		pci_restore_state(pdev);
735 
736 	return NULL;
737 }
738 
739 int eeh_restore_vf_config(struct pci_dn *pdn)
740 {
741 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
742 	u32 devctl, cmd, cap2, aer_capctl;
743 	int old_mps;
744 
745 	if (edev->pcie_cap) {
746 		/* Restore MPS */
747 		old_mps = (ffs(pdn->mps) - 8) << 5;
748 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
749 				     2, &devctl);
750 		devctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
751 		devctl |= old_mps;
752 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
753 				      2, devctl);
754 
755 		/* Disable Completion Timeout if possible */
756 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2,
757 				     4, &cap2);
758 		if (cap2 & PCI_EXP_DEVCAP2_COMP_TMOUT_DIS) {
759 			eeh_ops->read_config(pdn,
760 					     edev->pcie_cap + PCI_EXP_DEVCTL2,
761 					     4, &cap2);
762 			cap2 |= PCI_EXP_DEVCTL2_COMP_TMOUT_DIS;
763 			eeh_ops->write_config(pdn,
764 					      edev->pcie_cap + PCI_EXP_DEVCTL2,
765 					      4, cap2);
766 		}
767 	}
768 
769 	/* Enable SERR and parity checking */
770 	eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd);
771 	cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR);
772 	eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd);
773 
774 	/* Enable report various errors */
775 	if (edev->pcie_cap) {
776 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
777 				     2, &devctl);
778 		devctl &= ~PCI_EXP_DEVCTL_CERE;
779 		devctl |= (PCI_EXP_DEVCTL_NFERE |
780 			   PCI_EXP_DEVCTL_FERE |
781 			   PCI_EXP_DEVCTL_URRE);
782 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
783 				      2, devctl);
784 	}
785 
786 	/* Enable ECRC generation and check */
787 	if (edev->pcie_cap && edev->aer_cap) {
788 		eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP,
789 				     4, &aer_capctl);
790 		aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE);
791 		eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP,
792 				      4, aer_capctl);
793 	}
794 
795 	return 0;
796 }
797 
798 /**
799  * pcibios_set_pcie_reset_state - Set PCI-E reset state
800  * @dev: pci device struct
801  * @state: reset state to enter
802  *
803  * Return value:
804  * 	0 if success
805  */
806 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
807 {
808 	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
809 	struct eeh_pe *pe = eeh_dev_to_pe(edev);
810 
811 	if (!pe) {
812 		pr_err("%s: No PE found on PCI device %s\n",
813 			__func__, pci_name(dev));
814 		return -EINVAL;
815 	}
816 
817 	switch (state) {
818 	case pcie_deassert_reset:
819 		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
820 		eeh_unfreeze_pe(pe);
821 		if (!(pe->type & EEH_PE_VF))
822 			eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
823 		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
824 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
825 		break;
826 	case pcie_hot_reset:
827 		eeh_pe_mark_isolated(pe);
828 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
829 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
830 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
831 		if (!(pe->type & EEH_PE_VF))
832 			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
833 		eeh_ops->reset(pe, EEH_RESET_HOT);
834 		break;
835 	case pcie_warm_reset:
836 		eeh_pe_mark_isolated(pe);
837 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
838 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
839 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
840 		if (!(pe->type & EEH_PE_VF))
841 			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
842 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
843 		break;
844 	default:
845 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
846 		return -EINVAL;
847 	};
848 
849 	return 0;
850 }
851 
852 /**
853  * eeh_set_pe_freset - Check the required reset for the indicated device
854  * @data: EEH device
855  * @flag: return value
856  *
857  * Each device might have its preferred reset type: fundamental or
858  * hot reset. The routine is used to collected the information for
859  * the indicated device and its children so that the bunch of the
860  * devices could be reset properly.
861  */
862 static void *eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
863 {
864 	struct pci_dev *dev;
865 	unsigned int *freset = (unsigned int *)flag;
866 
867 	dev = eeh_dev_to_pci_dev(edev);
868 	if (dev)
869 		*freset |= dev->needs_freset;
870 
871 	return NULL;
872 }
873 
874 static void eeh_pe_refreeze_passed(struct eeh_pe *root)
875 {
876 	struct eeh_pe *pe;
877 	int state;
878 
879 	eeh_for_each_pe(root, pe) {
880 		if (eeh_pe_passed(pe)) {
881 			state = eeh_ops->get_state(pe, NULL);
882 			if (state &
883 			   (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
884 				pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
885 					pe->phb->global_number, pe->addr);
886 				eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
887 			}
888 		}
889 	}
890 }
891 
892 /**
893  * eeh_pe_reset_full - Complete a full reset process on the indicated PE
894  * @pe: EEH PE
895  *
896  * This function executes a full reset procedure on a PE, including setting
897  * the appropriate flags, performing a fundamental or hot reset, and then
898  * deactivating the reset status.  It is designed to be used within the EEH
899  * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
900  * only performs a single operation at a time.
901  *
902  * This function will attempt to reset a PE three times before failing.
903  */
904 int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
905 {
906 	int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
907 	int type = EEH_RESET_HOT;
908 	unsigned int freset = 0;
909 	int i, state = 0, ret;
910 
911 	/*
912 	 * Determine the type of reset to perform - hot or fundamental.
913 	 * Hot reset is the default operation, unless any device under the
914 	 * PE requires a fundamental reset.
915 	 */
916 	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
917 
918 	if (freset)
919 		type = EEH_RESET_FUNDAMENTAL;
920 
921 	/* Mark the PE as in reset state and block config space accesses */
922 	eeh_pe_state_mark(pe, reset_state);
923 
924 	/* Make three attempts at resetting the bus */
925 	for (i = 0; i < 3; i++) {
926 		ret = eeh_pe_reset(pe, type, include_passed);
927 		if (!ret)
928 			ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
929 					   include_passed);
930 		if (ret) {
931 			ret = -EIO;
932 			pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
933 				state, pe->phb->global_number, pe->addr, i + 1);
934 			continue;
935 		}
936 		if (i)
937 			pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
938 				pe->phb->global_number, pe->addr, i + 1);
939 
940 		/* Wait until the PE is in a functioning state */
941 		state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
942 		if (state < 0) {
943 			pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
944 				pe->phb->global_number, pe->addr);
945 			ret = -ENOTRECOVERABLE;
946 			break;
947 		}
948 		if (eeh_state_active(state))
949 			break;
950 		else
951 			pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
952 				pe->phb->global_number, pe->addr, state, i + 1);
953 	}
954 
955 	/* Resetting the PE may have unfrozen child PEs. If those PEs have been
956 	 * (potentially) passed through to a guest, re-freeze them:
957 	 */
958 	if (!include_passed)
959 		eeh_pe_refreeze_passed(pe);
960 
961 	eeh_pe_state_clear(pe, reset_state, true);
962 	return ret;
963 }
964 
965 /**
966  * eeh_save_bars - Save device bars
967  * @edev: PCI device associated EEH device
968  *
969  * Save the values of the device bars. Unlike the restore
970  * routine, this routine is *not* recursive. This is because
971  * PCI devices are added individually; but, for the restore,
972  * an entire slot is reset at a time.
973  */
974 void eeh_save_bars(struct eeh_dev *edev)
975 {
976 	struct pci_dn *pdn;
977 	int i;
978 
979 	pdn = eeh_dev_to_pdn(edev);
980 	if (!pdn)
981 		return;
982 
983 	for (i = 0; i < 16; i++)
984 		eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
985 
986 	/*
987 	 * For PCI bridges including root port, we need enable bus
988 	 * master explicitly. Otherwise, it can't fetch IODA table
989 	 * entries correctly. So we cache the bit in advance so that
990 	 * we can restore it after reset, either PHB range or PE range.
991 	 */
992 	if (edev->mode & EEH_DEV_BRIDGE)
993 		edev->config_space[1] |= PCI_COMMAND_MASTER;
994 }
995 
996 /**
997  * eeh_ops_register - Register platform dependent EEH operations
998  * @ops: platform dependent EEH operations
999  *
1000  * Register the platform dependent EEH operation callback
1001  * functions. The platform should call this function before
1002  * any other EEH operations.
1003  */
1004 int __init eeh_ops_register(struct eeh_ops *ops)
1005 {
1006 	if (!ops->name) {
1007 		pr_warn("%s: Invalid EEH ops name for %p\n",
1008 			__func__, ops);
1009 		return -EINVAL;
1010 	}
1011 
1012 	if (eeh_ops && eeh_ops != ops) {
1013 		pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
1014 			__func__, eeh_ops->name, ops->name);
1015 		return -EEXIST;
1016 	}
1017 
1018 	eeh_ops = ops;
1019 
1020 	return 0;
1021 }
1022 
1023 /**
1024  * eeh_ops_unregister - Unreigster platform dependent EEH operations
1025  * @name: name of EEH platform operations
1026  *
1027  * Unregister the platform dependent EEH operation callback
1028  * functions.
1029  */
1030 int __exit eeh_ops_unregister(const char *name)
1031 {
1032 	if (!name || !strlen(name)) {
1033 		pr_warn("%s: Invalid EEH ops name\n",
1034 			__func__);
1035 		return -EINVAL;
1036 	}
1037 
1038 	if (eeh_ops && !strcmp(eeh_ops->name, name)) {
1039 		eeh_ops = NULL;
1040 		return 0;
1041 	}
1042 
1043 	return -EEXIST;
1044 }
1045 
1046 static int eeh_reboot_notifier(struct notifier_block *nb,
1047 			       unsigned long action, void *unused)
1048 {
1049 	eeh_clear_flag(EEH_ENABLED);
1050 	return NOTIFY_DONE;
1051 }
1052 
1053 static struct notifier_block eeh_reboot_nb = {
1054 	.notifier_call = eeh_reboot_notifier,
1055 };
1056 
1057 void eeh_probe_devices(void)
1058 {
1059 	struct pci_controller *hose, *tmp;
1060 	struct pci_dn *pdn;
1061 
1062 	/* Enable EEH for all adapters */
1063 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1064 		pdn = hose->pci_data;
1065 		traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1066 	}
1067 	if (eeh_enabled())
1068 		pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1069 	else
1070 		pr_info("EEH: No capable adapters found\n");
1071 
1072 }
1073 
1074 /**
1075  * eeh_init - EEH initialization
1076  *
1077  * Initialize EEH by trying to enable it for all of the adapters in the system.
1078  * As a side effect we can determine here if eeh is supported at all.
1079  * Note that we leave EEH on so failed config cycles won't cause a machine
1080  * check.  If a user turns off EEH for a particular adapter they are really
1081  * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
1082  * grant access to a slot if EEH isn't enabled, and so we always enable
1083  * EEH for all slots/all devices.
1084  *
1085  * The eeh-force-off option disables EEH checking globally, for all slots.
1086  * Even if force-off is set, the EEH hardware is still enabled, so that
1087  * newer systems can boot.
1088  */
1089 static int eeh_init(void)
1090 {
1091 	struct pci_controller *hose, *tmp;
1092 	int ret = 0;
1093 
1094 	/* Register reboot notifier */
1095 	ret = register_reboot_notifier(&eeh_reboot_nb);
1096 	if (ret) {
1097 		pr_warn("%s: Failed to register notifier (%d)\n",
1098 			__func__, ret);
1099 		return ret;
1100 	}
1101 
1102 	/* call platform initialization function */
1103 	if (!eeh_ops) {
1104 		pr_warn("%s: Platform EEH operation not found\n",
1105 			__func__);
1106 		return -EEXIST;
1107 	} else if ((ret = eeh_ops->init()))
1108 		return ret;
1109 
1110 	/* Initialize PHB PEs */
1111 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
1112 		eeh_dev_phb_init_dynamic(hose);
1113 
1114 	/* Initialize EEH event */
1115 	return eeh_event_init();
1116 }
1117 
1118 core_initcall_sync(eeh_init);
1119 
1120 /**
1121  * eeh_add_device_early - Enable EEH for the indicated device node
1122  * @pdn: PCI device node for which to set up EEH
1123  *
1124  * This routine must be used to perform EEH initialization for PCI
1125  * devices that were added after system boot (e.g. hotplug, dlpar).
1126  * This routine must be called before any i/o is performed to the
1127  * adapter (inluding any config-space i/o).
1128  * Whether this actually enables EEH or not for this device depends
1129  * on the CEC architecture, type of the device, on earlier boot
1130  * command-line arguments & etc.
1131  */
1132 void eeh_add_device_early(struct pci_dn *pdn)
1133 {
1134 	struct pci_controller *phb = pdn ? pdn->phb : NULL;
1135 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1136 
1137 	if (!edev)
1138 		return;
1139 
1140 	if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1141 		return;
1142 
1143 	/* USB Bus children of PCI devices will not have BUID's */
1144 	if (NULL == phb ||
1145 	    (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1146 		return;
1147 
1148 	eeh_ops->probe(pdn, NULL);
1149 }
1150 
1151 /**
1152  * eeh_add_device_tree_early - Enable EEH for the indicated device
1153  * @pdn: PCI device node
1154  *
1155  * This routine must be used to perform EEH initialization for the
1156  * indicated PCI device that was added after system boot (e.g.
1157  * hotplug, dlpar).
1158  */
1159 void eeh_add_device_tree_early(struct pci_dn *pdn)
1160 {
1161 	struct pci_dn *n;
1162 
1163 	if (!pdn)
1164 		return;
1165 
1166 	list_for_each_entry(n, &pdn->child_list, list)
1167 		eeh_add_device_tree_early(n);
1168 	eeh_add_device_early(pdn);
1169 }
1170 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1171 
1172 /**
1173  * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1174  * @dev: pci device for which to set up EEH
1175  *
1176  * This routine must be used to complete EEH initialization for PCI
1177  * devices that were added after system boot (e.g. hotplug, dlpar).
1178  */
1179 void eeh_add_device_late(struct pci_dev *dev)
1180 {
1181 	struct pci_dn *pdn;
1182 	struct eeh_dev *edev;
1183 
1184 	if (!dev || !eeh_enabled())
1185 		return;
1186 
1187 	pr_debug("EEH: Adding device %s\n", pci_name(dev));
1188 
1189 	pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1190 	edev = pdn_to_eeh_dev(pdn);
1191 	if (edev->pdev == dev) {
1192 		pr_debug("EEH: Already referenced !\n");
1193 		return;
1194 	}
1195 
1196 	/*
1197 	 * The EEH cache might not be removed correctly because of
1198 	 * unbalanced kref to the device during unplug time, which
1199 	 * relies on pcibios_release_device(). So we have to remove
1200 	 * that here explicitly.
1201 	 */
1202 	if (edev->pdev) {
1203 		eeh_rmv_from_parent_pe(edev);
1204 		eeh_addr_cache_rmv_dev(edev->pdev);
1205 		eeh_sysfs_remove_device(edev->pdev);
1206 		edev->mode &= ~EEH_DEV_SYSFS;
1207 
1208 		/*
1209 		 * We definitely should have the PCI device removed
1210 		 * though it wasn't correctly. So we needn't call
1211 		 * into error handler afterwards.
1212 		 */
1213 		edev->mode |= EEH_DEV_NO_HANDLER;
1214 
1215 		edev->pdev = NULL;
1216 		dev->dev.archdata.edev = NULL;
1217 	}
1218 
1219 	if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1220 		eeh_ops->probe(pdn, NULL);
1221 
1222 	edev->pdev = dev;
1223 	dev->dev.archdata.edev = edev;
1224 
1225 	eeh_addr_cache_insert_dev(dev);
1226 }
1227 
1228 /**
1229  * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1230  * @bus: PCI bus
1231  *
1232  * This routine must be used to perform EEH initialization for PCI
1233  * devices which are attached to the indicated PCI bus. The PCI bus
1234  * is added after system boot through hotplug or dlpar.
1235  */
1236 void eeh_add_device_tree_late(struct pci_bus *bus)
1237 {
1238 	struct pci_dev *dev;
1239 
1240 	list_for_each_entry(dev, &bus->devices, bus_list) {
1241 		eeh_add_device_late(dev);
1242 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1243 			struct pci_bus *subbus = dev->subordinate;
1244 			if (subbus)
1245 				eeh_add_device_tree_late(subbus);
1246 		}
1247 	}
1248 }
1249 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1250 
1251 /**
1252  * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1253  * @bus: PCI bus
1254  *
1255  * This routine must be used to add EEH sysfs files for PCI
1256  * devices which are attached to the indicated PCI bus. The PCI bus
1257  * is added after system boot through hotplug or dlpar.
1258  */
1259 void eeh_add_sysfs_files(struct pci_bus *bus)
1260 {
1261 	struct pci_dev *dev;
1262 
1263 	list_for_each_entry(dev, &bus->devices, bus_list) {
1264 		eeh_sysfs_add_device(dev);
1265 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1266 			struct pci_bus *subbus = dev->subordinate;
1267 			if (subbus)
1268 				eeh_add_sysfs_files(subbus);
1269 		}
1270 	}
1271 }
1272 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1273 
1274 /**
1275  * eeh_remove_device - Undo EEH setup for the indicated pci device
1276  * @dev: pci device to be removed
1277  *
1278  * This routine should be called when a device is removed from
1279  * a running system (e.g. by hotplug or dlpar).  It unregisters
1280  * the PCI device from the EEH subsystem.  I/O errors affecting
1281  * this device will no longer be detected after this call; thus,
1282  * i/o errors affecting this slot may leave this device unusable.
1283  */
1284 void eeh_remove_device(struct pci_dev *dev)
1285 {
1286 	struct eeh_dev *edev;
1287 
1288 	if (!dev || !eeh_enabled())
1289 		return;
1290 	edev = pci_dev_to_eeh_dev(dev);
1291 
1292 	/* Unregister the device with the EEH/PCI address search system */
1293 	pr_debug("EEH: Removing device %s\n", pci_name(dev));
1294 
1295 	if (!edev || !edev->pdev || !edev->pe) {
1296 		pr_debug("EEH: Not referenced !\n");
1297 		return;
1298 	}
1299 
1300 	/*
1301 	 * During the hotplug for EEH error recovery, we need the EEH
1302 	 * device attached to the parent PE in order for BAR restore
1303 	 * a bit later. So we keep it for BAR restore and remove it
1304 	 * from the parent PE during the BAR resotre.
1305 	 */
1306 	edev->pdev = NULL;
1307 
1308 	/*
1309 	 * The flag "in_error" is used to trace EEH devices for VFs
1310 	 * in error state or not. It's set in eeh_report_error(). If
1311 	 * it's not set, eeh_report_{reset,resume}() won't be called
1312 	 * for the VF EEH device.
1313 	 */
1314 	edev->in_error = false;
1315 	dev->dev.archdata.edev = NULL;
1316 	if (!(edev->pe->state & EEH_PE_KEEP))
1317 		eeh_rmv_from_parent_pe(edev);
1318 	else
1319 		edev->mode |= EEH_DEV_DISCONNECTED;
1320 
1321 	/*
1322 	 * We're removing from the PCI subsystem, that means
1323 	 * the PCI device driver can't support EEH or not
1324 	 * well. So we rely on hotplug completely to do recovery
1325 	 * for the specific PCI device.
1326 	 */
1327 	edev->mode |= EEH_DEV_NO_HANDLER;
1328 
1329 	eeh_addr_cache_rmv_dev(dev);
1330 	eeh_sysfs_remove_device(dev);
1331 	edev->mode &= ~EEH_DEV_SYSFS;
1332 }
1333 
1334 int eeh_unfreeze_pe(struct eeh_pe *pe)
1335 {
1336 	int ret;
1337 
1338 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1339 	if (ret) {
1340 		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1341 			__func__, ret, pe->phb->global_number, pe->addr);
1342 		return ret;
1343 	}
1344 
1345 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1346 	if (ret) {
1347 		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1348 			__func__, ret, pe->phb->global_number, pe->addr);
1349 		return ret;
1350 	}
1351 
1352 	return ret;
1353 }
1354 
1355 
1356 static struct pci_device_id eeh_reset_ids[] = {
1357 	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1358 	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1359 	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1360 	{ 0 }
1361 };
1362 
1363 static int eeh_pe_change_owner(struct eeh_pe *pe)
1364 {
1365 	struct eeh_dev *edev, *tmp;
1366 	struct pci_dev *pdev;
1367 	struct pci_device_id *id;
1368 	int ret;
1369 
1370 	/* Check PE state */
1371 	ret = eeh_ops->get_state(pe, NULL);
1372 	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1373 		return 0;
1374 
1375 	/* Unfrozen PE, nothing to do */
1376 	if (eeh_state_active(ret))
1377 		return 0;
1378 
1379 	/* Frozen PE, check if it needs PE level reset */
1380 	eeh_pe_for_each_dev(pe, edev, tmp) {
1381 		pdev = eeh_dev_to_pci_dev(edev);
1382 		if (!pdev)
1383 			continue;
1384 
1385 		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1386 			if (id->vendor != PCI_ANY_ID &&
1387 			    id->vendor != pdev->vendor)
1388 				continue;
1389 			if (id->device != PCI_ANY_ID &&
1390 			    id->device != pdev->device)
1391 				continue;
1392 			if (id->subvendor != PCI_ANY_ID &&
1393 			    id->subvendor != pdev->subsystem_vendor)
1394 				continue;
1395 			if (id->subdevice != PCI_ANY_ID &&
1396 			    id->subdevice != pdev->subsystem_device)
1397 				continue;
1398 
1399 			return eeh_pe_reset_and_recover(pe);
1400 		}
1401 	}
1402 
1403 	ret = eeh_unfreeze_pe(pe);
1404 	if (!ret)
1405 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1406 	return ret;
1407 }
1408 
1409 /**
1410  * eeh_dev_open - Increase count of pass through devices for PE
1411  * @pdev: PCI device
1412  *
1413  * Increase count of passed through devices for the indicated
1414  * PE. In the result, the EEH errors detected on the PE won't be
1415  * reported. The PE owner will be responsible for detection
1416  * and recovery.
1417  */
1418 int eeh_dev_open(struct pci_dev *pdev)
1419 {
1420 	struct eeh_dev *edev;
1421 	int ret = -ENODEV;
1422 
1423 	mutex_lock(&eeh_dev_mutex);
1424 
1425 	/* No PCI device ? */
1426 	if (!pdev)
1427 		goto out;
1428 
1429 	/* No EEH device or PE ? */
1430 	edev = pci_dev_to_eeh_dev(pdev);
1431 	if (!edev || !edev->pe)
1432 		goto out;
1433 
1434 	/*
1435 	 * The PE might have been put into frozen state, but we
1436 	 * didn't detect that yet. The passed through PCI devices
1437 	 * in frozen PE won't work properly. Clear the frozen state
1438 	 * in advance.
1439 	 */
1440 	ret = eeh_pe_change_owner(edev->pe);
1441 	if (ret)
1442 		goto out;
1443 
1444 	/* Increase PE's pass through count */
1445 	atomic_inc(&edev->pe->pass_dev_cnt);
1446 	mutex_unlock(&eeh_dev_mutex);
1447 
1448 	return 0;
1449 out:
1450 	mutex_unlock(&eeh_dev_mutex);
1451 	return ret;
1452 }
1453 EXPORT_SYMBOL_GPL(eeh_dev_open);
1454 
1455 /**
1456  * eeh_dev_release - Decrease count of pass through devices for PE
1457  * @pdev: PCI device
1458  *
1459  * Decrease count of pass through devices for the indicated PE. If
1460  * there is no passed through device in PE, the EEH errors detected
1461  * on the PE will be reported and handled as usual.
1462  */
1463 void eeh_dev_release(struct pci_dev *pdev)
1464 {
1465 	struct eeh_dev *edev;
1466 
1467 	mutex_lock(&eeh_dev_mutex);
1468 
1469 	/* No PCI device ? */
1470 	if (!pdev)
1471 		goto out;
1472 
1473 	/* No EEH device ? */
1474 	edev = pci_dev_to_eeh_dev(pdev);
1475 	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1476 		goto out;
1477 
1478 	/* Decrease PE's pass through count */
1479 	WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1480 	eeh_pe_change_owner(edev->pe);
1481 out:
1482 	mutex_unlock(&eeh_dev_mutex);
1483 }
1484 EXPORT_SYMBOL(eeh_dev_release);
1485 
1486 #ifdef CONFIG_IOMMU_API
1487 
1488 static int dev_has_iommu_table(struct device *dev, void *data)
1489 {
1490 	struct pci_dev *pdev = to_pci_dev(dev);
1491 	struct pci_dev **ppdev = data;
1492 
1493 	if (!dev)
1494 		return 0;
1495 
1496 	if (device_iommu_mapped(dev)) {
1497 		*ppdev = pdev;
1498 		return 1;
1499 	}
1500 
1501 	return 0;
1502 }
1503 
1504 /**
1505  * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1506  * @group: IOMMU group
1507  *
1508  * The routine is called to convert IOMMU group to EEH PE.
1509  */
1510 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1511 {
1512 	struct pci_dev *pdev = NULL;
1513 	struct eeh_dev *edev;
1514 	int ret;
1515 
1516 	/* No IOMMU group ? */
1517 	if (!group)
1518 		return NULL;
1519 
1520 	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1521 	if (!ret || !pdev)
1522 		return NULL;
1523 
1524 	/* No EEH device or PE ? */
1525 	edev = pci_dev_to_eeh_dev(pdev);
1526 	if (!edev || !edev->pe)
1527 		return NULL;
1528 
1529 	return edev->pe;
1530 }
1531 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1532 
1533 #endif /* CONFIG_IOMMU_API */
1534 
1535 /**
1536  * eeh_pe_set_option - Set options for the indicated PE
1537  * @pe: EEH PE
1538  * @option: requested option
1539  *
1540  * The routine is called to enable or disable EEH functionality
1541  * on the indicated PE, to enable IO or DMA for the frozen PE.
1542  */
1543 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1544 {
1545 	int ret = 0;
1546 
1547 	/* Invalid PE ? */
1548 	if (!pe)
1549 		return -ENODEV;
1550 
1551 	/*
1552 	 * EEH functionality could possibly be disabled, just
1553 	 * return error for the case. And the EEH functinality
1554 	 * isn't expected to be disabled on one specific PE.
1555 	 */
1556 	switch (option) {
1557 	case EEH_OPT_ENABLE:
1558 		if (eeh_enabled()) {
1559 			ret = eeh_pe_change_owner(pe);
1560 			break;
1561 		}
1562 		ret = -EIO;
1563 		break;
1564 	case EEH_OPT_DISABLE:
1565 		break;
1566 	case EEH_OPT_THAW_MMIO:
1567 	case EEH_OPT_THAW_DMA:
1568 	case EEH_OPT_FREEZE_PE:
1569 		if (!eeh_ops || !eeh_ops->set_option) {
1570 			ret = -ENOENT;
1571 			break;
1572 		}
1573 
1574 		ret = eeh_pci_enable(pe, option);
1575 		break;
1576 	default:
1577 		pr_debug("%s: Option %d out of range (%d, %d)\n",
1578 			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1579 		ret = -EINVAL;
1580 	}
1581 
1582 	return ret;
1583 }
1584 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1585 
1586 /**
1587  * eeh_pe_get_state - Retrieve PE's state
1588  * @pe: EEH PE
1589  *
1590  * Retrieve the PE's state, which includes 3 aspects: enabled
1591  * DMA, enabled IO and asserted reset.
1592  */
1593 int eeh_pe_get_state(struct eeh_pe *pe)
1594 {
1595 	int result, ret = 0;
1596 	bool rst_active, dma_en, mmio_en;
1597 
1598 	/* Existing PE ? */
1599 	if (!pe)
1600 		return -ENODEV;
1601 
1602 	if (!eeh_ops || !eeh_ops->get_state)
1603 		return -ENOENT;
1604 
1605 	/*
1606 	 * If the parent PE is owned by the host kernel and is undergoing
1607 	 * error recovery, we should return the PE state as temporarily
1608 	 * unavailable so that the error recovery on the guest is suspended
1609 	 * until the recovery completes on the host.
1610 	 */
1611 	if (pe->parent &&
1612 	    !(pe->state & EEH_PE_REMOVED) &&
1613 	    (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1614 		return EEH_PE_STATE_UNAVAIL;
1615 
1616 	result = eeh_ops->get_state(pe, NULL);
1617 	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1618 	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1619 	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1620 
1621 	if (rst_active)
1622 		ret = EEH_PE_STATE_RESET;
1623 	else if (dma_en && mmio_en)
1624 		ret = EEH_PE_STATE_NORMAL;
1625 	else if (!dma_en && !mmio_en)
1626 		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1627 	else if (!dma_en && mmio_en)
1628 		ret = EEH_PE_STATE_STOPPED_DMA;
1629 	else
1630 		ret = EEH_PE_STATE_UNAVAIL;
1631 
1632 	return ret;
1633 }
1634 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1635 
1636 static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1637 {
1638 	struct eeh_dev *edev, *tmp;
1639 	struct pci_dev *pdev;
1640 	int ret = 0;
1641 
1642 	eeh_pe_restore_bars(pe);
1643 
1644 	/*
1645 	 * Reenable PCI devices as the devices passed
1646 	 * through are always enabled before the reset.
1647 	 */
1648 	eeh_pe_for_each_dev(pe, edev, tmp) {
1649 		pdev = eeh_dev_to_pci_dev(edev);
1650 		if (!pdev)
1651 			continue;
1652 
1653 		ret = pci_reenable_device(pdev);
1654 		if (ret) {
1655 			pr_warn("%s: Failure %d reenabling %s\n",
1656 				__func__, ret, pci_name(pdev));
1657 			return ret;
1658 		}
1659 	}
1660 
1661 	/* The PE is still in frozen state */
1662 	if (include_passed || !eeh_pe_passed(pe)) {
1663 		ret = eeh_unfreeze_pe(pe);
1664 	} else
1665 		pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1666 			pe->phb->global_number, pe->addr);
1667 	if (!ret)
1668 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1669 	return ret;
1670 }
1671 
1672 
1673 /**
1674  * eeh_pe_reset - Issue PE reset according to specified type
1675  * @pe: EEH PE
1676  * @option: reset type
1677  *
1678  * The routine is called to reset the specified PE with the
1679  * indicated type, either fundamental reset or hot reset.
1680  * PE reset is the most important part for error recovery.
1681  */
1682 int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1683 {
1684 	int ret = 0;
1685 
1686 	/* Invalid PE ? */
1687 	if (!pe)
1688 		return -ENODEV;
1689 
1690 	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1691 		return -ENOENT;
1692 
1693 	switch (option) {
1694 	case EEH_RESET_DEACTIVATE:
1695 		ret = eeh_ops->reset(pe, option);
1696 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1697 		if (ret)
1698 			break;
1699 
1700 		ret = eeh_pe_reenable_devices(pe, include_passed);
1701 		break;
1702 	case EEH_RESET_HOT:
1703 	case EEH_RESET_FUNDAMENTAL:
1704 		/*
1705 		 * Proactively freeze the PE to drop all MMIO access
1706 		 * during reset, which should be banned as it's always
1707 		 * cause recursive EEH error.
1708 		 */
1709 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1710 
1711 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1712 		ret = eeh_ops->reset(pe, option);
1713 		break;
1714 	default:
1715 		pr_debug("%s: Unsupported option %d\n",
1716 			__func__, option);
1717 		ret = -EINVAL;
1718 	}
1719 
1720 	return ret;
1721 }
1722 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1723 
1724 /**
1725  * eeh_pe_configure - Configure PCI bridges after PE reset
1726  * @pe: EEH PE
1727  *
1728  * The routine is called to restore the PCI config space for
1729  * those PCI devices, especially PCI bridges affected by PE
1730  * reset issued previously.
1731  */
1732 int eeh_pe_configure(struct eeh_pe *pe)
1733 {
1734 	int ret = 0;
1735 
1736 	/* Invalid PE ? */
1737 	if (!pe)
1738 		return -ENODEV;
1739 
1740 	return ret;
1741 }
1742 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1743 
1744 /**
1745  * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1746  * @pe: the indicated PE
1747  * @type: error type
1748  * @function: error function
1749  * @addr: address
1750  * @mask: address mask
1751  *
1752  * The routine is called to inject the specified PCI error, which
1753  * is determined by @type and @function, to the indicated PE for
1754  * testing purpose.
1755  */
1756 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1757 		      unsigned long addr, unsigned long mask)
1758 {
1759 	/* Invalid PE ? */
1760 	if (!pe)
1761 		return -ENODEV;
1762 
1763 	/* Unsupported operation ? */
1764 	if (!eeh_ops || !eeh_ops->err_inject)
1765 		return -ENOENT;
1766 
1767 	/* Check on PCI error type */
1768 	if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1769 		return -EINVAL;
1770 
1771 	/* Check on PCI error function */
1772 	if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1773 		return -EINVAL;
1774 
1775 	return eeh_ops->err_inject(pe, type, func, addr, mask);
1776 }
1777 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1778 
1779 static int proc_eeh_show(struct seq_file *m, void *v)
1780 {
1781 	if (!eeh_enabled()) {
1782 		seq_printf(m, "EEH Subsystem is globally disabled\n");
1783 		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1784 	} else {
1785 		seq_printf(m, "EEH Subsystem is enabled\n");
1786 		seq_printf(m,
1787 				"no device=%llu\n"
1788 				"no device node=%llu\n"
1789 				"no config address=%llu\n"
1790 				"check not wanted=%llu\n"
1791 				"eeh_total_mmio_ffs=%llu\n"
1792 				"eeh_false_positives=%llu\n"
1793 				"eeh_slot_resets=%llu\n",
1794 				eeh_stats.no_device,
1795 				eeh_stats.no_dn,
1796 				eeh_stats.no_cfg_addr,
1797 				eeh_stats.ignored_check,
1798 				eeh_stats.total_mmio_ffs,
1799 				eeh_stats.false_positives,
1800 				eeh_stats.slot_resets);
1801 	}
1802 
1803 	return 0;
1804 }
1805 
1806 #ifdef CONFIG_DEBUG_FS
1807 static int eeh_enable_dbgfs_set(void *data, u64 val)
1808 {
1809 	if (val)
1810 		eeh_clear_flag(EEH_FORCE_DISABLED);
1811 	else
1812 		eeh_add_flag(EEH_FORCE_DISABLED);
1813 
1814 	return 0;
1815 }
1816 
1817 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1818 {
1819 	if (eeh_enabled())
1820 		*val = 0x1ul;
1821 	else
1822 		*val = 0x0ul;
1823 	return 0;
1824 }
1825 
1826 DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1827 			 eeh_enable_dbgfs_set, "0x%llx\n");
1828 
1829 static ssize_t eeh_force_recover_write(struct file *filp,
1830 				const char __user *user_buf,
1831 				size_t count, loff_t *ppos)
1832 {
1833 	struct pci_controller *hose;
1834 	uint32_t phbid, pe_no;
1835 	struct eeh_pe *pe;
1836 	char buf[20];
1837 	int ret;
1838 
1839 	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1840 	if (!ret)
1841 		return -EFAULT;
1842 
1843 	/*
1844 	 * When PE is NULL the event is a "special" event. Rather than
1845 	 * recovering a specific PE it forces the EEH core to scan for failed
1846 	 * PHBs and recovers each. This needs to be done before any device
1847 	 * recoveries can occur.
1848 	 */
1849 	if (!strncmp(buf, "hwcheck", 7)) {
1850 		__eeh_send_failure_event(NULL);
1851 		return count;
1852 	}
1853 
1854 	ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1855 	if (ret != 2)
1856 		return -EINVAL;
1857 
1858 	hose = pci_find_controller_for_domain(phbid);
1859 	if (!hose)
1860 		return -ENODEV;
1861 
1862 	/* Retrieve PE */
1863 	pe = eeh_pe_get(hose, pe_no, 0);
1864 	if (!pe)
1865 		return -ENODEV;
1866 
1867 	/*
1868 	 * We don't do any state checking here since the detection
1869 	 * process is async to the recovery process. The recovery
1870 	 * thread *should* not break even if we schedule a recovery
1871 	 * from an odd state (e.g. PE removed, or recovery of a
1872 	 * non-isolated PE)
1873 	 */
1874 	__eeh_send_failure_event(pe);
1875 
1876 	return ret < 0 ? ret : count;
1877 }
1878 
1879 static const struct file_operations eeh_force_recover_fops = {
1880 	.open	= simple_open,
1881 	.llseek	= no_llseek,
1882 	.write	= eeh_force_recover_write,
1883 };
1884 #endif
1885 
1886 static int __init eeh_init_proc(void)
1887 {
1888 	if (machine_is(pseries) || machine_is(powernv)) {
1889 		proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1890 #ifdef CONFIG_DEBUG_FS
1891 		debugfs_create_file_unsafe("eeh_enable", 0600,
1892 					   powerpc_debugfs_root, NULL,
1893 					   &eeh_enable_dbgfs_ops);
1894 		debugfs_create_u32("eeh_max_freezes", 0600,
1895 				powerpc_debugfs_root, &eeh_max_freezes);
1896 		debugfs_create_bool("eeh_disable_recovery", 0600,
1897 				powerpc_debugfs_root,
1898 				&eeh_debugfs_no_recover);
1899 		debugfs_create_file_unsafe("eeh_force_recover", 0600,
1900 				powerpc_debugfs_root, NULL,
1901 				&eeh_force_recover_fops);
1902 		eeh_cache_debugfs_init();
1903 #endif
1904 	}
1905 
1906 	return 0;
1907 }
1908 __initcall(eeh_init_proc);
1909