xref: /openbmc/linux/arch/powerpc/kernel/eeh.c (revision 8938c48f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright IBM Corporation 2001, 2005, 2006
4  * Copyright Dave Engebretsen & Todd Inglett 2001
5  * Copyright Linas Vepstas 2005, 2006
6  * Copyright 2001-2012 IBM Corporation.
7  *
8  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/sched.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/pci.h>
16 #include <linux/iommu.h>
17 #include <linux/proc_fs.h>
18 #include <linux/rbtree.h>
19 #include <linux/reboot.h>
20 #include <linux/seq_file.h>
21 #include <linux/spinlock.h>
22 #include <linux/export.h>
23 #include <linux/of.h>
24 
25 #include <linux/atomic.h>
26 #include <asm/debugfs.h>
27 #include <asm/eeh.h>
28 #include <asm/eeh_event.h>
29 #include <asm/io.h>
30 #include <asm/iommu.h>
31 #include <asm/machdep.h>
32 #include <asm/ppc-pci.h>
33 #include <asm/rtas.h>
34 #include <asm/pte-walk.h>
35 
36 
37 /** Overview:
38  *  EEH, or "Enhanced Error Handling" is a PCI bridge technology for
39  *  dealing with PCI bus errors that can't be dealt with within the
40  *  usual PCI framework, except by check-stopping the CPU.  Systems
41  *  that are designed for high-availability/reliability cannot afford
42  *  to crash due to a "mere" PCI error, thus the need for EEH.
43  *  An EEH-capable bridge operates by converting a detected error
44  *  into a "slot freeze", taking the PCI adapter off-line, making
45  *  the slot behave, from the OS'es point of view, as if the slot
46  *  were "empty": all reads return 0xff's and all writes are silently
47  *  ignored.  EEH slot isolation events can be triggered by parity
48  *  errors on the address or data busses (e.g. during posted writes),
49  *  which in turn might be caused by low voltage on the bus, dust,
50  *  vibration, humidity, radioactivity or plain-old failed hardware.
51  *
52  *  Note, however, that one of the leading causes of EEH slot
53  *  freeze events are buggy device drivers, buggy device microcode,
54  *  or buggy device hardware.  This is because any attempt by the
55  *  device to bus-master data to a memory address that is not
56  *  assigned to the device will trigger a slot freeze.   (The idea
57  *  is to prevent devices-gone-wild from corrupting system memory).
58  *  Buggy hardware/drivers will have a miserable time co-existing
59  *  with EEH.
60  *
61  *  Ideally, a PCI device driver, when suspecting that an isolation
62  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
63  *  whether this is the case, and then take appropriate steps to
64  *  reset the PCI slot, the PCI device, and then resume operations.
65  *  However, until that day,  the checking is done here, with the
66  *  eeh_check_failure() routine embedded in the MMIO macros.  If
67  *  the slot is found to be isolated, an "EEH Event" is synthesized
68  *  and sent out for processing.
69  */
70 
71 /* If a device driver keeps reading an MMIO register in an interrupt
72  * handler after a slot isolation event, it might be broken.
73  * This sets the threshold for how many read attempts we allow
74  * before printing an error message.
75  */
76 #define EEH_MAX_FAILS	2100000
77 
78 /* Time to wait for a PCI slot to report status, in milliseconds */
79 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
80 
81 /*
82  * EEH probe mode support, which is part of the flags,
83  * is to support multiple platforms for EEH. Some platforms
84  * like pSeries do PCI emunation based on device tree.
85  * However, other platforms like powernv probe PCI devices
86  * from hardware. The flag is used to distinguish that.
87  * In addition, struct eeh_ops::probe would be invoked for
88  * particular OF node or PCI device so that the corresponding
89  * PE would be created there.
90  */
91 int eeh_subsystem_flags;
92 EXPORT_SYMBOL(eeh_subsystem_flags);
93 
94 /*
95  * EEH allowed maximal frozen times. If one particular PE's
96  * frozen count in last hour exceeds this limit, the PE will
97  * be forced to be offline permanently.
98  */
99 u32 eeh_max_freezes = 5;
100 
101 /*
102  * Controls whether a recovery event should be scheduled when an
103  * isolated device is discovered. This is only really useful for
104  * debugging problems with the EEH core.
105  */
106 bool eeh_debugfs_no_recover;
107 
108 /* Platform dependent EEH operations */
109 struct eeh_ops *eeh_ops = NULL;
110 
111 /* Lock to avoid races due to multiple reports of an error */
112 DEFINE_RAW_SPINLOCK(confirm_error_lock);
113 EXPORT_SYMBOL_GPL(confirm_error_lock);
114 
115 /* Lock to protect passed flags */
116 static DEFINE_MUTEX(eeh_dev_mutex);
117 
118 /* Buffer for reporting pci register dumps. Its here in BSS, and
119  * not dynamically alloced, so that it ends up in RMO where RTAS
120  * can access it.
121  */
122 #define EEH_PCI_REGS_LOG_LEN 8192
123 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
124 
125 /*
126  * The struct is used to maintain the EEH global statistic
127  * information. Besides, the EEH global statistics will be
128  * exported to user space through procfs
129  */
130 struct eeh_stats {
131 	u64 no_device;		/* PCI device not found		*/
132 	u64 no_dn;		/* OF node not found		*/
133 	u64 no_cfg_addr;	/* Config address not found	*/
134 	u64 ignored_check;	/* EEH check skipped		*/
135 	u64 total_mmio_ffs;	/* Total EEH checks		*/
136 	u64 false_positives;	/* Unnecessary EEH checks	*/
137 	u64 slot_resets;	/* PE reset			*/
138 };
139 
140 static struct eeh_stats eeh_stats;
141 
142 static int __init eeh_setup(char *str)
143 {
144 	if (!strcmp(str, "off"))
145 		eeh_add_flag(EEH_FORCE_DISABLED);
146 	else if (!strcmp(str, "early_log"))
147 		eeh_add_flag(EEH_EARLY_DUMP_LOG);
148 
149 	return 1;
150 }
151 __setup("eeh=", eeh_setup);
152 
153 void eeh_show_enabled(void)
154 {
155 	if (eeh_has_flag(EEH_FORCE_DISABLED))
156 		pr_info("EEH: Recovery disabled by kernel parameter.\n");
157 	else if (eeh_has_flag(EEH_ENABLED))
158 		pr_info("EEH: Capable adapter found: recovery enabled.\n");
159 	else
160 		pr_info("EEH: No capable adapters found: recovery disabled.\n");
161 }
162 
163 /*
164  * This routine captures assorted PCI configuration space data
165  * for the indicated PCI device, and puts them into a buffer
166  * for RTAS error logging.
167  */
168 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
169 {
170 	u32 cfg;
171 	int cap, i;
172 	int n = 0, l = 0;
173 	char buffer[128];
174 
175 	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
176 			edev->pe->phb->global_number, edev->bdfn >> 8,
177 			PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
178 	pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
179 		edev->pe->phb->global_number, edev->bdfn >> 8,
180 		PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
181 
182 	eeh_ops->read_config(edev, PCI_VENDOR_ID, 4, &cfg);
183 	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
184 	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
185 
186 	eeh_ops->read_config(edev, PCI_COMMAND, 4, &cfg);
187 	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
188 	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
189 
190 	/* Gather bridge-specific registers */
191 	if (edev->mode & EEH_DEV_BRIDGE) {
192 		eeh_ops->read_config(edev, PCI_SEC_STATUS, 2, &cfg);
193 		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
194 		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
195 
196 		eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &cfg);
197 		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
198 		pr_warn("EEH: Bridge control: %04x\n", cfg);
199 	}
200 
201 	/* Dump out the PCI-X command and status regs */
202 	cap = edev->pcix_cap;
203 	if (cap) {
204 		eeh_ops->read_config(edev, cap, 4, &cfg);
205 		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
206 		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
207 
208 		eeh_ops->read_config(edev, cap+4, 4, &cfg);
209 		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
210 		pr_warn("EEH: PCI-X status: %08x\n", cfg);
211 	}
212 
213 	/* If PCI-E capable, dump PCI-E cap 10 */
214 	cap = edev->pcie_cap;
215 	if (cap) {
216 		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
217 		pr_warn("EEH: PCI-E capabilities and status follow:\n");
218 
219 		for (i=0; i<=8; i++) {
220 			eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
221 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
222 
223 			if ((i % 4) == 0) {
224 				if (i != 0)
225 					pr_warn("%s\n", buffer);
226 
227 				l = scnprintf(buffer, sizeof(buffer),
228 					      "EEH: PCI-E %02x: %08x ",
229 					      4*i, cfg);
230 			} else {
231 				l += scnprintf(buffer+l, sizeof(buffer)-l,
232 					       "%08x ", cfg);
233 			}
234 
235 		}
236 
237 		pr_warn("%s\n", buffer);
238 	}
239 
240 	/* If AER capable, dump it */
241 	cap = edev->aer_cap;
242 	if (cap) {
243 		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
244 		pr_warn("EEH: PCI-E AER capability register set follows:\n");
245 
246 		for (i=0; i<=13; i++) {
247 			eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
248 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
249 
250 			if ((i % 4) == 0) {
251 				if (i != 0)
252 					pr_warn("%s\n", buffer);
253 
254 				l = scnprintf(buffer, sizeof(buffer),
255 					      "EEH: PCI-E AER %02x: %08x ",
256 					      4*i, cfg);
257 			} else {
258 				l += scnprintf(buffer+l, sizeof(buffer)-l,
259 					       "%08x ", cfg);
260 			}
261 		}
262 
263 		pr_warn("%s\n", buffer);
264 	}
265 
266 	return n;
267 }
268 
269 static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
270 {
271 	struct eeh_dev *edev, *tmp;
272 	size_t *plen = flag;
273 
274 	eeh_pe_for_each_dev(pe, edev, tmp)
275 		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
276 					  EEH_PCI_REGS_LOG_LEN - *plen);
277 
278 	return NULL;
279 }
280 
281 /**
282  * eeh_slot_error_detail - Generate combined log including driver log and error log
283  * @pe: EEH PE
284  * @severity: temporary or permanent error log
285  *
286  * This routine should be called to generate the combined log, which
287  * is comprised of driver log and error log. The driver log is figured
288  * out from the config space of the corresponding PCI device, while
289  * the error log is fetched through platform dependent function call.
290  */
291 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
292 {
293 	size_t loglen = 0;
294 
295 	/*
296 	 * When the PHB is fenced or dead, it's pointless to collect
297 	 * the data from PCI config space because it should return
298 	 * 0xFF's. For ER, we still retrieve the data from the PCI
299 	 * config space.
300 	 *
301 	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
302 	 * 0xFF's is always returned from PCI config space.
303 	 *
304 	 * When the @severity is EEH_LOG_PERM, the PE is going to be
305 	 * removed. Prior to that, the drivers for devices included in
306 	 * the PE will be closed. The drivers rely on working IO path
307 	 * to bring the devices to quiet state. Otherwise, PCI traffic
308 	 * from those devices after they are removed is like to cause
309 	 * another unexpected EEH error.
310 	 */
311 	if (!(pe->type & EEH_PE_PHB)) {
312 		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
313 		    severity == EEH_LOG_PERM)
314 			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
315 
316 		/*
317 		 * The config space of some PCI devices can't be accessed
318 		 * when their PEs are in frozen state. Otherwise, fenced
319 		 * PHB might be seen. Those PEs are identified with flag
320 		 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
321 		 * is set automatically when the PE is put to EEH_PE_ISOLATED.
322 		 *
323 		 * Restoring BARs possibly triggers PCI config access in
324 		 * (OPAL) firmware and then causes fenced PHB. If the
325 		 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
326 		 * pointless to restore BARs and dump config space.
327 		 */
328 		eeh_ops->configure_bridge(pe);
329 		if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
330 			eeh_pe_restore_bars(pe);
331 
332 			pci_regs_buf[0] = 0;
333 			eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
334 		}
335 	}
336 
337 	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
338 }
339 
340 /**
341  * eeh_token_to_phys - Convert EEH address token to phys address
342  * @token: I/O token, should be address in the form 0xA....
343  *
344  * This routine should be called to convert virtual I/O address
345  * to physical one.
346  */
347 static inline unsigned long eeh_token_to_phys(unsigned long token)
348 {
349 	pte_t *ptep;
350 	unsigned long pa;
351 	int hugepage_shift;
352 
353 	/*
354 	 * We won't find hugepages here(this is iomem). Hence we are not
355 	 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
356 	 * page table free, because of init_mm.
357 	 */
358 	ptep = find_init_mm_pte(token, &hugepage_shift);
359 	if (!ptep)
360 		return token;
361 
362 	pa = pte_pfn(*ptep);
363 
364 	/* On radix we can do hugepage mappings for io, so handle that */
365 	if (hugepage_shift) {
366 		pa <<= hugepage_shift;
367 		pa |= token & ((1ul << hugepage_shift) - 1);
368 	} else {
369 		pa <<= PAGE_SHIFT;
370 		pa |= token & (PAGE_SIZE - 1);
371 	}
372 
373 	return pa;
374 }
375 
376 /*
377  * On PowerNV platform, we might already have fenced PHB there.
378  * For that case, it's meaningless to recover frozen PE. Intead,
379  * We have to handle fenced PHB firstly.
380  */
381 static int eeh_phb_check_failure(struct eeh_pe *pe)
382 {
383 	struct eeh_pe *phb_pe;
384 	unsigned long flags;
385 	int ret;
386 
387 	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
388 		return -EPERM;
389 
390 	/* Find the PHB PE */
391 	phb_pe = eeh_phb_pe_get(pe->phb);
392 	if (!phb_pe) {
393 		pr_warn("%s Can't find PE for PHB#%x\n",
394 			__func__, pe->phb->global_number);
395 		return -EEXIST;
396 	}
397 
398 	/* If the PHB has been in problematic state */
399 	eeh_serialize_lock(&flags);
400 	if (phb_pe->state & EEH_PE_ISOLATED) {
401 		ret = 0;
402 		goto out;
403 	}
404 
405 	/* Check PHB state */
406 	ret = eeh_ops->get_state(phb_pe, NULL);
407 	if ((ret < 0) ||
408 	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
409 		ret = 0;
410 		goto out;
411 	}
412 
413 	/* Isolate the PHB and send event */
414 	eeh_pe_mark_isolated(phb_pe);
415 	eeh_serialize_unlock(flags);
416 
417 	pr_debug("EEH: PHB#%x failure detected, location: %s\n",
418 		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
419 	eeh_send_failure_event(phb_pe);
420 	return 1;
421 out:
422 	eeh_serialize_unlock(flags);
423 	return ret;
424 }
425 
426 /**
427  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
428  * @edev: eeh device
429  *
430  * Check for an EEH failure for the given device node.  Call this
431  * routine if the result of a read was all 0xff's and you want to
432  * find out if this is due to an EEH slot freeze.  This routine
433  * will query firmware for the EEH status.
434  *
435  * Returns 0 if there has not been an EEH error; otherwise returns
436  * a non-zero value and queues up a slot isolation event notification.
437  *
438  * It is safe to call this routine in an interrupt context.
439  */
440 int eeh_dev_check_failure(struct eeh_dev *edev)
441 {
442 	int ret;
443 	unsigned long flags;
444 	struct device_node *dn;
445 	struct pci_dev *dev;
446 	struct eeh_pe *pe, *parent_pe;
447 	int rc = 0;
448 	const char *location = NULL;
449 
450 	eeh_stats.total_mmio_ffs++;
451 
452 	if (!eeh_enabled())
453 		return 0;
454 
455 	if (!edev) {
456 		eeh_stats.no_dn++;
457 		return 0;
458 	}
459 	dev = eeh_dev_to_pci_dev(edev);
460 	pe = eeh_dev_to_pe(edev);
461 
462 	/* Access to IO BARs might get this far and still not want checking. */
463 	if (!pe) {
464 		eeh_stats.ignored_check++;
465 		eeh_edev_dbg(edev, "Ignored check\n");
466 		return 0;
467 	}
468 
469 	/*
470 	 * On PowerNV platform, we might already have fenced PHB
471 	 * there and we need take care of that firstly.
472 	 */
473 	ret = eeh_phb_check_failure(pe);
474 	if (ret > 0)
475 		return ret;
476 
477 	/*
478 	 * If the PE isn't owned by us, we shouldn't check the
479 	 * state. Instead, let the owner handle it if the PE has
480 	 * been frozen.
481 	 */
482 	if (eeh_pe_passed(pe))
483 		return 0;
484 
485 	/* If we already have a pending isolation event for this
486 	 * slot, we know it's bad already, we don't need to check.
487 	 * Do this checking under a lock; as multiple PCI devices
488 	 * in one slot might report errors simultaneously, and we
489 	 * only want one error recovery routine running.
490 	 */
491 	eeh_serialize_lock(&flags);
492 	rc = 1;
493 	if (pe->state & EEH_PE_ISOLATED) {
494 		pe->check_count++;
495 		if (pe->check_count == EEH_MAX_FAILS) {
496 			dn = pci_device_to_OF_node(dev);
497 			if (dn)
498 				location = of_get_property(dn, "ibm,loc-code",
499 						NULL);
500 			eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n",
501 				pe->check_count,
502 				location ? location : "unknown",
503 				eeh_driver_name(dev));
504 			eeh_edev_err(edev, "Might be infinite loop in %s driver\n",
505 				eeh_driver_name(dev));
506 			dump_stack();
507 		}
508 		goto dn_unlock;
509 	}
510 
511 	/*
512 	 * Now test for an EEH failure.  This is VERY expensive.
513 	 * Note that the eeh_config_addr may be a parent device
514 	 * in the case of a device behind a bridge, or it may be
515 	 * function zero of a multi-function device.
516 	 * In any case they must share a common PHB.
517 	 */
518 	ret = eeh_ops->get_state(pe, NULL);
519 
520 	/* Note that config-io to empty slots may fail;
521 	 * they are empty when they don't have children.
522 	 * We will punt with the following conditions: Failure to get
523 	 * PE's state, EEH not support and Permanently unavailable
524 	 * state, PE is in good state.
525 	 */
526 	if ((ret < 0) ||
527 	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
528 		eeh_stats.false_positives++;
529 		pe->false_positives++;
530 		rc = 0;
531 		goto dn_unlock;
532 	}
533 
534 	/*
535 	 * It should be corner case that the parent PE has been
536 	 * put into frozen state as well. We should take care
537 	 * that at first.
538 	 */
539 	parent_pe = pe->parent;
540 	while (parent_pe) {
541 		/* Hit the ceiling ? */
542 		if (parent_pe->type & EEH_PE_PHB)
543 			break;
544 
545 		/* Frozen parent PE ? */
546 		ret = eeh_ops->get_state(parent_pe, NULL);
547 		if (ret > 0 && !eeh_state_active(ret)) {
548 			pe = parent_pe;
549 			pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
550 			       pe->phb->global_number, pe->addr,
551 			       pe->phb->global_number, parent_pe->addr);
552 		}
553 
554 		/* Next parent level */
555 		parent_pe = parent_pe->parent;
556 	}
557 
558 	eeh_stats.slot_resets++;
559 
560 	/* Avoid repeated reports of this failure, including problems
561 	 * with other functions on this device, and functions under
562 	 * bridges.
563 	 */
564 	eeh_pe_mark_isolated(pe);
565 	eeh_serialize_unlock(flags);
566 
567 	/* Most EEH events are due to device driver bugs.  Having
568 	 * a stack trace will help the device-driver authors figure
569 	 * out what happened.  So print that out.
570 	 */
571 	pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
572 		__func__, pe->phb->global_number, pe->addr);
573 	eeh_send_failure_event(pe);
574 
575 	return 1;
576 
577 dn_unlock:
578 	eeh_serialize_unlock(flags);
579 	return rc;
580 }
581 
582 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
583 
584 /**
585  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
586  * @token: I/O address
587  *
588  * Check for an EEH failure at the given I/O address. Call this
589  * routine if the result of a read was all 0xff's and you want to
590  * find out if this is due to an EEH slot freeze event. This routine
591  * will query firmware for the EEH status.
592  *
593  * Note this routine is safe to call in an interrupt context.
594  */
595 int eeh_check_failure(const volatile void __iomem *token)
596 {
597 	unsigned long addr;
598 	struct eeh_dev *edev;
599 
600 	/* Finding the phys addr + pci device; this is pretty quick. */
601 	addr = eeh_token_to_phys((unsigned long __force) token);
602 	edev = eeh_addr_cache_get_dev(addr);
603 	if (!edev) {
604 		eeh_stats.no_device++;
605 		return 0;
606 	}
607 
608 	return eeh_dev_check_failure(edev);
609 }
610 EXPORT_SYMBOL(eeh_check_failure);
611 
612 
613 /**
614  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
615  * @pe: EEH PE
616  *
617  * This routine should be called to reenable frozen MMIO or DMA
618  * so that it would work correctly again. It's useful while doing
619  * recovery or log collection on the indicated device.
620  */
621 int eeh_pci_enable(struct eeh_pe *pe, int function)
622 {
623 	int active_flag, rc;
624 
625 	/*
626 	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
627 	 * Also, it's pointless to enable them on unfrozen PE. So
628 	 * we have to check before enabling IO or DMA.
629 	 */
630 	switch (function) {
631 	case EEH_OPT_THAW_MMIO:
632 		active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
633 		break;
634 	case EEH_OPT_THAW_DMA:
635 		active_flag = EEH_STATE_DMA_ACTIVE;
636 		break;
637 	case EEH_OPT_DISABLE:
638 	case EEH_OPT_ENABLE:
639 	case EEH_OPT_FREEZE_PE:
640 		active_flag = 0;
641 		break;
642 	default:
643 		pr_warn("%s: Invalid function %d\n",
644 			__func__, function);
645 		return -EINVAL;
646 	}
647 
648 	/*
649 	 * Check if IO or DMA has been enabled before
650 	 * enabling them.
651 	 */
652 	if (active_flag) {
653 		rc = eeh_ops->get_state(pe, NULL);
654 		if (rc < 0)
655 			return rc;
656 
657 		/* Needn't enable it at all */
658 		if (rc == EEH_STATE_NOT_SUPPORT)
659 			return 0;
660 
661 		/* It's already enabled */
662 		if (rc & active_flag)
663 			return 0;
664 	}
665 
666 
667 	/* Issue the request */
668 	rc = eeh_ops->set_option(pe, function);
669 	if (rc)
670 		pr_warn("%s: Unexpected state change %d on "
671 			"PHB#%x-PE#%x, err=%d\n",
672 			__func__, function, pe->phb->global_number,
673 			pe->addr, rc);
674 
675 	/* Check if the request is finished successfully */
676 	if (active_flag) {
677 		rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
678 		if (rc < 0)
679 			return rc;
680 
681 		if (rc & active_flag)
682 			return 0;
683 
684 		return -EIO;
685 	}
686 
687 	return rc;
688 }
689 
690 static void eeh_disable_and_save_dev_state(struct eeh_dev *edev,
691 					    void *userdata)
692 {
693 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
694 	struct pci_dev *dev = userdata;
695 
696 	/*
697 	 * The caller should have disabled and saved the
698 	 * state for the specified device
699 	 */
700 	if (!pdev || pdev == dev)
701 		return;
702 
703 	/* Ensure we have D0 power state */
704 	pci_set_power_state(pdev, PCI_D0);
705 
706 	/* Save device state */
707 	pci_save_state(pdev);
708 
709 	/*
710 	 * Disable device to avoid any DMA traffic and
711 	 * interrupt from the device
712 	 */
713 	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
714 }
715 
716 static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
717 {
718 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
719 	struct pci_dev *dev = userdata;
720 
721 	if (!pdev)
722 		return;
723 
724 	/* Apply customization from firmware */
725 	if (eeh_ops->restore_config)
726 		eeh_ops->restore_config(edev);
727 
728 	/* The caller should restore state for the specified device */
729 	if (pdev != dev)
730 		pci_restore_state(pdev);
731 }
732 
733 /**
734  * pcibios_set_pcie_reset_state - Set PCI-E reset state
735  * @dev: pci device struct
736  * @state: reset state to enter
737  *
738  * Return value:
739  * 	0 if success
740  */
741 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
742 {
743 	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
744 	struct eeh_pe *pe = eeh_dev_to_pe(edev);
745 
746 	if (!pe) {
747 		pr_err("%s: No PE found on PCI device %s\n",
748 			__func__, pci_name(dev));
749 		return -EINVAL;
750 	}
751 
752 	switch (state) {
753 	case pcie_deassert_reset:
754 		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
755 		eeh_unfreeze_pe(pe);
756 		if (!(pe->type & EEH_PE_VF))
757 			eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
758 		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
759 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
760 		break;
761 	case pcie_hot_reset:
762 		eeh_pe_mark_isolated(pe);
763 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
764 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
765 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
766 		if (!(pe->type & EEH_PE_VF))
767 			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
768 		eeh_ops->reset(pe, EEH_RESET_HOT);
769 		break;
770 	case pcie_warm_reset:
771 		eeh_pe_mark_isolated(pe);
772 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
773 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
774 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
775 		if (!(pe->type & EEH_PE_VF))
776 			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
777 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
778 		break;
779 	default:
780 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
781 		return -EINVAL;
782 	};
783 
784 	return 0;
785 }
786 
787 /**
788  * eeh_set_pe_freset - Check the required reset for the indicated device
789  * @data: EEH device
790  * @flag: return value
791  *
792  * Each device might have its preferred reset type: fundamental or
793  * hot reset. The routine is used to collected the information for
794  * the indicated device and its children so that the bunch of the
795  * devices could be reset properly.
796  */
797 static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
798 {
799 	struct pci_dev *dev;
800 	unsigned int *freset = (unsigned int *)flag;
801 
802 	dev = eeh_dev_to_pci_dev(edev);
803 	if (dev)
804 		*freset |= dev->needs_freset;
805 }
806 
807 static void eeh_pe_refreeze_passed(struct eeh_pe *root)
808 {
809 	struct eeh_pe *pe;
810 	int state;
811 
812 	eeh_for_each_pe(root, pe) {
813 		if (eeh_pe_passed(pe)) {
814 			state = eeh_ops->get_state(pe, NULL);
815 			if (state &
816 			   (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
817 				pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
818 					pe->phb->global_number, pe->addr);
819 				eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
820 			}
821 		}
822 	}
823 }
824 
825 /**
826  * eeh_pe_reset_full - Complete a full reset process on the indicated PE
827  * @pe: EEH PE
828  *
829  * This function executes a full reset procedure on a PE, including setting
830  * the appropriate flags, performing a fundamental or hot reset, and then
831  * deactivating the reset status.  It is designed to be used within the EEH
832  * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
833  * only performs a single operation at a time.
834  *
835  * This function will attempt to reset a PE three times before failing.
836  */
837 int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
838 {
839 	int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
840 	int type = EEH_RESET_HOT;
841 	unsigned int freset = 0;
842 	int i, state = 0, ret;
843 
844 	/*
845 	 * Determine the type of reset to perform - hot or fundamental.
846 	 * Hot reset is the default operation, unless any device under the
847 	 * PE requires a fundamental reset.
848 	 */
849 	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
850 
851 	if (freset)
852 		type = EEH_RESET_FUNDAMENTAL;
853 
854 	/* Mark the PE as in reset state and block config space accesses */
855 	eeh_pe_state_mark(pe, reset_state);
856 
857 	/* Make three attempts at resetting the bus */
858 	for (i = 0; i < 3; i++) {
859 		ret = eeh_pe_reset(pe, type, include_passed);
860 		if (!ret)
861 			ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
862 					   include_passed);
863 		if (ret) {
864 			ret = -EIO;
865 			pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
866 				state, pe->phb->global_number, pe->addr, i + 1);
867 			continue;
868 		}
869 		if (i)
870 			pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
871 				pe->phb->global_number, pe->addr, i + 1);
872 
873 		/* Wait until the PE is in a functioning state */
874 		state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
875 		if (state < 0) {
876 			pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
877 				pe->phb->global_number, pe->addr);
878 			ret = -ENOTRECOVERABLE;
879 			break;
880 		}
881 		if (eeh_state_active(state))
882 			break;
883 		else
884 			pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
885 				pe->phb->global_number, pe->addr, state, i + 1);
886 	}
887 
888 	/* Resetting the PE may have unfrozen child PEs. If those PEs have been
889 	 * (potentially) passed through to a guest, re-freeze them:
890 	 */
891 	if (!include_passed)
892 		eeh_pe_refreeze_passed(pe);
893 
894 	eeh_pe_state_clear(pe, reset_state, true);
895 	return ret;
896 }
897 
898 /**
899  * eeh_save_bars - Save device bars
900  * @edev: PCI device associated EEH device
901  *
902  * Save the values of the device bars. Unlike the restore
903  * routine, this routine is *not* recursive. This is because
904  * PCI devices are added individually; but, for the restore,
905  * an entire slot is reset at a time.
906  */
907 void eeh_save_bars(struct eeh_dev *edev)
908 {
909 	int i;
910 
911 	if (!edev)
912 		return;
913 
914 	for (i = 0; i < 16; i++)
915 		eeh_ops->read_config(edev, i * 4, 4, &edev->config_space[i]);
916 
917 	/*
918 	 * For PCI bridges including root port, we need enable bus
919 	 * master explicitly. Otherwise, it can't fetch IODA table
920 	 * entries correctly. So we cache the bit in advance so that
921 	 * we can restore it after reset, either PHB range or PE range.
922 	 */
923 	if (edev->mode & EEH_DEV_BRIDGE)
924 		edev->config_space[1] |= PCI_COMMAND_MASTER;
925 }
926 
927 static int eeh_reboot_notifier(struct notifier_block *nb,
928 			       unsigned long action, void *unused)
929 {
930 	eeh_clear_flag(EEH_ENABLED);
931 	return NOTIFY_DONE;
932 }
933 
934 static struct notifier_block eeh_reboot_nb = {
935 	.notifier_call = eeh_reboot_notifier,
936 };
937 
938 static int eeh_device_notifier(struct notifier_block *nb,
939 			       unsigned long action, void *data)
940 {
941 	struct device *dev = data;
942 
943 	switch (action) {
944 	/*
945 	 * Note: It's not possible to perform EEH device addition (i.e.
946 	 * {pseries,pnv}_pcibios_bus_add_device()) here because it depends on
947 	 * the device's resources, which have not yet been set up.
948 	 */
949 	case BUS_NOTIFY_DEL_DEVICE:
950 		eeh_remove_device(to_pci_dev(dev));
951 		break;
952 	default:
953 		break;
954 	}
955 	return NOTIFY_DONE;
956 }
957 
958 static struct notifier_block eeh_device_nb = {
959 	.notifier_call = eeh_device_notifier,
960 };
961 
962 /**
963  * eeh_init - System wide EEH initialization
964  *
965  * It's the platform's job to call this from an arch_initcall().
966  */
967 int eeh_init(struct eeh_ops *ops)
968 {
969 	struct pci_controller *hose, *tmp;
970 	int ret = 0;
971 
972 	/* the platform should only initialise EEH once */
973 	if (WARN_ON(eeh_ops))
974 		return -EEXIST;
975 	if (WARN_ON(!ops))
976 		return -ENOENT;
977 	eeh_ops = ops;
978 
979 	/* Register reboot notifier */
980 	ret = register_reboot_notifier(&eeh_reboot_nb);
981 	if (ret) {
982 		pr_warn("%s: Failed to register reboot notifier (%d)\n",
983 			__func__, ret);
984 		return ret;
985 	}
986 
987 	ret = bus_register_notifier(&pci_bus_type, &eeh_device_nb);
988 	if (ret) {
989 		pr_warn("%s: Failed to register bus notifier (%d)\n",
990 			__func__, ret);
991 		return ret;
992 	}
993 
994 	/* Initialize PHB PEs */
995 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
996 		eeh_phb_pe_create(hose);
997 
998 	eeh_addr_cache_init();
999 
1000 	/* Initialize EEH event */
1001 	return eeh_event_init();
1002 }
1003 
1004 /**
1005  * eeh_probe_device() - Perform EEH initialization for the indicated pci device
1006  * @dev: pci device for which to set up EEH
1007  *
1008  * This routine must be used to complete EEH initialization for PCI
1009  * devices that were added after system boot (e.g. hotplug, dlpar).
1010  */
1011 void eeh_probe_device(struct pci_dev *dev)
1012 {
1013 	struct eeh_dev *edev;
1014 
1015 	pr_debug("EEH: Adding device %s\n", pci_name(dev));
1016 
1017 	/*
1018 	 * pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was
1019 	 * already called for this device.
1020 	 */
1021 	if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev))) {
1022 		pci_dbg(dev, "Already bound to an eeh_dev!\n");
1023 		return;
1024 	}
1025 
1026 	edev = eeh_ops->probe(dev);
1027 	if (!edev) {
1028 		pr_debug("EEH: Adding device failed\n");
1029 		return;
1030 	}
1031 
1032 	/*
1033 	 * FIXME: We rely on pcibios_release_device() to remove the
1034 	 * existing EEH state. The release function is only called if
1035 	 * the pci_dev's refcount drops to zero so if something is
1036 	 * keeping a ref to a device (e.g. a filesystem) we need to
1037 	 * remove the old EEH state.
1038 	 *
1039 	 * FIXME: HEY MA, LOOK AT ME, NO LOCKING!
1040 	 */
1041 	if (edev->pdev && edev->pdev != dev) {
1042 		eeh_pe_tree_remove(edev);
1043 		eeh_addr_cache_rmv_dev(edev->pdev);
1044 		eeh_sysfs_remove_device(edev->pdev);
1045 
1046 		/*
1047 		 * We definitely should have the PCI device removed
1048 		 * though it wasn't correctly. So we needn't call
1049 		 * into error handler afterwards.
1050 		 */
1051 		edev->mode |= EEH_DEV_NO_HANDLER;
1052 	}
1053 
1054 	/* bind the pdev and the edev together */
1055 	edev->pdev = dev;
1056 	dev->dev.archdata.edev = edev;
1057 	eeh_addr_cache_insert_dev(dev);
1058 	eeh_sysfs_add_device(dev);
1059 }
1060 
1061 /**
1062  * eeh_remove_device - Undo EEH setup for the indicated pci device
1063  * @dev: pci device to be removed
1064  *
1065  * This routine should be called when a device is removed from
1066  * a running system (e.g. by hotplug or dlpar).  It unregisters
1067  * the PCI device from the EEH subsystem.  I/O errors affecting
1068  * this device will no longer be detected after this call; thus,
1069  * i/o errors affecting this slot may leave this device unusable.
1070  */
1071 void eeh_remove_device(struct pci_dev *dev)
1072 {
1073 	struct eeh_dev *edev;
1074 
1075 	if (!dev || !eeh_enabled())
1076 		return;
1077 	edev = pci_dev_to_eeh_dev(dev);
1078 
1079 	/* Unregister the device with the EEH/PCI address search system */
1080 	dev_dbg(&dev->dev, "EEH: Removing device\n");
1081 
1082 	if (!edev || !edev->pdev || !edev->pe) {
1083 		dev_dbg(&dev->dev, "EEH: Device not referenced!\n");
1084 		return;
1085 	}
1086 
1087 	/*
1088 	 * During the hotplug for EEH error recovery, we need the EEH
1089 	 * device attached to the parent PE in order for BAR restore
1090 	 * a bit later. So we keep it for BAR restore and remove it
1091 	 * from the parent PE during the BAR resotre.
1092 	 */
1093 	edev->pdev = NULL;
1094 
1095 	/*
1096 	 * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
1097 	 * remove the sysfs files before clearing dev.archdata.edev
1098 	 */
1099 	if (edev->mode & EEH_DEV_SYSFS)
1100 		eeh_sysfs_remove_device(dev);
1101 
1102 	/*
1103 	 * We're removing from the PCI subsystem, that means
1104 	 * the PCI device driver can't support EEH or not
1105 	 * well. So we rely on hotplug completely to do recovery
1106 	 * for the specific PCI device.
1107 	 */
1108 	edev->mode |= EEH_DEV_NO_HANDLER;
1109 
1110 	eeh_addr_cache_rmv_dev(dev);
1111 
1112 	/*
1113 	 * The flag "in_error" is used to trace EEH devices for VFs
1114 	 * in error state or not. It's set in eeh_report_error(). If
1115 	 * it's not set, eeh_report_{reset,resume}() won't be called
1116 	 * for the VF EEH device.
1117 	 */
1118 	edev->in_error = false;
1119 	dev->dev.archdata.edev = NULL;
1120 	if (!(edev->pe->state & EEH_PE_KEEP))
1121 		eeh_pe_tree_remove(edev);
1122 	else
1123 		edev->mode |= EEH_DEV_DISCONNECTED;
1124 }
1125 
1126 int eeh_unfreeze_pe(struct eeh_pe *pe)
1127 {
1128 	int ret;
1129 
1130 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1131 	if (ret) {
1132 		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1133 			__func__, ret, pe->phb->global_number, pe->addr);
1134 		return ret;
1135 	}
1136 
1137 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1138 	if (ret) {
1139 		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1140 			__func__, ret, pe->phb->global_number, pe->addr);
1141 		return ret;
1142 	}
1143 
1144 	return ret;
1145 }
1146 
1147 
1148 static struct pci_device_id eeh_reset_ids[] = {
1149 	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1150 	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1151 	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1152 	{ 0 }
1153 };
1154 
1155 static int eeh_pe_change_owner(struct eeh_pe *pe)
1156 {
1157 	struct eeh_dev *edev, *tmp;
1158 	struct pci_dev *pdev;
1159 	struct pci_device_id *id;
1160 	int ret;
1161 
1162 	/* Check PE state */
1163 	ret = eeh_ops->get_state(pe, NULL);
1164 	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1165 		return 0;
1166 
1167 	/* Unfrozen PE, nothing to do */
1168 	if (eeh_state_active(ret))
1169 		return 0;
1170 
1171 	/* Frozen PE, check if it needs PE level reset */
1172 	eeh_pe_for_each_dev(pe, edev, tmp) {
1173 		pdev = eeh_dev_to_pci_dev(edev);
1174 		if (!pdev)
1175 			continue;
1176 
1177 		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1178 			if (id->vendor != PCI_ANY_ID &&
1179 			    id->vendor != pdev->vendor)
1180 				continue;
1181 			if (id->device != PCI_ANY_ID &&
1182 			    id->device != pdev->device)
1183 				continue;
1184 			if (id->subvendor != PCI_ANY_ID &&
1185 			    id->subvendor != pdev->subsystem_vendor)
1186 				continue;
1187 			if (id->subdevice != PCI_ANY_ID &&
1188 			    id->subdevice != pdev->subsystem_device)
1189 				continue;
1190 
1191 			return eeh_pe_reset_and_recover(pe);
1192 		}
1193 	}
1194 
1195 	ret = eeh_unfreeze_pe(pe);
1196 	if (!ret)
1197 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1198 	return ret;
1199 }
1200 
1201 /**
1202  * eeh_dev_open - Increase count of pass through devices for PE
1203  * @pdev: PCI device
1204  *
1205  * Increase count of passed through devices for the indicated
1206  * PE. In the result, the EEH errors detected on the PE won't be
1207  * reported. The PE owner will be responsible for detection
1208  * and recovery.
1209  */
1210 int eeh_dev_open(struct pci_dev *pdev)
1211 {
1212 	struct eeh_dev *edev;
1213 	int ret = -ENODEV;
1214 
1215 	mutex_lock(&eeh_dev_mutex);
1216 
1217 	/* No PCI device ? */
1218 	if (!pdev)
1219 		goto out;
1220 
1221 	/* No EEH device or PE ? */
1222 	edev = pci_dev_to_eeh_dev(pdev);
1223 	if (!edev || !edev->pe)
1224 		goto out;
1225 
1226 	/*
1227 	 * The PE might have been put into frozen state, but we
1228 	 * didn't detect that yet. The passed through PCI devices
1229 	 * in frozen PE won't work properly. Clear the frozen state
1230 	 * in advance.
1231 	 */
1232 	ret = eeh_pe_change_owner(edev->pe);
1233 	if (ret)
1234 		goto out;
1235 
1236 	/* Increase PE's pass through count */
1237 	atomic_inc(&edev->pe->pass_dev_cnt);
1238 	mutex_unlock(&eeh_dev_mutex);
1239 
1240 	return 0;
1241 out:
1242 	mutex_unlock(&eeh_dev_mutex);
1243 	return ret;
1244 }
1245 EXPORT_SYMBOL_GPL(eeh_dev_open);
1246 
1247 /**
1248  * eeh_dev_release - Decrease count of pass through devices for PE
1249  * @pdev: PCI device
1250  *
1251  * Decrease count of pass through devices for the indicated PE. If
1252  * there is no passed through device in PE, the EEH errors detected
1253  * on the PE will be reported and handled as usual.
1254  */
1255 void eeh_dev_release(struct pci_dev *pdev)
1256 {
1257 	struct eeh_dev *edev;
1258 
1259 	mutex_lock(&eeh_dev_mutex);
1260 
1261 	/* No PCI device ? */
1262 	if (!pdev)
1263 		goto out;
1264 
1265 	/* No EEH device ? */
1266 	edev = pci_dev_to_eeh_dev(pdev);
1267 	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1268 		goto out;
1269 
1270 	/* Decrease PE's pass through count */
1271 	WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1272 	eeh_pe_change_owner(edev->pe);
1273 out:
1274 	mutex_unlock(&eeh_dev_mutex);
1275 }
1276 EXPORT_SYMBOL(eeh_dev_release);
1277 
1278 #ifdef CONFIG_IOMMU_API
1279 
1280 static int dev_has_iommu_table(struct device *dev, void *data)
1281 {
1282 	struct pci_dev *pdev = to_pci_dev(dev);
1283 	struct pci_dev **ppdev = data;
1284 
1285 	if (!dev)
1286 		return 0;
1287 
1288 	if (device_iommu_mapped(dev)) {
1289 		*ppdev = pdev;
1290 		return 1;
1291 	}
1292 
1293 	return 0;
1294 }
1295 
1296 /**
1297  * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1298  * @group: IOMMU group
1299  *
1300  * The routine is called to convert IOMMU group to EEH PE.
1301  */
1302 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1303 {
1304 	struct pci_dev *pdev = NULL;
1305 	struct eeh_dev *edev;
1306 	int ret;
1307 
1308 	/* No IOMMU group ? */
1309 	if (!group)
1310 		return NULL;
1311 
1312 	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1313 	if (!ret || !pdev)
1314 		return NULL;
1315 
1316 	/* No EEH device or PE ? */
1317 	edev = pci_dev_to_eeh_dev(pdev);
1318 	if (!edev || !edev->pe)
1319 		return NULL;
1320 
1321 	return edev->pe;
1322 }
1323 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1324 
1325 #endif /* CONFIG_IOMMU_API */
1326 
1327 /**
1328  * eeh_pe_set_option - Set options for the indicated PE
1329  * @pe: EEH PE
1330  * @option: requested option
1331  *
1332  * The routine is called to enable or disable EEH functionality
1333  * on the indicated PE, to enable IO or DMA for the frozen PE.
1334  */
1335 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1336 {
1337 	int ret = 0;
1338 
1339 	/* Invalid PE ? */
1340 	if (!pe)
1341 		return -ENODEV;
1342 
1343 	/*
1344 	 * EEH functionality could possibly be disabled, just
1345 	 * return error for the case. And the EEH functinality
1346 	 * isn't expected to be disabled on one specific PE.
1347 	 */
1348 	switch (option) {
1349 	case EEH_OPT_ENABLE:
1350 		if (eeh_enabled()) {
1351 			ret = eeh_pe_change_owner(pe);
1352 			break;
1353 		}
1354 		ret = -EIO;
1355 		break;
1356 	case EEH_OPT_DISABLE:
1357 		break;
1358 	case EEH_OPT_THAW_MMIO:
1359 	case EEH_OPT_THAW_DMA:
1360 	case EEH_OPT_FREEZE_PE:
1361 		if (!eeh_ops || !eeh_ops->set_option) {
1362 			ret = -ENOENT;
1363 			break;
1364 		}
1365 
1366 		ret = eeh_pci_enable(pe, option);
1367 		break;
1368 	default:
1369 		pr_debug("%s: Option %d out of range (%d, %d)\n",
1370 			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1371 		ret = -EINVAL;
1372 	}
1373 
1374 	return ret;
1375 }
1376 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1377 
1378 /**
1379  * eeh_pe_get_state - Retrieve PE's state
1380  * @pe: EEH PE
1381  *
1382  * Retrieve the PE's state, which includes 3 aspects: enabled
1383  * DMA, enabled IO and asserted reset.
1384  */
1385 int eeh_pe_get_state(struct eeh_pe *pe)
1386 {
1387 	int result, ret = 0;
1388 	bool rst_active, dma_en, mmio_en;
1389 
1390 	/* Existing PE ? */
1391 	if (!pe)
1392 		return -ENODEV;
1393 
1394 	if (!eeh_ops || !eeh_ops->get_state)
1395 		return -ENOENT;
1396 
1397 	/*
1398 	 * If the parent PE is owned by the host kernel and is undergoing
1399 	 * error recovery, we should return the PE state as temporarily
1400 	 * unavailable so that the error recovery on the guest is suspended
1401 	 * until the recovery completes on the host.
1402 	 */
1403 	if (pe->parent &&
1404 	    !(pe->state & EEH_PE_REMOVED) &&
1405 	    (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1406 		return EEH_PE_STATE_UNAVAIL;
1407 
1408 	result = eeh_ops->get_state(pe, NULL);
1409 	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1410 	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1411 	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1412 
1413 	if (rst_active)
1414 		ret = EEH_PE_STATE_RESET;
1415 	else if (dma_en && mmio_en)
1416 		ret = EEH_PE_STATE_NORMAL;
1417 	else if (!dma_en && !mmio_en)
1418 		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1419 	else if (!dma_en && mmio_en)
1420 		ret = EEH_PE_STATE_STOPPED_DMA;
1421 	else
1422 		ret = EEH_PE_STATE_UNAVAIL;
1423 
1424 	return ret;
1425 }
1426 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1427 
1428 static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1429 {
1430 	struct eeh_dev *edev, *tmp;
1431 	struct pci_dev *pdev;
1432 	int ret = 0;
1433 
1434 	eeh_pe_restore_bars(pe);
1435 
1436 	/*
1437 	 * Reenable PCI devices as the devices passed
1438 	 * through are always enabled before the reset.
1439 	 */
1440 	eeh_pe_for_each_dev(pe, edev, tmp) {
1441 		pdev = eeh_dev_to_pci_dev(edev);
1442 		if (!pdev)
1443 			continue;
1444 
1445 		ret = pci_reenable_device(pdev);
1446 		if (ret) {
1447 			pr_warn("%s: Failure %d reenabling %s\n",
1448 				__func__, ret, pci_name(pdev));
1449 			return ret;
1450 		}
1451 	}
1452 
1453 	/* The PE is still in frozen state */
1454 	if (include_passed || !eeh_pe_passed(pe)) {
1455 		ret = eeh_unfreeze_pe(pe);
1456 	} else
1457 		pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1458 			pe->phb->global_number, pe->addr);
1459 	if (!ret)
1460 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1461 	return ret;
1462 }
1463 
1464 
1465 /**
1466  * eeh_pe_reset - Issue PE reset according to specified type
1467  * @pe: EEH PE
1468  * @option: reset type
1469  *
1470  * The routine is called to reset the specified PE with the
1471  * indicated type, either fundamental reset or hot reset.
1472  * PE reset is the most important part for error recovery.
1473  */
1474 int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1475 {
1476 	int ret = 0;
1477 
1478 	/* Invalid PE ? */
1479 	if (!pe)
1480 		return -ENODEV;
1481 
1482 	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1483 		return -ENOENT;
1484 
1485 	switch (option) {
1486 	case EEH_RESET_DEACTIVATE:
1487 		ret = eeh_ops->reset(pe, option);
1488 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1489 		if (ret)
1490 			break;
1491 
1492 		ret = eeh_pe_reenable_devices(pe, include_passed);
1493 		break;
1494 	case EEH_RESET_HOT:
1495 	case EEH_RESET_FUNDAMENTAL:
1496 		/*
1497 		 * Proactively freeze the PE to drop all MMIO access
1498 		 * during reset, which should be banned as it's always
1499 		 * cause recursive EEH error.
1500 		 */
1501 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1502 
1503 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1504 		ret = eeh_ops->reset(pe, option);
1505 		break;
1506 	default:
1507 		pr_debug("%s: Unsupported option %d\n",
1508 			__func__, option);
1509 		ret = -EINVAL;
1510 	}
1511 
1512 	return ret;
1513 }
1514 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1515 
1516 /**
1517  * eeh_pe_configure - Configure PCI bridges after PE reset
1518  * @pe: EEH PE
1519  *
1520  * The routine is called to restore the PCI config space for
1521  * those PCI devices, especially PCI bridges affected by PE
1522  * reset issued previously.
1523  */
1524 int eeh_pe_configure(struct eeh_pe *pe)
1525 {
1526 	int ret = 0;
1527 
1528 	/* Invalid PE ? */
1529 	if (!pe)
1530 		return -ENODEV;
1531 
1532 	return ret;
1533 }
1534 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1535 
1536 /**
1537  * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1538  * @pe: the indicated PE
1539  * @type: error type
1540  * @function: error function
1541  * @addr: address
1542  * @mask: address mask
1543  *
1544  * The routine is called to inject the specified PCI error, which
1545  * is determined by @type and @function, to the indicated PE for
1546  * testing purpose.
1547  */
1548 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1549 		      unsigned long addr, unsigned long mask)
1550 {
1551 	/* Invalid PE ? */
1552 	if (!pe)
1553 		return -ENODEV;
1554 
1555 	/* Unsupported operation ? */
1556 	if (!eeh_ops || !eeh_ops->err_inject)
1557 		return -ENOENT;
1558 
1559 	/* Check on PCI error type */
1560 	if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1561 		return -EINVAL;
1562 
1563 	/* Check on PCI error function */
1564 	if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1565 		return -EINVAL;
1566 
1567 	return eeh_ops->err_inject(pe, type, func, addr, mask);
1568 }
1569 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1570 
1571 static int proc_eeh_show(struct seq_file *m, void *v)
1572 {
1573 	if (!eeh_enabled()) {
1574 		seq_printf(m, "EEH Subsystem is globally disabled\n");
1575 		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1576 	} else {
1577 		seq_printf(m, "EEH Subsystem is enabled\n");
1578 		seq_printf(m,
1579 				"no device=%llu\n"
1580 				"no device node=%llu\n"
1581 				"no config address=%llu\n"
1582 				"check not wanted=%llu\n"
1583 				"eeh_total_mmio_ffs=%llu\n"
1584 				"eeh_false_positives=%llu\n"
1585 				"eeh_slot_resets=%llu\n",
1586 				eeh_stats.no_device,
1587 				eeh_stats.no_dn,
1588 				eeh_stats.no_cfg_addr,
1589 				eeh_stats.ignored_check,
1590 				eeh_stats.total_mmio_ffs,
1591 				eeh_stats.false_positives,
1592 				eeh_stats.slot_resets);
1593 	}
1594 
1595 	return 0;
1596 }
1597 
1598 #ifdef CONFIG_DEBUG_FS
1599 
1600 
1601 static struct pci_dev *eeh_debug_lookup_pdev(struct file *filp,
1602 					     const char __user *user_buf,
1603 					     size_t count, loff_t *ppos)
1604 {
1605 	uint32_t domain, bus, dev, fn;
1606 	struct pci_dev *pdev;
1607 	char buf[20];
1608 	int ret;
1609 
1610 	memset(buf, 0, sizeof(buf));
1611 	ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1612 	if (!ret)
1613 		return ERR_PTR(-EFAULT);
1614 
1615 	ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1616 	if (ret != 4) {
1617 		pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1618 		return ERR_PTR(-EINVAL);
1619 	}
1620 
1621 	pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1622 	if (!pdev)
1623 		return ERR_PTR(-ENODEV);
1624 
1625 	return pdev;
1626 }
1627 
1628 static int eeh_enable_dbgfs_set(void *data, u64 val)
1629 {
1630 	if (val)
1631 		eeh_clear_flag(EEH_FORCE_DISABLED);
1632 	else
1633 		eeh_add_flag(EEH_FORCE_DISABLED);
1634 
1635 	return 0;
1636 }
1637 
1638 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1639 {
1640 	if (eeh_enabled())
1641 		*val = 0x1ul;
1642 	else
1643 		*val = 0x0ul;
1644 	return 0;
1645 }
1646 
1647 DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1648 			 eeh_enable_dbgfs_set, "0x%llx\n");
1649 
1650 static ssize_t eeh_force_recover_write(struct file *filp,
1651 				const char __user *user_buf,
1652 				size_t count, loff_t *ppos)
1653 {
1654 	struct pci_controller *hose;
1655 	uint32_t phbid, pe_no;
1656 	struct eeh_pe *pe;
1657 	char buf[20];
1658 	int ret;
1659 
1660 	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1661 	if (!ret)
1662 		return -EFAULT;
1663 
1664 	/*
1665 	 * When PE is NULL the event is a "special" event. Rather than
1666 	 * recovering a specific PE it forces the EEH core to scan for failed
1667 	 * PHBs and recovers each. This needs to be done before any device
1668 	 * recoveries can occur.
1669 	 */
1670 	if (!strncmp(buf, "hwcheck", 7)) {
1671 		__eeh_send_failure_event(NULL);
1672 		return count;
1673 	}
1674 
1675 	ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1676 	if (ret != 2)
1677 		return -EINVAL;
1678 
1679 	hose = pci_find_controller_for_domain(phbid);
1680 	if (!hose)
1681 		return -ENODEV;
1682 
1683 	/* Retrieve PE */
1684 	pe = eeh_pe_get(hose, pe_no);
1685 	if (!pe)
1686 		return -ENODEV;
1687 
1688 	/*
1689 	 * We don't do any state checking here since the detection
1690 	 * process is async to the recovery process. The recovery
1691 	 * thread *should* not break even if we schedule a recovery
1692 	 * from an odd state (e.g. PE removed, or recovery of a
1693 	 * non-isolated PE)
1694 	 */
1695 	__eeh_send_failure_event(pe);
1696 
1697 	return ret < 0 ? ret : count;
1698 }
1699 
1700 static const struct file_operations eeh_force_recover_fops = {
1701 	.open	= simple_open,
1702 	.llseek	= no_llseek,
1703 	.write	= eeh_force_recover_write,
1704 };
1705 
1706 static ssize_t eeh_debugfs_dev_usage(struct file *filp,
1707 				char __user *user_buf,
1708 				size_t count, loff_t *ppos)
1709 {
1710 	static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
1711 
1712 	return simple_read_from_buffer(user_buf, count, ppos,
1713 				       usage, sizeof(usage) - 1);
1714 }
1715 
1716 static ssize_t eeh_dev_check_write(struct file *filp,
1717 				const char __user *user_buf,
1718 				size_t count, loff_t *ppos)
1719 {
1720 	struct pci_dev *pdev;
1721 	struct eeh_dev *edev;
1722 	int ret;
1723 
1724 	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1725 	if (IS_ERR(pdev))
1726 		return PTR_ERR(pdev);
1727 
1728 	edev = pci_dev_to_eeh_dev(pdev);
1729 	if (!edev) {
1730 		pci_err(pdev, "No eeh_dev for this device!\n");
1731 		pci_dev_put(pdev);
1732 		return -ENODEV;
1733 	}
1734 
1735 	ret = eeh_dev_check_failure(edev);
1736 	pci_info(pdev, "eeh_dev_check_failure(%s) = %d\n",
1737 			pci_name(pdev), ret);
1738 
1739 	pci_dev_put(pdev);
1740 
1741 	return count;
1742 }
1743 
1744 static const struct file_operations eeh_dev_check_fops = {
1745 	.open	= simple_open,
1746 	.llseek	= no_llseek,
1747 	.write	= eeh_dev_check_write,
1748 	.read   = eeh_debugfs_dev_usage,
1749 };
1750 
1751 static int eeh_debugfs_break_device(struct pci_dev *pdev)
1752 {
1753 	struct resource *bar = NULL;
1754 	void __iomem *mapped;
1755 	u16 old, bit;
1756 	int i, pos;
1757 
1758 	/* Do we have an MMIO BAR to disable? */
1759 	for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
1760 		struct resource *r = &pdev->resource[i];
1761 
1762 		if (!r->flags || !r->start)
1763 			continue;
1764 		if (r->flags & IORESOURCE_IO)
1765 			continue;
1766 		if (r->flags & IORESOURCE_UNSET)
1767 			continue;
1768 
1769 		bar = r;
1770 		break;
1771 	}
1772 
1773 	if (!bar) {
1774 		pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n");
1775 		return -ENXIO;
1776 	}
1777 
1778 	pci_err(pdev, "Going to break: %pR\n", bar);
1779 
1780 	if (pdev->is_virtfn) {
1781 #ifndef CONFIG_PCI_IOV
1782 		return -ENXIO;
1783 #else
1784 		/*
1785 		 * VFs don't have a per-function COMMAND register, so the best
1786 		 * we can do is clear the Memory Space Enable bit in the PF's
1787 		 * SRIOV control reg.
1788 		 *
1789 		 * Unfortunately, this requires that we have a PF (i.e doesn't
1790 		 * work for a passed-through VF) and it has the potential side
1791 		 * effect of also causing an EEH on every other VF under the
1792 		 * PF. Oh well.
1793 		 */
1794 		pdev = pdev->physfn;
1795 		if (!pdev)
1796 			return -ENXIO; /* passed through VFs have no PF */
1797 
1798 		pos  = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1799 		pos += PCI_SRIOV_CTRL;
1800 		bit  = PCI_SRIOV_CTRL_MSE;
1801 #endif /* !CONFIG_PCI_IOV */
1802 	} else {
1803 		bit = PCI_COMMAND_MEMORY;
1804 		pos = PCI_COMMAND;
1805 	}
1806 
1807 	/*
1808 	 * Process here is:
1809 	 *
1810 	 * 1. Disable Memory space.
1811 	 *
1812 	 * 2. Perform an MMIO to the device. This should result in an error
1813 	 *    (CA  / UR) being raised by the device which results in an EEH
1814 	 *    PE freeze. Using the in_8() accessor skips the eeh detection hook
1815 	 *    so the freeze hook so the EEH Detection machinery won't be
1816 	 *    triggered here. This is to match the usual behaviour of EEH
1817 	 *    where the HW will asyncronously freeze a PE and it's up to
1818 	 *    the kernel to notice and deal with it.
1819 	 *
1820 	 * 3. Turn Memory space back on. This is more important for VFs
1821 	 *    since recovery will probably fail if we don't. For normal
1822 	 *    the COMMAND register is reset as a part of re-initialising
1823 	 *    the device.
1824 	 *
1825 	 * Breaking stuff is the point so who cares if it's racy ;)
1826 	 */
1827 	pci_read_config_word(pdev, pos, &old);
1828 
1829 	mapped = ioremap(bar->start, PAGE_SIZE);
1830 	if (!mapped) {
1831 		pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar);
1832 		return -ENXIO;
1833 	}
1834 
1835 	pci_write_config_word(pdev, pos, old & ~bit);
1836 	in_8(mapped);
1837 	pci_write_config_word(pdev, pos, old);
1838 
1839 	iounmap(mapped);
1840 
1841 	return 0;
1842 }
1843 
1844 static ssize_t eeh_dev_break_write(struct file *filp,
1845 				const char __user *user_buf,
1846 				size_t count, loff_t *ppos)
1847 {
1848 	struct pci_dev *pdev;
1849 	int ret;
1850 
1851 	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1852 	if (IS_ERR(pdev))
1853 		return PTR_ERR(pdev);
1854 
1855 	ret = eeh_debugfs_break_device(pdev);
1856 	pci_dev_put(pdev);
1857 
1858 	if (ret < 0)
1859 		return ret;
1860 
1861 	return count;
1862 }
1863 
1864 static const struct file_operations eeh_dev_break_fops = {
1865 	.open	= simple_open,
1866 	.llseek	= no_llseek,
1867 	.write	= eeh_dev_break_write,
1868 	.read   = eeh_debugfs_dev_usage,
1869 };
1870 
1871 static ssize_t eeh_dev_can_recover(struct file *filp,
1872 				   const char __user *user_buf,
1873 				   size_t count, loff_t *ppos)
1874 {
1875 	struct pci_driver *drv;
1876 	struct pci_dev *pdev;
1877 	size_t ret;
1878 
1879 	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1880 	if (IS_ERR(pdev))
1881 		return PTR_ERR(pdev);
1882 
1883 	/*
1884 	 * In order for error recovery to work the driver needs to implement
1885 	 * .error_detected(), so it can quiesce IO to the device, and
1886 	 * .slot_reset() so it can re-initialise the device after a reset.
1887 	 *
1888 	 * Ideally they'd implement .resume() too, but some drivers which
1889 	 * we need to support (notably IPR) don't so I guess we can tolerate
1890 	 * that.
1891 	 *
1892 	 * .mmio_enabled() is mostly there as a work-around for devices which
1893 	 * take forever to re-init after a hot reset. Implementing that is
1894 	 * strictly optional.
1895 	 */
1896 	drv = pci_dev_driver(pdev);
1897 	if (drv &&
1898 	    drv->err_handler &&
1899 	    drv->err_handler->error_detected &&
1900 	    drv->err_handler->slot_reset) {
1901 		ret = count;
1902 	} else {
1903 		ret = -EOPNOTSUPP;
1904 	}
1905 
1906 	pci_dev_put(pdev);
1907 
1908 	return ret;
1909 }
1910 
1911 static const struct file_operations eeh_dev_can_recover_fops = {
1912 	.open	= simple_open,
1913 	.llseek	= no_llseek,
1914 	.write	= eeh_dev_can_recover,
1915 	.read   = eeh_debugfs_dev_usage,
1916 };
1917 
1918 #endif
1919 
1920 static int __init eeh_init_proc(void)
1921 {
1922 	if (machine_is(pseries) || machine_is(powernv)) {
1923 		proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1924 #ifdef CONFIG_DEBUG_FS
1925 		debugfs_create_file_unsafe("eeh_enable", 0600,
1926 					   powerpc_debugfs_root, NULL,
1927 					   &eeh_enable_dbgfs_ops);
1928 		debugfs_create_u32("eeh_max_freezes", 0600,
1929 				powerpc_debugfs_root, &eeh_max_freezes);
1930 		debugfs_create_bool("eeh_disable_recovery", 0600,
1931 				powerpc_debugfs_root,
1932 				&eeh_debugfs_no_recover);
1933 		debugfs_create_file_unsafe("eeh_dev_check", 0600,
1934 				powerpc_debugfs_root, NULL,
1935 				&eeh_dev_check_fops);
1936 		debugfs_create_file_unsafe("eeh_dev_break", 0600,
1937 				powerpc_debugfs_root, NULL,
1938 				&eeh_dev_break_fops);
1939 		debugfs_create_file_unsafe("eeh_force_recover", 0600,
1940 				powerpc_debugfs_root, NULL,
1941 				&eeh_force_recover_fops);
1942 		debugfs_create_file_unsafe("eeh_dev_can_recover", 0600,
1943 				powerpc_debugfs_root, NULL,
1944 				&eeh_dev_can_recover_fops);
1945 		eeh_cache_debugfs_init();
1946 #endif
1947 	}
1948 
1949 	return 0;
1950 }
1951 __initcall(eeh_init_proc);
1952