xref: /openbmc/linux/arch/powerpc/kernel/eeh.c (revision 7b7dfdd2)
1 /*
2  * Copyright IBM Corporation 2001, 2005, 2006
3  * Copyright Dave Engebretsen & Todd Inglett 2001
4  * Copyright Linas Vepstas 2005, 2006
5  * Copyright 2001-2012 IBM Corporation.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/debugfs.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/pci.h>
30 #include <linux/proc_fs.h>
31 #include <linux/rbtree.h>
32 #include <linux/reboot.h>
33 #include <linux/seq_file.h>
34 #include <linux/spinlock.h>
35 #include <linux/export.h>
36 #include <linux/of.h>
37 
38 #include <linux/atomic.h>
39 #include <asm/debug.h>
40 #include <asm/eeh.h>
41 #include <asm/eeh_event.h>
42 #include <asm/io.h>
43 #include <asm/machdep.h>
44 #include <asm/ppc-pci.h>
45 #include <asm/rtas.h>
46 
47 
48 /** Overview:
49  *  EEH, or "Extended Error Handling" is a PCI bridge technology for
50  *  dealing with PCI bus errors that can't be dealt with within the
51  *  usual PCI framework, except by check-stopping the CPU.  Systems
52  *  that are designed for high-availability/reliability cannot afford
53  *  to crash due to a "mere" PCI error, thus the need for EEH.
54  *  An EEH-capable bridge operates by converting a detected error
55  *  into a "slot freeze", taking the PCI adapter off-line, making
56  *  the slot behave, from the OS'es point of view, as if the slot
57  *  were "empty": all reads return 0xff's and all writes are silently
58  *  ignored.  EEH slot isolation events can be triggered by parity
59  *  errors on the address or data busses (e.g. during posted writes),
60  *  which in turn might be caused by low voltage on the bus, dust,
61  *  vibration, humidity, radioactivity or plain-old failed hardware.
62  *
63  *  Note, however, that one of the leading causes of EEH slot
64  *  freeze events are buggy device drivers, buggy device microcode,
65  *  or buggy device hardware.  This is because any attempt by the
66  *  device to bus-master data to a memory address that is not
67  *  assigned to the device will trigger a slot freeze.   (The idea
68  *  is to prevent devices-gone-wild from corrupting system memory).
69  *  Buggy hardware/drivers will have a miserable time co-existing
70  *  with EEH.
71  *
72  *  Ideally, a PCI device driver, when suspecting that an isolation
73  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
74  *  whether this is the case, and then take appropriate steps to
75  *  reset the PCI slot, the PCI device, and then resume operations.
76  *  However, until that day,  the checking is done here, with the
77  *  eeh_check_failure() routine embedded in the MMIO macros.  If
78  *  the slot is found to be isolated, an "EEH Event" is synthesized
79  *  and sent out for processing.
80  */
81 
82 /* If a device driver keeps reading an MMIO register in an interrupt
83  * handler after a slot isolation event, it might be broken.
84  * This sets the threshold for how many read attempts we allow
85  * before printing an error message.
86  */
87 #define EEH_MAX_FAILS	2100000
88 
89 /* Time to wait for a PCI slot to report status, in milliseconds */
90 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
91 
92 /*
93  * EEH probe mode support, which is part of the flags,
94  * is to support multiple platforms for EEH. Some platforms
95  * like pSeries do PCI emunation based on device tree.
96  * However, other platforms like powernv probe PCI devices
97  * from hardware. The flag is used to distinguish that.
98  * In addition, struct eeh_ops::probe would be invoked for
99  * particular OF node or PCI device so that the corresponding
100  * PE would be created there.
101  */
102 int eeh_subsystem_flags;
103 EXPORT_SYMBOL(eeh_subsystem_flags);
104 
105 /* Platform dependent EEH operations */
106 struct eeh_ops *eeh_ops = NULL;
107 
108 /* Lock to avoid races due to multiple reports of an error */
109 DEFINE_RAW_SPINLOCK(confirm_error_lock);
110 
111 /* Buffer for reporting pci register dumps. Its here in BSS, and
112  * not dynamically alloced, so that it ends up in RMO where RTAS
113  * can access it.
114  */
115 #define EEH_PCI_REGS_LOG_LEN 4096
116 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
117 
118 /*
119  * The struct is used to maintain the EEH global statistic
120  * information. Besides, the EEH global statistics will be
121  * exported to user space through procfs
122  */
123 struct eeh_stats {
124 	u64 no_device;		/* PCI device not found		*/
125 	u64 no_dn;		/* OF node not found		*/
126 	u64 no_cfg_addr;	/* Config address not found	*/
127 	u64 ignored_check;	/* EEH check skipped		*/
128 	u64 total_mmio_ffs;	/* Total EEH checks		*/
129 	u64 false_positives;	/* Unnecessary EEH checks	*/
130 	u64 slot_resets;	/* PE reset			*/
131 };
132 
133 static struct eeh_stats eeh_stats;
134 
135 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
136 
137 static int __init eeh_setup(char *str)
138 {
139 	if (!strcmp(str, "off"))
140 		eeh_subsystem_flags |= EEH_FORCE_DISABLED;
141 
142 	return 1;
143 }
144 __setup("eeh=", eeh_setup);
145 
146 /**
147  * eeh_gather_pci_data - Copy assorted PCI config space registers to buff
148  * @edev: device to report data for
149  * @buf: point to buffer in which to log
150  * @len: amount of room in buffer
151  *
152  * This routine captures assorted PCI configuration space data,
153  * and puts them into a buffer for RTAS error logging.
154  */
155 static size_t eeh_gather_pci_data(struct eeh_dev *edev, char * buf, size_t len)
156 {
157 	struct device_node *dn = eeh_dev_to_of_node(edev);
158 	u32 cfg;
159 	int cap, i;
160 	int n = 0;
161 
162 	n += scnprintf(buf+n, len-n, "%s\n", dn->full_name);
163 	pr_warn("EEH: of node=%s\n", dn->full_name);
164 
165 	eeh_ops->read_config(dn, PCI_VENDOR_ID, 4, &cfg);
166 	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
167 	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
168 
169 	eeh_ops->read_config(dn, PCI_COMMAND, 4, &cfg);
170 	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
171 	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
172 
173 	/* Gather bridge-specific registers */
174 	if (edev->mode & EEH_DEV_BRIDGE) {
175 		eeh_ops->read_config(dn, PCI_SEC_STATUS, 2, &cfg);
176 		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
177 		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
178 
179 		eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &cfg);
180 		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
181 		pr_warn("EEH: Bridge control: %04x\n", cfg);
182 	}
183 
184 	/* Dump out the PCI-X command and status regs */
185 	cap = edev->pcix_cap;
186 	if (cap) {
187 		eeh_ops->read_config(dn, cap, 4, &cfg);
188 		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
189 		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
190 
191 		eeh_ops->read_config(dn, cap+4, 4, &cfg);
192 		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
193 		pr_warn("EEH: PCI-X status: %08x\n", cfg);
194 	}
195 
196 	/* If PCI-E capable, dump PCI-E cap 10 */
197 	cap = edev->pcie_cap;
198 	if (cap) {
199 		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
200 		pr_warn("EEH: PCI-E capabilities and status follow:\n");
201 
202 		for (i=0; i<=8; i++) {
203 			eeh_ops->read_config(dn, cap+4*i, 4, &cfg);
204 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
205 			pr_warn("EEH: PCI-E %02x: %08x\n", i, cfg);
206 		}
207 	}
208 
209 	/* If AER capable, dump it */
210 	cap = edev->aer_cap;
211 	if (cap) {
212 		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
213 		pr_warn("EEH: PCI-E AER capability register set follows:\n");
214 
215 		for (i=0; i<14; i++) {
216 			eeh_ops->read_config(dn, cap+4*i, 4, &cfg);
217 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
218 			pr_warn("EEH: PCI-E AER %02x: %08x\n", i, cfg);
219 		}
220 	}
221 
222 	return n;
223 }
224 
225 /**
226  * eeh_slot_error_detail - Generate combined log including driver log and error log
227  * @pe: EEH PE
228  * @severity: temporary or permanent error log
229  *
230  * This routine should be called to generate the combined log, which
231  * is comprised of driver log and error log. The driver log is figured
232  * out from the config space of the corresponding PCI device, while
233  * the error log is fetched through platform dependent function call.
234  */
235 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
236 {
237 	size_t loglen = 0;
238 	struct eeh_dev *edev, *tmp;
239 
240 	/*
241 	 * When the PHB is fenced or dead, it's pointless to collect
242 	 * the data from PCI config space because it should return
243 	 * 0xFF's. For ER, we still retrieve the data from the PCI
244 	 * config space.
245 	 *
246 	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
247 	 * 0xFF's is always returned from PCI config space.
248 	 */
249 	if (!(pe->type & EEH_PE_PHB)) {
250 		if (eeh_probe_mode_devtree())
251 			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
252 		eeh_ops->configure_bridge(pe);
253 		eeh_pe_restore_bars(pe);
254 
255 		pci_regs_buf[0] = 0;
256 		eeh_pe_for_each_dev(pe, edev, tmp) {
257 			loglen += eeh_gather_pci_data(edev, pci_regs_buf + loglen,
258 						      EEH_PCI_REGS_LOG_LEN - loglen);
259 		}
260 	}
261 
262 	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
263 }
264 
265 /**
266  * eeh_token_to_phys - Convert EEH address token to phys address
267  * @token: I/O token, should be address in the form 0xA....
268  *
269  * This routine should be called to convert virtual I/O address
270  * to physical one.
271  */
272 static inline unsigned long eeh_token_to_phys(unsigned long token)
273 {
274 	pte_t *ptep;
275 	unsigned long pa;
276 	int hugepage_shift;
277 
278 	/*
279 	 * We won't find hugepages here, iomem
280 	 */
281 	ptep = find_linux_pte_or_hugepte(init_mm.pgd, token, &hugepage_shift);
282 	if (!ptep)
283 		return token;
284 	WARN_ON(hugepage_shift);
285 	pa = pte_pfn(*ptep) << PAGE_SHIFT;
286 
287 	return pa | (token & (PAGE_SIZE-1));
288 }
289 
290 /*
291  * On PowerNV platform, we might already have fenced PHB there.
292  * For that case, it's meaningless to recover frozen PE. Intead,
293  * We have to handle fenced PHB firstly.
294  */
295 static int eeh_phb_check_failure(struct eeh_pe *pe)
296 {
297 	struct eeh_pe *phb_pe;
298 	unsigned long flags;
299 	int ret;
300 
301 	if (!eeh_probe_mode_dev())
302 		return -EPERM;
303 
304 	/* Find the PHB PE */
305 	phb_pe = eeh_phb_pe_get(pe->phb);
306 	if (!phb_pe) {
307 		pr_warning("%s Can't find PE for PHB#%d\n",
308 			   __func__, pe->phb->global_number);
309 		return -EEXIST;
310 	}
311 
312 	/* If the PHB has been in problematic state */
313 	eeh_serialize_lock(&flags);
314 	if (phb_pe->state & EEH_PE_ISOLATED) {
315 		ret = 0;
316 		goto out;
317 	}
318 
319 	/* Check PHB state */
320 	ret = eeh_ops->get_state(phb_pe, NULL);
321 	if ((ret < 0) ||
322 	    (ret == EEH_STATE_NOT_SUPPORT) ||
323 	    (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
324 	    (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
325 		ret = 0;
326 		goto out;
327 	}
328 
329 	/* Isolate the PHB and send event */
330 	eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
331 	eeh_serialize_unlock(flags);
332 
333 	pr_err("EEH: PHB#%x failure detected, location: %s\n",
334 		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
335 	dump_stack();
336 	eeh_send_failure_event(phb_pe);
337 
338 	return 1;
339 out:
340 	eeh_serialize_unlock(flags);
341 	return ret;
342 }
343 
344 /**
345  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
346  * @edev: eeh device
347  *
348  * Check for an EEH failure for the given device node.  Call this
349  * routine if the result of a read was all 0xff's and you want to
350  * find out if this is due to an EEH slot freeze.  This routine
351  * will query firmware for the EEH status.
352  *
353  * Returns 0 if there has not been an EEH error; otherwise returns
354  * a non-zero value and queues up a slot isolation event notification.
355  *
356  * It is safe to call this routine in an interrupt context.
357  */
358 int eeh_dev_check_failure(struct eeh_dev *edev)
359 {
360 	int ret;
361 	int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
362 	unsigned long flags;
363 	struct device_node *dn;
364 	struct pci_dev *dev;
365 	struct eeh_pe *pe, *parent_pe, *phb_pe;
366 	int rc = 0;
367 	const char *location;
368 
369 	eeh_stats.total_mmio_ffs++;
370 
371 	if (!eeh_enabled())
372 		return 0;
373 
374 	if (!edev) {
375 		eeh_stats.no_dn++;
376 		return 0;
377 	}
378 	dn = eeh_dev_to_of_node(edev);
379 	dev = eeh_dev_to_pci_dev(edev);
380 	pe = edev->pe;
381 
382 	/* Access to IO BARs might get this far and still not want checking. */
383 	if (!pe) {
384 		eeh_stats.ignored_check++;
385 		pr_debug("EEH: Ignored check for %s %s\n",
386 			eeh_pci_name(dev), dn->full_name);
387 		return 0;
388 	}
389 
390 	if (!pe->addr && !pe->config_addr) {
391 		eeh_stats.no_cfg_addr++;
392 		return 0;
393 	}
394 
395 	/*
396 	 * On PowerNV platform, we might already have fenced PHB
397 	 * there and we need take care of that firstly.
398 	 */
399 	ret = eeh_phb_check_failure(pe);
400 	if (ret > 0)
401 		return ret;
402 
403 	/* If we already have a pending isolation event for this
404 	 * slot, we know it's bad already, we don't need to check.
405 	 * Do this checking under a lock; as multiple PCI devices
406 	 * in one slot might report errors simultaneously, and we
407 	 * only want one error recovery routine running.
408 	 */
409 	eeh_serialize_lock(&flags);
410 	rc = 1;
411 	if (pe->state & EEH_PE_ISOLATED) {
412 		pe->check_count++;
413 		if (pe->check_count % EEH_MAX_FAILS == 0) {
414 			location = of_get_property(dn, "ibm,loc-code", NULL);
415 			printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
416 				"location=%s driver=%s pci addr=%s\n",
417 				pe->check_count, location,
418 				eeh_driver_name(dev), eeh_pci_name(dev));
419 			printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
420 				eeh_driver_name(dev));
421 			dump_stack();
422 		}
423 		goto dn_unlock;
424 	}
425 
426 	/*
427 	 * Now test for an EEH failure.  This is VERY expensive.
428 	 * Note that the eeh_config_addr may be a parent device
429 	 * in the case of a device behind a bridge, or it may be
430 	 * function zero of a multi-function device.
431 	 * In any case they must share a common PHB.
432 	 */
433 	ret = eeh_ops->get_state(pe, NULL);
434 
435 	/* Note that config-io to empty slots may fail;
436 	 * they are empty when they don't have children.
437 	 * We will punt with the following conditions: Failure to get
438 	 * PE's state, EEH not support and Permanently unavailable
439 	 * state, PE is in good state.
440 	 */
441 	if ((ret < 0) ||
442 	    (ret == EEH_STATE_NOT_SUPPORT) ||
443 	    ((ret & active_flags) == active_flags)) {
444 		eeh_stats.false_positives++;
445 		pe->false_positives++;
446 		rc = 0;
447 		goto dn_unlock;
448 	}
449 
450 	/*
451 	 * It should be corner case that the parent PE has been
452 	 * put into frozen state as well. We should take care
453 	 * that at first.
454 	 */
455 	parent_pe = pe->parent;
456 	while (parent_pe) {
457 		/* Hit the ceiling ? */
458 		if (parent_pe->type & EEH_PE_PHB)
459 			break;
460 
461 		/* Frozen parent PE ? */
462 		ret = eeh_ops->get_state(parent_pe, NULL);
463 		if (ret > 0 &&
464 		    (ret & active_flags) != active_flags)
465 			pe = parent_pe;
466 
467 		/* Next parent level */
468 		parent_pe = parent_pe->parent;
469 	}
470 
471 	eeh_stats.slot_resets++;
472 
473 	/* Avoid repeated reports of this failure, including problems
474 	 * with other functions on this device, and functions under
475 	 * bridges.
476 	 */
477 	eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
478 	eeh_serialize_unlock(flags);
479 
480 	/* Most EEH events are due to device driver bugs.  Having
481 	 * a stack trace will help the device-driver authors figure
482 	 * out what happened.  So print that out.
483 	 */
484 	phb_pe = eeh_phb_pe_get(pe->phb);
485 	pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
486 	       pe->phb->global_number, pe->addr);
487 	pr_err("EEH: PE location: %s, PHB location: %s\n",
488 	       eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
489 	dump_stack();
490 
491 	eeh_send_failure_event(pe);
492 
493 	return 1;
494 
495 dn_unlock:
496 	eeh_serialize_unlock(flags);
497 	return rc;
498 }
499 
500 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
501 
502 /**
503  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
504  * @token: I/O token, should be address in the form 0xA....
505  * @val: value, should be all 1's (XXX why do we need this arg??)
506  *
507  * Check for an EEH failure at the given token address.  Call this
508  * routine if the result of a read was all 0xff's and you want to
509  * find out if this is due to an EEH slot freeze event.  This routine
510  * will query firmware for the EEH status.
511  *
512  * Note this routine is safe to call in an interrupt context.
513  */
514 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
515 {
516 	unsigned long addr;
517 	struct eeh_dev *edev;
518 
519 	/* Finding the phys addr + pci device; this is pretty quick. */
520 	addr = eeh_token_to_phys((unsigned long __force) token);
521 	edev = eeh_addr_cache_get_dev(addr);
522 	if (!edev) {
523 		eeh_stats.no_device++;
524 		return val;
525 	}
526 
527 	eeh_dev_check_failure(edev);
528 	return val;
529 }
530 
531 EXPORT_SYMBOL(eeh_check_failure);
532 
533 
534 /**
535  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
536  * @pe: EEH PE
537  *
538  * This routine should be called to reenable frozen MMIO or DMA
539  * so that it would work correctly again. It's useful while doing
540  * recovery or log collection on the indicated device.
541  */
542 int eeh_pci_enable(struct eeh_pe *pe, int function)
543 {
544 	int rc, flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
545 
546 	/*
547 	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
548 	 * Also, it's pointless to enable them on unfrozen PE. So
549 	 * we have the check here.
550 	 */
551 	if (function == EEH_OPT_THAW_MMIO ||
552 	    function == EEH_OPT_THAW_DMA) {
553 		rc = eeh_ops->get_state(pe, NULL);
554 		if (rc < 0)
555 			return rc;
556 
557 		/* Needn't to enable or already enabled */
558 		if ((rc == EEH_STATE_NOT_SUPPORT) ||
559 		    ((rc & flags) == flags))
560 			return 0;
561 	}
562 
563 	rc = eeh_ops->set_option(pe, function);
564 	if (rc)
565 		pr_warn("%s: Unexpected state change %d on "
566 			"PHB#%d-PE#%x, err=%d\n",
567 			__func__, function, pe->phb->global_number,
568 			pe->addr, rc);
569 
570 	rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
571 	if (rc <= 0)
572 		return rc;
573 
574 	if ((function == EEH_OPT_THAW_MMIO) &&
575 	    (rc & EEH_STATE_MMIO_ENABLED))
576 		return 0;
577 
578 	if ((function == EEH_OPT_THAW_DMA) &&
579 	    (rc & EEH_STATE_DMA_ENABLED))
580 		return 0;
581 
582 	return rc;
583 }
584 
585 /**
586  * pcibios_set_pcie_slot_reset - Set PCI-E reset state
587  * @dev: pci device struct
588  * @state: reset state to enter
589  *
590  * Return value:
591  * 	0 if success
592  */
593 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
594 {
595 	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
596 	struct eeh_pe *pe = edev->pe;
597 
598 	if (!pe) {
599 		pr_err("%s: No PE found on PCI device %s\n",
600 			__func__, pci_name(dev));
601 		return -EINVAL;
602 	}
603 
604 	switch (state) {
605 	case pcie_deassert_reset:
606 		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
607 		break;
608 	case pcie_hot_reset:
609 		eeh_ops->reset(pe, EEH_RESET_HOT);
610 		break;
611 	case pcie_warm_reset:
612 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
613 		break;
614 	default:
615 		return -EINVAL;
616 	};
617 
618 	return 0;
619 }
620 
621 /**
622  * eeh_set_pe_freset - Check the required reset for the indicated device
623  * @data: EEH device
624  * @flag: return value
625  *
626  * Each device might have its preferred reset type: fundamental or
627  * hot reset. The routine is used to collected the information for
628  * the indicated device and its children so that the bunch of the
629  * devices could be reset properly.
630  */
631 static void *eeh_set_dev_freset(void *data, void *flag)
632 {
633 	struct pci_dev *dev;
634 	unsigned int *freset = (unsigned int *)flag;
635 	struct eeh_dev *edev = (struct eeh_dev *)data;
636 
637 	dev = eeh_dev_to_pci_dev(edev);
638 	if (dev)
639 		*freset |= dev->needs_freset;
640 
641 	return NULL;
642 }
643 
644 /**
645  * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
646  * @pe: EEH PE
647  *
648  * Assert the PCI #RST line for 1/4 second.
649  */
650 static void eeh_reset_pe_once(struct eeh_pe *pe)
651 {
652 	unsigned int freset = 0;
653 
654 	/* Determine type of EEH reset required for
655 	 * Partitionable Endpoint, a hot-reset (1)
656 	 * or a fundamental reset (3).
657 	 * A fundamental reset required by any device under
658 	 * Partitionable Endpoint trumps hot-reset.
659 	 */
660 	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
661 
662 	if (freset)
663 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
664 	else
665 		eeh_ops->reset(pe, EEH_RESET_HOT);
666 
667 	eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
668 }
669 
670 /**
671  * eeh_reset_pe - Reset the indicated PE
672  * @pe: EEH PE
673  *
674  * This routine should be called to reset indicated device, including
675  * PE. A PE might include multiple PCI devices and sometimes PCI bridges
676  * might be involved as well.
677  */
678 int eeh_reset_pe(struct eeh_pe *pe)
679 {
680 	int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
681 	int i, rc;
682 
683 	/* Take three shots at resetting the bus */
684 	for (i=0; i<3; i++) {
685 		eeh_reset_pe_once(pe);
686 
687 		/*
688 		 * EEH_PE_ISOLATED is expected to be removed after
689 		 * BAR restore.
690 		 */
691 		rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
692 		if ((rc & flags) == flags)
693 			return 0;
694 
695 		if (rc < 0) {
696 			pr_err("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
697 				__func__, pe->phb->global_number, pe->addr);
698 			return -1;
699 		}
700 		pr_err("EEH: bus reset %d failed on PHB#%d-PE#%x, rc=%d\n",
701 			i+1, pe->phb->global_number, pe->addr, rc);
702 	}
703 
704 	return -1;
705 }
706 
707 /**
708  * eeh_save_bars - Save device bars
709  * @edev: PCI device associated EEH device
710  *
711  * Save the values of the device bars. Unlike the restore
712  * routine, this routine is *not* recursive. This is because
713  * PCI devices are added individually; but, for the restore,
714  * an entire slot is reset at a time.
715  */
716 void eeh_save_bars(struct eeh_dev *edev)
717 {
718 	int i;
719 	struct device_node *dn;
720 
721 	if (!edev)
722 		return;
723 	dn = eeh_dev_to_of_node(edev);
724 
725 	for (i = 0; i < 16; i++)
726 		eeh_ops->read_config(dn, i * 4, 4, &edev->config_space[i]);
727 
728 	/*
729 	 * For PCI bridges including root port, we need enable bus
730 	 * master explicitly. Otherwise, it can't fetch IODA table
731 	 * entries correctly. So we cache the bit in advance so that
732 	 * we can restore it after reset, either PHB range or PE range.
733 	 */
734 	if (edev->mode & EEH_DEV_BRIDGE)
735 		edev->config_space[1] |= PCI_COMMAND_MASTER;
736 }
737 
738 /**
739  * eeh_ops_register - Register platform dependent EEH operations
740  * @ops: platform dependent EEH operations
741  *
742  * Register the platform dependent EEH operation callback
743  * functions. The platform should call this function before
744  * any other EEH operations.
745  */
746 int __init eeh_ops_register(struct eeh_ops *ops)
747 {
748 	if (!ops->name) {
749 		pr_warning("%s: Invalid EEH ops name for %p\n",
750 			__func__, ops);
751 		return -EINVAL;
752 	}
753 
754 	if (eeh_ops && eeh_ops != ops) {
755 		pr_warning("%s: EEH ops of platform %s already existing (%s)\n",
756 			__func__, eeh_ops->name, ops->name);
757 		return -EEXIST;
758 	}
759 
760 	eeh_ops = ops;
761 
762 	return 0;
763 }
764 
765 /**
766  * eeh_ops_unregister - Unreigster platform dependent EEH operations
767  * @name: name of EEH platform operations
768  *
769  * Unregister the platform dependent EEH operation callback
770  * functions.
771  */
772 int __exit eeh_ops_unregister(const char *name)
773 {
774 	if (!name || !strlen(name)) {
775 		pr_warning("%s: Invalid EEH ops name\n",
776 			__func__);
777 		return -EINVAL;
778 	}
779 
780 	if (eeh_ops && !strcmp(eeh_ops->name, name)) {
781 		eeh_ops = NULL;
782 		return 0;
783 	}
784 
785 	return -EEXIST;
786 }
787 
788 static int eeh_reboot_notifier(struct notifier_block *nb,
789 			       unsigned long action, void *unused)
790 {
791 	eeh_set_enable(false);
792 	return NOTIFY_DONE;
793 }
794 
795 static struct notifier_block eeh_reboot_nb = {
796 	.notifier_call = eeh_reboot_notifier,
797 };
798 
799 /**
800  * eeh_init - EEH initialization
801  *
802  * Initialize EEH by trying to enable it for all of the adapters in the system.
803  * As a side effect we can determine here if eeh is supported at all.
804  * Note that we leave EEH on so failed config cycles won't cause a machine
805  * check.  If a user turns off EEH for a particular adapter they are really
806  * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
807  * grant access to a slot if EEH isn't enabled, and so we always enable
808  * EEH for all slots/all devices.
809  *
810  * The eeh-force-off option disables EEH checking globally, for all slots.
811  * Even if force-off is set, the EEH hardware is still enabled, so that
812  * newer systems can boot.
813  */
814 int eeh_init(void)
815 {
816 	struct pci_controller *hose, *tmp;
817 	struct device_node *phb;
818 	static int cnt = 0;
819 	int ret = 0;
820 
821 	/*
822 	 * We have to delay the initialization on PowerNV after
823 	 * the PCI hierarchy tree has been built because the PEs
824 	 * are figured out based on PCI devices instead of device
825 	 * tree nodes
826 	 */
827 	if (machine_is(powernv) && cnt++ <= 0)
828 		return ret;
829 
830 	/* Register reboot notifier */
831 	ret = register_reboot_notifier(&eeh_reboot_nb);
832 	if (ret) {
833 		pr_warn("%s: Failed to register notifier (%d)\n",
834 			__func__, ret);
835 		return ret;
836 	}
837 
838 	/* call platform initialization function */
839 	if (!eeh_ops) {
840 		pr_warning("%s: Platform EEH operation not found\n",
841 			__func__);
842 		return -EEXIST;
843 	} else if ((ret = eeh_ops->init())) {
844 		pr_warning("%s: Failed to call platform init function (%d)\n",
845 			__func__, ret);
846 		return ret;
847 	}
848 
849 	/* Initialize EEH event */
850 	ret = eeh_event_init();
851 	if (ret)
852 		return ret;
853 
854 	/* Enable EEH for all adapters */
855 	if (eeh_probe_mode_devtree()) {
856 		list_for_each_entry_safe(hose, tmp,
857 			&hose_list, list_node) {
858 			phb = hose->dn;
859 			traverse_pci_devices(phb, eeh_ops->of_probe, NULL);
860 		}
861 	} else if (eeh_probe_mode_dev()) {
862 		list_for_each_entry_safe(hose, tmp,
863 			&hose_list, list_node)
864 			pci_walk_bus(hose->bus, eeh_ops->dev_probe, NULL);
865 	} else {
866 		pr_warn("%s: Invalid probe mode %x",
867 			__func__, eeh_subsystem_flags);
868 		return -EINVAL;
869 	}
870 
871 	/*
872 	 * Call platform post-initialization. Actually, It's good chance
873 	 * to inform platform that EEH is ready to supply service if the
874 	 * I/O cache stuff has been built up.
875 	 */
876 	if (eeh_ops->post_init) {
877 		ret = eeh_ops->post_init();
878 		if (ret)
879 			return ret;
880 	}
881 
882 	if (eeh_enabled())
883 		pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
884 	else
885 		pr_warning("EEH: No capable adapters found\n");
886 
887 	return ret;
888 }
889 
890 core_initcall_sync(eeh_init);
891 
892 /**
893  * eeh_add_device_early - Enable EEH for the indicated device_node
894  * @dn: device node for which to set up EEH
895  *
896  * This routine must be used to perform EEH initialization for PCI
897  * devices that were added after system boot (e.g. hotplug, dlpar).
898  * This routine must be called before any i/o is performed to the
899  * adapter (inluding any config-space i/o).
900  * Whether this actually enables EEH or not for this device depends
901  * on the CEC architecture, type of the device, on earlier boot
902  * command-line arguments & etc.
903  */
904 void eeh_add_device_early(struct device_node *dn)
905 {
906 	struct pci_controller *phb;
907 
908 	/*
909 	 * If we're doing EEH probe based on PCI device, we
910 	 * would delay the probe until late stage because
911 	 * the PCI device isn't available this moment.
912 	 */
913 	if (!eeh_probe_mode_devtree())
914 		return;
915 
916 	if (!of_node_to_eeh_dev(dn))
917 		return;
918 	phb = of_node_to_eeh_dev(dn)->phb;
919 
920 	/* USB Bus children of PCI devices will not have BUID's */
921 	if (NULL == phb || 0 == phb->buid)
922 		return;
923 
924 	eeh_ops->of_probe(dn, NULL);
925 }
926 
927 /**
928  * eeh_add_device_tree_early - Enable EEH for the indicated device
929  * @dn: device node
930  *
931  * This routine must be used to perform EEH initialization for the
932  * indicated PCI device that was added after system boot (e.g.
933  * hotplug, dlpar).
934  */
935 void eeh_add_device_tree_early(struct device_node *dn)
936 {
937 	struct device_node *sib;
938 
939 	for_each_child_of_node(dn, sib)
940 		eeh_add_device_tree_early(sib);
941 	eeh_add_device_early(dn);
942 }
943 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
944 
945 /**
946  * eeh_add_device_late - Perform EEH initialization for the indicated pci device
947  * @dev: pci device for which to set up EEH
948  *
949  * This routine must be used to complete EEH initialization for PCI
950  * devices that were added after system boot (e.g. hotplug, dlpar).
951  */
952 void eeh_add_device_late(struct pci_dev *dev)
953 {
954 	struct device_node *dn;
955 	struct eeh_dev *edev;
956 
957 	if (!dev || !eeh_enabled())
958 		return;
959 
960 	pr_debug("EEH: Adding device %s\n", pci_name(dev));
961 
962 	dn = pci_device_to_OF_node(dev);
963 	edev = of_node_to_eeh_dev(dn);
964 	if (edev->pdev == dev) {
965 		pr_debug("EEH: Already referenced !\n");
966 		return;
967 	}
968 
969 	/*
970 	 * The EEH cache might not be removed correctly because of
971 	 * unbalanced kref to the device during unplug time, which
972 	 * relies on pcibios_release_device(). So we have to remove
973 	 * that here explicitly.
974 	 */
975 	if (edev->pdev) {
976 		eeh_rmv_from_parent_pe(edev);
977 		eeh_addr_cache_rmv_dev(edev->pdev);
978 		eeh_sysfs_remove_device(edev->pdev);
979 		edev->mode &= ~EEH_DEV_SYSFS;
980 
981 		/*
982 		 * We definitely should have the PCI device removed
983 		 * though it wasn't correctly. So we needn't call
984 		 * into error handler afterwards.
985 		 */
986 		edev->mode |= EEH_DEV_NO_HANDLER;
987 
988 		edev->pdev = NULL;
989 		dev->dev.archdata.edev = NULL;
990 	}
991 
992 	edev->pdev = dev;
993 	dev->dev.archdata.edev = edev;
994 
995 	/*
996 	 * We have to do the EEH probe here because the PCI device
997 	 * hasn't been created yet in the early stage.
998 	 */
999 	if (eeh_probe_mode_dev())
1000 		eeh_ops->dev_probe(dev, NULL);
1001 
1002 	eeh_addr_cache_insert_dev(dev);
1003 }
1004 
1005 /**
1006  * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1007  * @bus: PCI bus
1008  *
1009  * This routine must be used to perform EEH initialization for PCI
1010  * devices which are attached to the indicated PCI bus. The PCI bus
1011  * is added after system boot through hotplug or dlpar.
1012  */
1013 void eeh_add_device_tree_late(struct pci_bus *bus)
1014 {
1015 	struct pci_dev *dev;
1016 
1017 	list_for_each_entry(dev, &bus->devices, bus_list) {
1018 		eeh_add_device_late(dev);
1019 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1020 			struct pci_bus *subbus = dev->subordinate;
1021 			if (subbus)
1022 				eeh_add_device_tree_late(subbus);
1023 		}
1024 	}
1025 }
1026 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1027 
1028 /**
1029  * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1030  * @bus: PCI bus
1031  *
1032  * This routine must be used to add EEH sysfs files for PCI
1033  * devices which are attached to the indicated PCI bus. The PCI bus
1034  * is added after system boot through hotplug or dlpar.
1035  */
1036 void eeh_add_sysfs_files(struct pci_bus *bus)
1037 {
1038 	struct pci_dev *dev;
1039 
1040 	list_for_each_entry(dev, &bus->devices, bus_list) {
1041 		eeh_sysfs_add_device(dev);
1042 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1043 			struct pci_bus *subbus = dev->subordinate;
1044 			if (subbus)
1045 				eeh_add_sysfs_files(subbus);
1046 		}
1047 	}
1048 }
1049 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1050 
1051 /**
1052  * eeh_remove_device - Undo EEH setup for the indicated pci device
1053  * @dev: pci device to be removed
1054  *
1055  * This routine should be called when a device is removed from
1056  * a running system (e.g. by hotplug or dlpar).  It unregisters
1057  * the PCI device from the EEH subsystem.  I/O errors affecting
1058  * this device will no longer be detected after this call; thus,
1059  * i/o errors affecting this slot may leave this device unusable.
1060  */
1061 void eeh_remove_device(struct pci_dev *dev)
1062 {
1063 	struct eeh_dev *edev;
1064 
1065 	if (!dev || !eeh_enabled())
1066 		return;
1067 	edev = pci_dev_to_eeh_dev(dev);
1068 
1069 	/* Unregister the device with the EEH/PCI address search system */
1070 	pr_debug("EEH: Removing device %s\n", pci_name(dev));
1071 
1072 	if (!edev || !edev->pdev || !edev->pe) {
1073 		pr_debug("EEH: Not referenced !\n");
1074 		return;
1075 	}
1076 
1077 	/*
1078 	 * During the hotplug for EEH error recovery, we need the EEH
1079 	 * device attached to the parent PE in order for BAR restore
1080 	 * a bit later. So we keep it for BAR restore and remove it
1081 	 * from the parent PE during the BAR resotre.
1082 	 */
1083 	edev->pdev = NULL;
1084 	dev->dev.archdata.edev = NULL;
1085 	if (!(edev->pe->state & EEH_PE_KEEP))
1086 		eeh_rmv_from_parent_pe(edev);
1087 	else
1088 		edev->mode |= EEH_DEV_DISCONNECTED;
1089 
1090 	/*
1091 	 * We're removing from the PCI subsystem, that means
1092 	 * the PCI device driver can't support EEH or not
1093 	 * well. So we rely on hotplug completely to do recovery
1094 	 * for the specific PCI device.
1095 	 */
1096 	edev->mode |= EEH_DEV_NO_HANDLER;
1097 
1098 	eeh_addr_cache_rmv_dev(dev);
1099 	eeh_sysfs_remove_device(dev);
1100 	edev->mode &= ~EEH_DEV_SYSFS;
1101 }
1102 
1103 static int proc_eeh_show(struct seq_file *m, void *v)
1104 {
1105 	if (!eeh_enabled()) {
1106 		seq_printf(m, "EEH Subsystem is globally disabled\n");
1107 		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1108 	} else {
1109 		seq_printf(m, "EEH Subsystem is enabled\n");
1110 		seq_printf(m,
1111 				"no device=%llu\n"
1112 				"no device node=%llu\n"
1113 				"no config address=%llu\n"
1114 				"check not wanted=%llu\n"
1115 				"eeh_total_mmio_ffs=%llu\n"
1116 				"eeh_false_positives=%llu\n"
1117 				"eeh_slot_resets=%llu\n",
1118 				eeh_stats.no_device,
1119 				eeh_stats.no_dn,
1120 				eeh_stats.no_cfg_addr,
1121 				eeh_stats.ignored_check,
1122 				eeh_stats.total_mmio_ffs,
1123 				eeh_stats.false_positives,
1124 				eeh_stats.slot_resets);
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 static int proc_eeh_open(struct inode *inode, struct file *file)
1131 {
1132 	return single_open(file, proc_eeh_show, NULL);
1133 }
1134 
1135 static const struct file_operations proc_eeh_operations = {
1136 	.open      = proc_eeh_open,
1137 	.read      = seq_read,
1138 	.llseek    = seq_lseek,
1139 	.release   = single_release,
1140 };
1141 
1142 #ifdef CONFIG_DEBUG_FS
1143 static int eeh_enable_dbgfs_set(void *data, u64 val)
1144 {
1145 	if (val)
1146 		eeh_subsystem_flags &= ~EEH_FORCE_DISABLED;
1147 	else
1148 		eeh_subsystem_flags |= EEH_FORCE_DISABLED;
1149 
1150 	/* Notify the backend */
1151 	if (eeh_ops->post_init)
1152 		eeh_ops->post_init();
1153 
1154 	return 0;
1155 }
1156 
1157 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1158 {
1159 	if (eeh_enabled())
1160 		*val = 0x1ul;
1161 	else
1162 		*val = 0x0ul;
1163 	return 0;
1164 }
1165 
1166 DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1167 			eeh_enable_dbgfs_set, "0x%llx\n");
1168 #endif
1169 
1170 static int __init eeh_init_proc(void)
1171 {
1172 	if (machine_is(pseries) || machine_is(powernv)) {
1173 		proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1174 #ifdef CONFIG_DEBUG_FS
1175 		debugfs_create_file("eeh_enable", 0600,
1176                                     powerpc_debugfs_root, NULL,
1177                                     &eeh_enable_dbgfs_ops);
1178 #endif
1179 	}
1180 
1181 	return 0;
1182 }
1183 __initcall(eeh_init_proc);
1184