xref: /openbmc/linux/arch/powerpc/kernel/eeh.c (revision 76a4f7cc)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright IBM Corporation 2001, 2005, 2006
4  * Copyright Dave Engebretsen & Todd Inglett 2001
5  * Copyright Linas Vepstas 2005, 2006
6  * Copyright 2001-2012 IBM Corporation.
7  *
8  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/sched.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/pci.h>
16 #include <linux/iommu.h>
17 #include <linux/proc_fs.h>
18 #include <linux/rbtree.h>
19 #include <linux/reboot.h>
20 #include <linux/seq_file.h>
21 #include <linux/spinlock.h>
22 #include <linux/export.h>
23 #include <linux/of.h>
24 #include <linux/debugfs.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/eeh.h>
28 #include <asm/eeh_event.h>
29 #include <asm/io.h>
30 #include <asm/iommu.h>
31 #include <asm/machdep.h>
32 #include <asm/ppc-pci.h>
33 #include <asm/rtas.h>
34 #include <asm/pte-walk.h>
35 
36 
37 /** Overview:
38  *  EEH, or "Enhanced Error Handling" is a PCI bridge technology for
39  *  dealing with PCI bus errors that can't be dealt with within the
40  *  usual PCI framework, except by check-stopping the CPU.  Systems
41  *  that are designed for high-availability/reliability cannot afford
42  *  to crash due to a "mere" PCI error, thus the need for EEH.
43  *  An EEH-capable bridge operates by converting a detected error
44  *  into a "slot freeze", taking the PCI adapter off-line, making
45  *  the slot behave, from the OS'es point of view, as if the slot
46  *  were "empty": all reads return 0xff's and all writes are silently
47  *  ignored.  EEH slot isolation events can be triggered by parity
48  *  errors on the address or data busses (e.g. during posted writes),
49  *  which in turn might be caused by low voltage on the bus, dust,
50  *  vibration, humidity, radioactivity or plain-old failed hardware.
51  *
52  *  Note, however, that one of the leading causes of EEH slot
53  *  freeze events are buggy device drivers, buggy device microcode,
54  *  or buggy device hardware.  This is because any attempt by the
55  *  device to bus-master data to a memory address that is not
56  *  assigned to the device will trigger a slot freeze.   (The idea
57  *  is to prevent devices-gone-wild from corrupting system memory).
58  *  Buggy hardware/drivers will have a miserable time co-existing
59  *  with EEH.
60  *
61  *  Ideally, a PCI device driver, when suspecting that an isolation
62  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
63  *  whether this is the case, and then take appropriate steps to
64  *  reset the PCI slot, the PCI device, and then resume operations.
65  *  However, until that day,  the checking is done here, with the
66  *  eeh_check_failure() routine embedded in the MMIO macros.  If
67  *  the slot is found to be isolated, an "EEH Event" is synthesized
68  *  and sent out for processing.
69  */
70 
71 /* If a device driver keeps reading an MMIO register in an interrupt
72  * handler after a slot isolation event, it might be broken.
73  * This sets the threshold for how many read attempts we allow
74  * before printing an error message.
75  */
76 #define EEH_MAX_FAILS	2100000
77 
78 /* Time to wait for a PCI slot to report status, in milliseconds */
79 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
80 
81 /*
82  * EEH probe mode support, which is part of the flags,
83  * is to support multiple platforms for EEH. Some platforms
84  * like pSeries do PCI emunation based on device tree.
85  * However, other platforms like powernv probe PCI devices
86  * from hardware. The flag is used to distinguish that.
87  * In addition, struct eeh_ops::probe would be invoked for
88  * particular OF node or PCI device so that the corresponding
89  * PE would be created there.
90  */
91 int eeh_subsystem_flags;
92 EXPORT_SYMBOL(eeh_subsystem_flags);
93 
94 /*
95  * EEH allowed maximal frozen times. If one particular PE's
96  * frozen count in last hour exceeds this limit, the PE will
97  * be forced to be offline permanently.
98  */
99 u32 eeh_max_freezes = 5;
100 
101 /*
102  * Controls whether a recovery event should be scheduled when an
103  * isolated device is discovered. This is only really useful for
104  * debugging problems with the EEH core.
105  */
106 bool eeh_debugfs_no_recover;
107 
108 /* Platform dependent EEH operations */
109 struct eeh_ops *eeh_ops = NULL;
110 
111 /* Lock to avoid races due to multiple reports of an error */
112 DEFINE_RAW_SPINLOCK(confirm_error_lock);
113 EXPORT_SYMBOL_GPL(confirm_error_lock);
114 
115 /* Lock to protect passed flags */
116 static DEFINE_MUTEX(eeh_dev_mutex);
117 
118 /* Buffer for reporting pci register dumps. Its here in BSS, and
119  * not dynamically alloced, so that it ends up in RMO where RTAS
120  * can access it.
121  */
122 #define EEH_PCI_REGS_LOG_LEN 8192
123 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
124 
125 /*
126  * The struct is used to maintain the EEH global statistic
127  * information. Besides, the EEH global statistics will be
128  * exported to user space through procfs
129  */
130 struct eeh_stats {
131 	u64 no_device;		/* PCI device not found		*/
132 	u64 no_dn;		/* OF node not found		*/
133 	u64 no_cfg_addr;	/* Config address not found	*/
134 	u64 ignored_check;	/* EEH check skipped		*/
135 	u64 total_mmio_ffs;	/* Total EEH checks		*/
136 	u64 false_positives;	/* Unnecessary EEH checks	*/
137 	u64 slot_resets;	/* PE reset			*/
138 };
139 
140 static struct eeh_stats eeh_stats;
141 
142 static int __init eeh_setup(char *str)
143 {
144 	if (!strcmp(str, "off"))
145 		eeh_add_flag(EEH_FORCE_DISABLED);
146 	else if (!strcmp(str, "early_log"))
147 		eeh_add_flag(EEH_EARLY_DUMP_LOG);
148 
149 	return 1;
150 }
151 __setup("eeh=", eeh_setup);
152 
153 void eeh_show_enabled(void)
154 {
155 	if (eeh_has_flag(EEH_FORCE_DISABLED))
156 		pr_info("EEH: Recovery disabled by kernel parameter.\n");
157 	else if (eeh_has_flag(EEH_ENABLED))
158 		pr_info("EEH: Capable adapter found: recovery enabled.\n");
159 	else
160 		pr_info("EEH: No capable adapters found: recovery disabled.\n");
161 }
162 
163 /*
164  * This routine captures assorted PCI configuration space data
165  * for the indicated PCI device, and puts them into a buffer
166  * for RTAS error logging.
167  */
168 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
169 {
170 	u32 cfg;
171 	int cap, i;
172 	int n = 0, l = 0;
173 	char buffer[128];
174 
175 	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
176 			edev->pe->phb->global_number, edev->bdfn >> 8,
177 			PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
178 	pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
179 		edev->pe->phb->global_number, edev->bdfn >> 8,
180 		PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
181 
182 	eeh_ops->read_config(edev, PCI_VENDOR_ID, 4, &cfg);
183 	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
184 	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
185 
186 	eeh_ops->read_config(edev, PCI_COMMAND, 4, &cfg);
187 	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
188 	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
189 
190 	/* Gather bridge-specific registers */
191 	if (edev->mode & EEH_DEV_BRIDGE) {
192 		eeh_ops->read_config(edev, PCI_SEC_STATUS, 2, &cfg);
193 		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
194 		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
195 
196 		eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &cfg);
197 		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
198 		pr_warn("EEH: Bridge control: %04x\n", cfg);
199 	}
200 
201 	/* Dump out the PCI-X command and status regs */
202 	cap = edev->pcix_cap;
203 	if (cap) {
204 		eeh_ops->read_config(edev, cap, 4, &cfg);
205 		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
206 		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
207 
208 		eeh_ops->read_config(edev, cap+4, 4, &cfg);
209 		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
210 		pr_warn("EEH: PCI-X status: %08x\n", cfg);
211 	}
212 
213 	/* If PCI-E capable, dump PCI-E cap 10 */
214 	cap = edev->pcie_cap;
215 	if (cap) {
216 		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
217 		pr_warn("EEH: PCI-E capabilities and status follow:\n");
218 
219 		for (i=0; i<=8; i++) {
220 			eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
221 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
222 
223 			if ((i % 4) == 0) {
224 				if (i != 0)
225 					pr_warn("%s\n", buffer);
226 
227 				l = scnprintf(buffer, sizeof(buffer),
228 					      "EEH: PCI-E %02x: %08x ",
229 					      4*i, cfg);
230 			} else {
231 				l += scnprintf(buffer+l, sizeof(buffer)-l,
232 					       "%08x ", cfg);
233 			}
234 
235 		}
236 
237 		pr_warn("%s\n", buffer);
238 	}
239 
240 	/* If AER capable, dump it */
241 	cap = edev->aer_cap;
242 	if (cap) {
243 		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
244 		pr_warn("EEH: PCI-E AER capability register set follows:\n");
245 
246 		for (i=0; i<=13; i++) {
247 			eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
248 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
249 
250 			if ((i % 4) == 0) {
251 				if (i != 0)
252 					pr_warn("%s\n", buffer);
253 
254 				l = scnprintf(buffer, sizeof(buffer),
255 					      "EEH: PCI-E AER %02x: %08x ",
256 					      4*i, cfg);
257 			} else {
258 				l += scnprintf(buffer+l, sizeof(buffer)-l,
259 					       "%08x ", cfg);
260 			}
261 		}
262 
263 		pr_warn("%s\n", buffer);
264 	}
265 
266 	return n;
267 }
268 
269 static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
270 {
271 	struct eeh_dev *edev, *tmp;
272 	size_t *plen = flag;
273 
274 	eeh_pe_for_each_dev(pe, edev, tmp)
275 		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
276 					  EEH_PCI_REGS_LOG_LEN - *plen);
277 
278 	return NULL;
279 }
280 
281 /**
282  * eeh_slot_error_detail - Generate combined log including driver log and error log
283  * @pe: EEH PE
284  * @severity: temporary or permanent error log
285  *
286  * This routine should be called to generate the combined log, which
287  * is comprised of driver log and error log. The driver log is figured
288  * out from the config space of the corresponding PCI device, while
289  * the error log is fetched through platform dependent function call.
290  */
291 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
292 {
293 	size_t loglen = 0;
294 
295 	/*
296 	 * When the PHB is fenced or dead, it's pointless to collect
297 	 * the data from PCI config space because it should return
298 	 * 0xFF's. For ER, we still retrieve the data from the PCI
299 	 * config space.
300 	 *
301 	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
302 	 * 0xFF's is always returned from PCI config space.
303 	 *
304 	 * When the @severity is EEH_LOG_PERM, the PE is going to be
305 	 * removed. Prior to that, the drivers for devices included in
306 	 * the PE will be closed. The drivers rely on working IO path
307 	 * to bring the devices to quiet state. Otherwise, PCI traffic
308 	 * from those devices after they are removed is like to cause
309 	 * another unexpected EEH error.
310 	 */
311 	if (!(pe->type & EEH_PE_PHB)) {
312 		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
313 		    severity == EEH_LOG_PERM)
314 			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
315 
316 		/*
317 		 * The config space of some PCI devices can't be accessed
318 		 * when their PEs are in frozen state. Otherwise, fenced
319 		 * PHB might be seen. Those PEs are identified with flag
320 		 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
321 		 * is set automatically when the PE is put to EEH_PE_ISOLATED.
322 		 *
323 		 * Restoring BARs possibly triggers PCI config access in
324 		 * (OPAL) firmware and then causes fenced PHB. If the
325 		 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
326 		 * pointless to restore BARs and dump config space.
327 		 */
328 		eeh_ops->configure_bridge(pe);
329 		if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
330 			eeh_pe_restore_bars(pe);
331 
332 			pci_regs_buf[0] = 0;
333 			eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
334 		}
335 	}
336 
337 	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
338 }
339 
340 /**
341  * eeh_token_to_phys - Convert EEH address token to phys address
342  * @token: I/O token, should be address in the form 0xA....
343  *
344  * This routine should be called to convert virtual I/O address
345  * to physical one.
346  */
347 static inline unsigned long eeh_token_to_phys(unsigned long token)
348 {
349 	return ppc_find_vmap_phys(token);
350 }
351 
352 /*
353  * On PowerNV platform, we might already have fenced PHB there.
354  * For that case, it's meaningless to recover frozen PE. Intead,
355  * We have to handle fenced PHB firstly.
356  */
357 static int eeh_phb_check_failure(struct eeh_pe *pe)
358 {
359 	struct eeh_pe *phb_pe;
360 	unsigned long flags;
361 	int ret;
362 
363 	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
364 		return -EPERM;
365 
366 	/* Find the PHB PE */
367 	phb_pe = eeh_phb_pe_get(pe->phb);
368 	if (!phb_pe) {
369 		pr_warn("%s Can't find PE for PHB#%x\n",
370 			__func__, pe->phb->global_number);
371 		return -EEXIST;
372 	}
373 
374 	/* If the PHB has been in problematic state */
375 	eeh_serialize_lock(&flags);
376 	if (phb_pe->state & EEH_PE_ISOLATED) {
377 		ret = 0;
378 		goto out;
379 	}
380 
381 	/* Check PHB state */
382 	ret = eeh_ops->get_state(phb_pe, NULL);
383 	if ((ret < 0) ||
384 	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
385 		ret = 0;
386 		goto out;
387 	}
388 
389 	/* Isolate the PHB and send event */
390 	eeh_pe_mark_isolated(phb_pe);
391 	eeh_serialize_unlock(flags);
392 
393 	pr_debug("EEH: PHB#%x failure detected, location: %s\n",
394 		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
395 	eeh_send_failure_event(phb_pe);
396 	return 1;
397 out:
398 	eeh_serialize_unlock(flags);
399 	return ret;
400 }
401 
402 /**
403  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
404  * @edev: eeh device
405  *
406  * Check for an EEH failure for the given device node.  Call this
407  * routine if the result of a read was all 0xff's and you want to
408  * find out if this is due to an EEH slot freeze.  This routine
409  * will query firmware for the EEH status.
410  *
411  * Returns 0 if there has not been an EEH error; otherwise returns
412  * a non-zero value and queues up a slot isolation event notification.
413  *
414  * It is safe to call this routine in an interrupt context.
415  */
416 int eeh_dev_check_failure(struct eeh_dev *edev)
417 {
418 	int ret;
419 	unsigned long flags;
420 	struct device_node *dn;
421 	struct pci_dev *dev;
422 	struct eeh_pe *pe, *parent_pe;
423 	int rc = 0;
424 	const char *location = NULL;
425 
426 	eeh_stats.total_mmio_ffs++;
427 
428 	if (!eeh_enabled())
429 		return 0;
430 
431 	if (!edev) {
432 		eeh_stats.no_dn++;
433 		return 0;
434 	}
435 	dev = eeh_dev_to_pci_dev(edev);
436 	pe = eeh_dev_to_pe(edev);
437 
438 	/* Access to IO BARs might get this far and still not want checking. */
439 	if (!pe) {
440 		eeh_stats.ignored_check++;
441 		eeh_edev_dbg(edev, "Ignored check\n");
442 		return 0;
443 	}
444 
445 	/*
446 	 * On PowerNV platform, we might already have fenced PHB
447 	 * there and we need take care of that firstly.
448 	 */
449 	ret = eeh_phb_check_failure(pe);
450 	if (ret > 0)
451 		return ret;
452 
453 	/*
454 	 * If the PE isn't owned by us, we shouldn't check the
455 	 * state. Instead, let the owner handle it if the PE has
456 	 * been frozen.
457 	 */
458 	if (eeh_pe_passed(pe))
459 		return 0;
460 
461 	/* If we already have a pending isolation event for this
462 	 * slot, we know it's bad already, we don't need to check.
463 	 * Do this checking under a lock; as multiple PCI devices
464 	 * in one slot might report errors simultaneously, and we
465 	 * only want one error recovery routine running.
466 	 */
467 	eeh_serialize_lock(&flags);
468 	rc = 1;
469 	if (pe->state & EEH_PE_ISOLATED) {
470 		pe->check_count++;
471 		if (pe->check_count == EEH_MAX_FAILS) {
472 			dn = pci_device_to_OF_node(dev);
473 			if (dn)
474 				location = of_get_property(dn, "ibm,loc-code",
475 						NULL);
476 			eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n",
477 				pe->check_count,
478 				location ? location : "unknown",
479 				eeh_driver_name(dev));
480 			eeh_edev_err(edev, "Might be infinite loop in %s driver\n",
481 				eeh_driver_name(dev));
482 			dump_stack();
483 		}
484 		goto dn_unlock;
485 	}
486 
487 	/*
488 	 * Now test for an EEH failure.  This is VERY expensive.
489 	 * Note that the eeh_config_addr may be a parent device
490 	 * in the case of a device behind a bridge, or it may be
491 	 * function zero of a multi-function device.
492 	 * In any case they must share a common PHB.
493 	 */
494 	ret = eeh_ops->get_state(pe, NULL);
495 
496 	/* Note that config-io to empty slots may fail;
497 	 * they are empty when they don't have children.
498 	 * We will punt with the following conditions: Failure to get
499 	 * PE's state, EEH not support and Permanently unavailable
500 	 * state, PE is in good state.
501 	 */
502 	if ((ret < 0) ||
503 	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
504 		eeh_stats.false_positives++;
505 		pe->false_positives++;
506 		rc = 0;
507 		goto dn_unlock;
508 	}
509 
510 	/*
511 	 * It should be corner case that the parent PE has been
512 	 * put into frozen state as well. We should take care
513 	 * that at first.
514 	 */
515 	parent_pe = pe->parent;
516 	while (parent_pe) {
517 		/* Hit the ceiling ? */
518 		if (parent_pe->type & EEH_PE_PHB)
519 			break;
520 
521 		/* Frozen parent PE ? */
522 		ret = eeh_ops->get_state(parent_pe, NULL);
523 		if (ret > 0 && !eeh_state_active(ret)) {
524 			pe = parent_pe;
525 			pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
526 			       pe->phb->global_number, pe->addr,
527 			       pe->phb->global_number, parent_pe->addr);
528 		}
529 
530 		/* Next parent level */
531 		parent_pe = parent_pe->parent;
532 	}
533 
534 	eeh_stats.slot_resets++;
535 
536 	/* Avoid repeated reports of this failure, including problems
537 	 * with other functions on this device, and functions under
538 	 * bridges.
539 	 */
540 	eeh_pe_mark_isolated(pe);
541 	eeh_serialize_unlock(flags);
542 
543 	/* Most EEH events are due to device driver bugs.  Having
544 	 * a stack trace will help the device-driver authors figure
545 	 * out what happened.  So print that out.
546 	 */
547 	pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
548 		__func__, pe->phb->global_number, pe->addr);
549 	eeh_send_failure_event(pe);
550 
551 	return 1;
552 
553 dn_unlock:
554 	eeh_serialize_unlock(flags);
555 	return rc;
556 }
557 
558 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
559 
560 /**
561  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
562  * @token: I/O address
563  *
564  * Check for an EEH failure at the given I/O address. Call this
565  * routine if the result of a read was all 0xff's and you want to
566  * find out if this is due to an EEH slot freeze event. This routine
567  * will query firmware for the EEH status.
568  *
569  * Note this routine is safe to call in an interrupt context.
570  */
571 int eeh_check_failure(const volatile void __iomem *token)
572 {
573 	unsigned long addr;
574 	struct eeh_dev *edev;
575 
576 	/* Finding the phys addr + pci device; this is pretty quick. */
577 	addr = eeh_token_to_phys((unsigned long __force) token);
578 	edev = eeh_addr_cache_get_dev(addr);
579 	if (!edev) {
580 		eeh_stats.no_device++;
581 		return 0;
582 	}
583 
584 	return eeh_dev_check_failure(edev);
585 }
586 EXPORT_SYMBOL(eeh_check_failure);
587 
588 
589 /**
590  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
591  * @pe: EEH PE
592  *
593  * This routine should be called to reenable frozen MMIO or DMA
594  * so that it would work correctly again. It's useful while doing
595  * recovery or log collection on the indicated device.
596  */
597 int eeh_pci_enable(struct eeh_pe *pe, int function)
598 {
599 	int active_flag, rc;
600 
601 	/*
602 	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
603 	 * Also, it's pointless to enable them on unfrozen PE. So
604 	 * we have to check before enabling IO or DMA.
605 	 */
606 	switch (function) {
607 	case EEH_OPT_THAW_MMIO:
608 		active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
609 		break;
610 	case EEH_OPT_THAW_DMA:
611 		active_flag = EEH_STATE_DMA_ACTIVE;
612 		break;
613 	case EEH_OPT_DISABLE:
614 	case EEH_OPT_ENABLE:
615 	case EEH_OPT_FREEZE_PE:
616 		active_flag = 0;
617 		break;
618 	default:
619 		pr_warn("%s: Invalid function %d\n",
620 			__func__, function);
621 		return -EINVAL;
622 	}
623 
624 	/*
625 	 * Check if IO or DMA has been enabled before
626 	 * enabling them.
627 	 */
628 	if (active_flag) {
629 		rc = eeh_ops->get_state(pe, NULL);
630 		if (rc < 0)
631 			return rc;
632 
633 		/* Needn't enable it at all */
634 		if (rc == EEH_STATE_NOT_SUPPORT)
635 			return 0;
636 
637 		/* It's already enabled */
638 		if (rc & active_flag)
639 			return 0;
640 	}
641 
642 
643 	/* Issue the request */
644 	rc = eeh_ops->set_option(pe, function);
645 	if (rc)
646 		pr_warn("%s: Unexpected state change %d on "
647 			"PHB#%x-PE#%x, err=%d\n",
648 			__func__, function, pe->phb->global_number,
649 			pe->addr, rc);
650 
651 	/* Check if the request is finished successfully */
652 	if (active_flag) {
653 		rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
654 		if (rc < 0)
655 			return rc;
656 
657 		if (rc & active_flag)
658 			return 0;
659 
660 		return -EIO;
661 	}
662 
663 	return rc;
664 }
665 
666 static void eeh_disable_and_save_dev_state(struct eeh_dev *edev,
667 					    void *userdata)
668 {
669 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
670 	struct pci_dev *dev = userdata;
671 
672 	/*
673 	 * The caller should have disabled and saved the
674 	 * state for the specified device
675 	 */
676 	if (!pdev || pdev == dev)
677 		return;
678 
679 	/* Ensure we have D0 power state */
680 	pci_set_power_state(pdev, PCI_D0);
681 
682 	/* Save device state */
683 	pci_save_state(pdev);
684 
685 	/*
686 	 * Disable device to avoid any DMA traffic and
687 	 * interrupt from the device
688 	 */
689 	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
690 }
691 
692 static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
693 {
694 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
695 	struct pci_dev *dev = userdata;
696 
697 	if (!pdev)
698 		return;
699 
700 	/* Apply customization from firmware */
701 	if (eeh_ops->restore_config)
702 		eeh_ops->restore_config(edev);
703 
704 	/* The caller should restore state for the specified device */
705 	if (pdev != dev)
706 		pci_restore_state(pdev);
707 }
708 
709 /**
710  * pcibios_set_pcie_reset_state - Set PCI-E reset state
711  * @dev: pci device struct
712  * @state: reset state to enter
713  *
714  * Return value:
715  * 	0 if success
716  */
717 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
718 {
719 	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
720 	struct eeh_pe *pe = eeh_dev_to_pe(edev);
721 
722 	if (!pe) {
723 		pr_err("%s: No PE found on PCI device %s\n",
724 			__func__, pci_name(dev));
725 		return -EINVAL;
726 	}
727 
728 	switch (state) {
729 	case pcie_deassert_reset:
730 		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
731 		eeh_unfreeze_pe(pe);
732 		if (!(pe->type & EEH_PE_VF))
733 			eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
734 		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
735 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
736 		break;
737 	case pcie_hot_reset:
738 		eeh_pe_mark_isolated(pe);
739 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
740 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
741 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
742 		if (!(pe->type & EEH_PE_VF))
743 			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
744 		eeh_ops->reset(pe, EEH_RESET_HOT);
745 		break;
746 	case pcie_warm_reset:
747 		eeh_pe_mark_isolated(pe);
748 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
749 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
750 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
751 		if (!(pe->type & EEH_PE_VF))
752 			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
753 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
754 		break;
755 	default:
756 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
757 		return -EINVAL;
758 	}
759 
760 	return 0;
761 }
762 
763 /**
764  * eeh_set_pe_freset - Check the required reset for the indicated device
765  * @data: EEH device
766  * @flag: return value
767  *
768  * Each device might have its preferred reset type: fundamental or
769  * hot reset. The routine is used to collected the information for
770  * the indicated device and its children so that the bunch of the
771  * devices could be reset properly.
772  */
773 static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
774 {
775 	struct pci_dev *dev;
776 	unsigned int *freset = (unsigned int *)flag;
777 
778 	dev = eeh_dev_to_pci_dev(edev);
779 	if (dev)
780 		*freset |= dev->needs_freset;
781 }
782 
783 static void eeh_pe_refreeze_passed(struct eeh_pe *root)
784 {
785 	struct eeh_pe *pe;
786 	int state;
787 
788 	eeh_for_each_pe(root, pe) {
789 		if (eeh_pe_passed(pe)) {
790 			state = eeh_ops->get_state(pe, NULL);
791 			if (state &
792 			   (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
793 				pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
794 					pe->phb->global_number, pe->addr);
795 				eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
796 			}
797 		}
798 	}
799 }
800 
801 /**
802  * eeh_pe_reset_full - Complete a full reset process on the indicated PE
803  * @pe: EEH PE
804  *
805  * This function executes a full reset procedure on a PE, including setting
806  * the appropriate flags, performing a fundamental or hot reset, and then
807  * deactivating the reset status.  It is designed to be used within the EEH
808  * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
809  * only performs a single operation at a time.
810  *
811  * This function will attempt to reset a PE three times before failing.
812  */
813 int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
814 {
815 	int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
816 	int type = EEH_RESET_HOT;
817 	unsigned int freset = 0;
818 	int i, state = 0, ret;
819 
820 	/*
821 	 * Determine the type of reset to perform - hot or fundamental.
822 	 * Hot reset is the default operation, unless any device under the
823 	 * PE requires a fundamental reset.
824 	 */
825 	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
826 
827 	if (freset)
828 		type = EEH_RESET_FUNDAMENTAL;
829 
830 	/* Mark the PE as in reset state and block config space accesses */
831 	eeh_pe_state_mark(pe, reset_state);
832 
833 	/* Make three attempts at resetting the bus */
834 	for (i = 0; i < 3; i++) {
835 		ret = eeh_pe_reset(pe, type, include_passed);
836 		if (!ret)
837 			ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
838 					   include_passed);
839 		if (ret) {
840 			ret = -EIO;
841 			pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
842 				state, pe->phb->global_number, pe->addr, i + 1);
843 			continue;
844 		}
845 		if (i)
846 			pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
847 				pe->phb->global_number, pe->addr, i + 1);
848 
849 		/* Wait until the PE is in a functioning state */
850 		state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
851 		if (state < 0) {
852 			pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
853 				pe->phb->global_number, pe->addr);
854 			ret = -ENOTRECOVERABLE;
855 			break;
856 		}
857 		if (eeh_state_active(state))
858 			break;
859 		else
860 			pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
861 				pe->phb->global_number, pe->addr, state, i + 1);
862 	}
863 
864 	/* Resetting the PE may have unfrozen child PEs. If those PEs have been
865 	 * (potentially) passed through to a guest, re-freeze them:
866 	 */
867 	if (!include_passed)
868 		eeh_pe_refreeze_passed(pe);
869 
870 	eeh_pe_state_clear(pe, reset_state, true);
871 	return ret;
872 }
873 
874 /**
875  * eeh_save_bars - Save device bars
876  * @edev: PCI device associated EEH device
877  *
878  * Save the values of the device bars. Unlike the restore
879  * routine, this routine is *not* recursive. This is because
880  * PCI devices are added individually; but, for the restore,
881  * an entire slot is reset at a time.
882  */
883 void eeh_save_bars(struct eeh_dev *edev)
884 {
885 	int i;
886 
887 	if (!edev)
888 		return;
889 
890 	for (i = 0; i < 16; i++)
891 		eeh_ops->read_config(edev, i * 4, 4, &edev->config_space[i]);
892 
893 	/*
894 	 * For PCI bridges including root port, we need enable bus
895 	 * master explicitly. Otherwise, it can't fetch IODA table
896 	 * entries correctly. So we cache the bit in advance so that
897 	 * we can restore it after reset, either PHB range or PE range.
898 	 */
899 	if (edev->mode & EEH_DEV_BRIDGE)
900 		edev->config_space[1] |= PCI_COMMAND_MASTER;
901 }
902 
903 static int eeh_reboot_notifier(struct notifier_block *nb,
904 			       unsigned long action, void *unused)
905 {
906 	eeh_clear_flag(EEH_ENABLED);
907 	return NOTIFY_DONE;
908 }
909 
910 static struct notifier_block eeh_reboot_nb = {
911 	.notifier_call = eeh_reboot_notifier,
912 };
913 
914 static int eeh_device_notifier(struct notifier_block *nb,
915 			       unsigned long action, void *data)
916 {
917 	struct device *dev = data;
918 
919 	switch (action) {
920 	/*
921 	 * Note: It's not possible to perform EEH device addition (i.e.
922 	 * {pseries,pnv}_pcibios_bus_add_device()) here because it depends on
923 	 * the device's resources, which have not yet been set up.
924 	 */
925 	case BUS_NOTIFY_DEL_DEVICE:
926 		eeh_remove_device(to_pci_dev(dev));
927 		break;
928 	default:
929 		break;
930 	}
931 	return NOTIFY_DONE;
932 }
933 
934 static struct notifier_block eeh_device_nb = {
935 	.notifier_call = eeh_device_notifier,
936 };
937 
938 /**
939  * eeh_init - System wide EEH initialization
940  *
941  * It's the platform's job to call this from an arch_initcall().
942  */
943 int eeh_init(struct eeh_ops *ops)
944 {
945 	struct pci_controller *hose, *tmp;
946 	int ret = 0;
947 
948 	/* the platform should only initialise EEH once */
949 	if (WARN_ON(eeh_ops))
950 		return -EEXIST;
951 	if (WARN_ON(!ops))
952 		return -ENOENT;
953 	eeh_ops = ops;
954 
955 	/* Register reboot notifier */
956 	ret = register_reboot_notifier(&eeh_reboot_nb);
957 	if (ret) {
958 		pr_warn("%s: Failed to register reboot notifier (%d)\n",
959 			__func__, ret);
960 		return ret;
961 	}
962 
963 	ret = bus_register_notifier(&pci_bus_type, &eeh_device_nb);
964 	if (ret) {
965 		pr_warn("%s: Failed to register bus notifier (%d)\n",
966 			__func__, ret);
967 		return ret;
968 	}
969 
970 	/* Initialize PHB PEs */
971 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
972 		eeh_phb_pe_create(hose);
973 
974 	eeh_addr_cache_init();
975 
976 	/* Initialize EEH event */
977 	return eeh_event_init();
978 }
979 
980 /**
981  * eeh_probe_device() - Perform EEH initialization for the indicated pci device
982  * @dev: pci device for which to set up EEH
983  *
984  * This routine must be used to complete EEH initialization for PCI
985  * devices that were added after system boot (e.g. hotplug, dlpar).
986  */
987 void eeh_probe_device(struct pci_dev *dev)
988 {
989 	struct eeh_dev *edev;
990 
991 	pr_debug("EEH: Adding device %s\n", pci_name(dev));
992 
993 	/*
994 	 * pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was
995 	 * already called for this device.
996 	 */
997 	if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev))) {
998 		pci_dbg(dev, "Already bound to an eeh_dev!\n");
999 		return;
1000 	}
1001 
1002 	edev = eeh_ops->probe(dev);
1003 	if (!edev) {
1004 		pr_debug("EEH: Adding device failed\n");
1005 		return;
1006 	}
1007 
1008 	/*
1009 	 * FIXME: We rely on pcibios_release_device() to remove the
1010 	 * existing EEH state. The release function is only called if
1011 	 * the pci_dev's refcount drops to zero so if something is
1012 	 * keeping a ref to a device (e.g. a filesystem) we need to
1013 	 * remove the old EEH state.
1014 	 *
1015 	 * FIXME: HEY MA, LOOK AT ME, NO LOCKING!
1016 	 */
1017 	if (edev->pdev && edev->pdev != dev) {
1018 		eeh_pe_tree_remove(edev);
1019 		eeh_addr_cache_rmv_dev(edev->pdev);
1020 		eeh_sysfs_remove_device(edev->pdev);
1021 
1022 		/*
1023 		 * We definitely should have the PCI device removed
1024 		 * though it wasn't correctly. So we needn't call
1025 		 * into error handler afterwards.
1026 		 */
1027 		edev->mode |= EEH_DEV_NO_HANDLER;
1028 	}
1029 
1030 	/* bind the pdev and the edev together */
1031 	edev->pdev = dev;
1032 	dev->dev.archdata.edev = edev;
1033 	eeh_addr_cache_insert_dev(dev);
1034 	eeh_sysfs_add_device(dev);
1035 }
1036 
1037 /**
1038  * eeh_remove_device - Undo EEH setup for the indicated pci device
1039  * @dev: pci device to be removed
1040  *
1041  * This routine should be called when a device is removed from
1042  * a running system (e.g. by hotplug or dlpar).  It unregisters
1043  * the PCI device from the EEH subsystem.  I/O errors affecting
1044  * this device will no longer be detected after this call; thus,
1045  * i/o errors affecting this slot may leave this device unusable.
1046  */
1047 void eeh_remove_device(struct pci_dev *dev)
1048 {
1049 	struct eeh_dev *edev;
1050 
1051 	if (!dev || !eeh_enabled())
1052 		return;
1053 	edev = pci_dev_to_eeh_dev(dev);
1054 
1055 	/* Unregister the device with the EEH/PCI address search system */
1056 	dev_dbg(&dev->dev, "EEH: Removing device\n");
1057 
1058 	if (!edev || !edev->pdev || !edev->pe) {
1059 		dev_dbg(&dev->dev, "EEH: Device not referenced!\n");
1060 		return;
1061 	}
1062 
1063 	/*
1064 	 * During the hotplug for EEH error recovery, we need the EEH
1065 	 * device attached to the parent PE in order for BAR restore
1066 	 * a bit later. So we keep it for BAR restore and remove it
1067 	 * from the parent PE during the BAR resotre.
1068 	 */
1069 	edev->pdev = NULL;
1070 
1071 	/*
1072 	 * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
1073 	 * remove the sysfs files before clearing dev.archdata.edev
1074 	 */
1075 	if (edev->mode & EEH_DEV_SYSFS)
1076 		eeh_sysfs_remove_device(dev);
1077 
1078 	/*
1079 	 * We're removing from the PCI subsystem, that means
1080 	 * the PCI device driver can't support EEH or not
1081 	 * well. So we rely on hotplug completely to do recovery
1082 	 * for the specific PCI device.
1083 	 */
1084 	edev->mode |= EEH_DEV_NO_HANDLER;
1085 
1086 	eeh_addr_cache_rmv_dev(dev);
1087 
1088 	/*
1089 	 * The flag "in_error" is used to trace EEH devices for VFs
1090 	 * in error state or not. It's set in eeh_report_error(). If
1091 	 * it's not set, eeh_report_{reset,resume}() won't be called
1092 	 * for the VF EEH device.
1093 	 */
1094 	edev->in_error = false;
1095 	dev->dev.archdata.edev = NULL;
1096 	if (!(edev->pe->state & EEH_PE_KEEP))
1097 		eeh_pe_tree_remove(edev);
1098 	else
1099 		edev->mode |= EEH_DEV_DISCONNECTED;
1100 }
1101 
1102 int eeh_unfreeze_pe(struct eeh_pe *pe)
1103 {
1104 	int ret;
1105 
1106 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1107 	if (ret) {
1108 		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1109 			__func__, ret, pe->phb->global_number, pe->addr);
1110 		return ret;
1111 	}
1112 
1113 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1114 	if (ret) {
1115 		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1116 			__func__, ret, pe->phb->global_number, pe->addr);
1117 		return ret;
1118 	}
1119 
1120 	return ret;
1121 }
1122 
1123 
1124 static struct pci_device_id eeh_reset_ids[] = {
1125 	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1126 	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1127 	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1128 	{ 0 }
1129 };
1130 
1131 static int eeh_pe_change_owner(struct eeh_pe *pe)
1132 {
1133 	struct eeh_dev *edev, *tmp;
1134 	struct pci_dev *pdev;
1135 	struct pci_device_id *id;
1136 	int ret;
1137 
1138 	/* Check PE state */
1139 	ret = eeh_ops->get_state(pe, NULL);
1140 	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1141 		return 0;
1142 
1143 	/* Unfrozen PE, nothing to do */
1144 	if (eeh_state_active(ret))
1145 		return 0;
1146 
1147 	/* Frozen PE, check if it needs PE level reset */
1148 	eeh_pe_for_each_dev(pe, edev, tmp) {
1149 		pdev = eeh_dev_to_pci_dev(edev);
1150 		if (!pdev)
1151 			continue;
1152 
1153 		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1154 			if (id->vendor != PCI_ANY_ID &&
1155 			    id->vendor != pdev->vendor)
1156 				continue;
1157 			if (id->device != PCI_ANY_ID &&
1158 			    id->device != pdev->device)
1159 				continue;
1160 			if (id->subvendor != PCI_ANY_ID &&
1161 			    id->subvendor != pdev->subsystem_vendor)
1162 				continue;
1163 			if (id->subdevice != PCI_ANY_ID &&
1164 			    id->subdevice != pdev->subsystem_device)
1165 				continue;
1166 
1167 			return eeh_pe_reset_and_recover(pe);
1168 		}
1169 	}
1170 
1171 	ret = eeh_unfreeze_pe(pe);
1172 	if (!ret)
1173 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1174 	return ret;
1175 }
1176 
1177 /**
1178  * eeh_dev_open - Increase count of pass through devices for PE
1179  * @pdev: PCI device
1180  *
1181  * Increase count of passed through devices for the indicated
1182  * PE. In the result, the EEH errors detected on the PE won't be
1183  * reported. The PE owner will be responsible for detection
1184  * and recovery.
1185  */
1186 int eeh_dev_open(struct pci_dev *pdev)
1187 {
1188 	struct eeh_dev *edev;
1189 	int ret = -ENODEV;
1190 
1191 	mutex_lock(&eeh_dev_mutex);
1192 
1193 	/* No PCI device ? */
1194 	if (!pdev)
1195 		goto out;
1196 
1197 	/* No EEH device or PE ? */
1198 	edev = pci_dev_to_eeh_dev(pdev);
1199 	if (!edev || !edev->pe)
1200 		goto out;
1201 
1202 	/*
1203 	 * The PE might have been put into frozen state, but we
1204 	 * didn't detect that yet. The passed through PCI devices
1205 	 * in frozen PE won't work properly. Clear the frozen state
1206 	 * in advance.
1207 	 */
1208 	ret = eeh_pe_change_owner(edev->pe);
1209 	if (ret)
1210 		goto out;
1211 
1212 	/* Increase PE's pass through count */
1213 	atomic_inc(&edev->pe->pass_dev_cnt);
1214 	mutex_unlock(&eeh_dev_mutex);
1215 
1216 	return 0;
1217 out:
1218 	mutex_unlock(&eeh_dev_mutex);
1219 	return ret;
1220 }
1221 EXPORT_SYMBOL_GPL(eeh_dev_open);
1222 
1223 /**
1224  * eeh_dev_release - Decrease count of pass through devices for PE
1225  * @pdev: PCI device
1226  *
1227  * Decrease count of pass through devices for the indicated PE. If
1228  * there is no passed through device in PE, the EEH errors detected
1229  * on the PE will be reported and handled as usual.
1230  */
1231 void eeh_dev_release(struct pci_dev *pdev)
1232 {
1233 	struct eeh_dev *edev;
1234 
1235 	mutex_lock(&eeh_dev_mutex);
1236 
1237 	/* No PCI device ? */
1238 	if (!pdev)
1239 		goto out;
1240 
1241 	/* No EEH device ? */
1242 	edev = pci_dev_to_eeh_dev(pdev);
1243 	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1244 		goto out;
1245 
1246 	/* Decrease PE's pass through count */
1247 	WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1248 	eeh_pe_change_owner(edev->pe);
1249 out:
1250 	mutex_unlock(&eeh_dev_mutex);
1251 }
1252 EXPORT_SYMBOL(eeh_dev_release);
1253 
1254 #ifdef CONFIG_IOMMU_API
1255 
1256 static int dev_has_iommu_table(struct device *dev, void *data)
1257 {
1258 	struct pci_dev *pdev = to_pci_dev(dev);
1259 	struct pci_dev **ppdev = data;
1260 
1261 	if (!dev)
1262 		return 0;
1263 
1264 	if (device_iommu_mapped(dev)) {
1265 		*ppdev = pdev;
1266 		return 1;
1267 	}
1268 
1269 	return 0;
1270 }
1271 
1272 /**
1273  * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1274  * @group: IOMMU group
1275  *
1276  * The routine is called to convert IOMMU group to EEH PE.
1277  */
1278 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1279 {
1280 	struct pci_dev *pdev = NULL;
1281 	struct eeh_dev *edev;
1282 	int ret;
1283 
1284 	/* No IOMMU group ? */
1285 	if (!group)
1286 		return NULL;
1287 
1288 	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1289 	if (!ret || !pdev)
1290 		return NULL;
1291 
1292 	/* No EEH device or PE ? */
1293 	edev = pci_dev_to_eeh_dev(pdev);
1294 	if (!edev || !edev->pe)
1295 		return NULL;
1296 
1297 	return edev->pe;
1298 }
1299 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1300 
1301 #endif /* CONFIG_IOMMU_API */
1302 
1303 /**
1304  * eeh_pe_set_option - Set options for the indicated PE
1305  * @pe: EEH PE
1306  * @option: requested option
1307  *
1308  * The routine is called to enable or disable EEH functionality
1309  * on the indicated PE, to enable IO or DMA for the frozen PE.
1310  */
1311 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1312 {
1313 	int ret = 0;
1314 
1315 	/* Invalid PE ? */
1316 	if (!pe)
1317 		return -ENODEV;
1318 
1319 	/*
1320 	 * EEH functionality could possibly be disabled, just
1321 	 * return error for the case. And the EEH functinality
1322 	 * isn't expected to be disabled on one specific PE.
1323 	 */
1324 	switch (option) {
1325 	case EEH_OPT_ENABLE:
1326 		if (eeh_enabled()) {
1327 			ret = eeh_pe_change_owner(pe);
1328 			break;
1329 		}
1330 		ret = -EIO;
1331 		break;
1332 	case EEH_OPT_DISABLE:
1333 		break;
1334 	case EEH_OPT_THAW_MMIO:
1335 	case EEH_OPT_THAW_DMA:
1336 	case EEH_OPT_FREEZE_PE:
1337 		if (!eeh_ops || !eeh_ops->set_option) {
1338 			ret = -ENOENT;
1339 			break;
1340 		}
1341 
1342 		ret = eeh_pci_enable(pe, option);
1343 		break;
1344 	default:
1345 		pr_debug("%s: Option %d out of range (%d, %d)\n",
1346 			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1347 		ret = -EINVAL;
1348 	}
1349 
1350 	return ret;
1351 }
1352 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1353 
1354 /**
1355  * eeh_pe_get_state - Retrieve PE's state
1356  * @pe: EEH PE
1357  *
1358  * Retrieve the PE's state, which includes 3 aspects: enabled
1359  * DMA, enabled IO and asserted reset.
1360  */
1361 int eeh_pe_get_state(struct eeh_pe *pe)
1362 {
1363 	int result, ret = 0;
1364 	bool rst_active, dma_en, mmio_en;
1365 
1366 	/* Existing PE ? */
1367 	if (!pe)
1368 		return -ENODEV;
1369 
1370 	if (!eeh_ops || !eeh_ops->get_state)
1371 		return -ENOENT;
1372 
1373 	/*
1374 	 * If the parent PE is owned by the host kernel and is undergoing
1375 	 * error recovery, we should return the PE state as temporarily
1376 	 * unavailable so that the error recovery on the guest is suspended
1377 	 * until the recovery completes on the host.
1378 	 */
1379 	if (pe->parent &&
1380 	    !(pe->state & EEH_PE_REMOVED) &&
1381 	    (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1382 		return EEH_PE_STATE_UNAVAIL;
1383 
1384 	result = eeh_ops->get_state(pe, NULL);
1385 	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1386 	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1387 	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1388 
1389 	if (rst_active)
1390 		ret = EEH_PE_STATE_RESET;
1391 	else if (dma_en && mmio_en)
1392 		ret = EEH_PE_STATE_NORMAL;
1393 	else if (!dma_en && !mmio_en)
1394 		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1395 	else if (!dma_en && mmio_en)
1396 		ret = EEH_PE_STATE_STOPPED_DMA;
1397 	else
1398 		ret = EEH_PE_STATE_UNAVAIL;
1399 
1400 	return ret;
1401 }
1402 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1403 
1404 static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1405 {
1406 	struct eeh_dev *edev, *tmp;
1407 	struct pci_dev *pdev;
1408 	int ret = 0;
1409 
1410 	eeh_pe_restore_bars(pe);
1411 
1412 	/*
1413 	 * Reenable PCI devices as the devices passed
1414 	 * through are always enabled before the reset.
1415 	 */
1416 	eeh_pe_for_each_dev(pe, edev, tmp) {
1417 		pdev = eeh_dev_to_pci_dev(edev);
1418 		if (!pdev)
1419 			continue;
1420 
1421 		ret = pci_reenable_device(pdev);
1422 		if (ret) {
1423 			pr_warn("%s: Failure %d reenabling %s\n",
1424 				__func__, ret, pci_name(pdev));
1425 			return ret;
1426 		}
1427 	}
1428 
1429 	/* The PE is still in frozen state */
1430 	if (include_passed || !eeh_pe_passed(pe)) {
1431 		ret = eeh_unfreeze_pe(pe);
1432 	} else
1433 		pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1434 			pe->phb->global_number, pe->addr);
1435 	if (!ret)
1436 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1437 	return ret;
1438 }
1439 
1440 
1441 /**
1442  * eeh_pe_reset - Issue PE reset according to specified type
1443  * @pe: EEH PE
1444  * @option: reset type
1445  *
1446  * The routine is called to reset the specified PE with the
1447  * indicated type, either fundamental reset or hot reset.
1448  * PE reset is the most important part for error recovery.
1449  */
1450 int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1451 {
1452 	int ret = 0;
1453 
1454 	/* Invalid PE ? */
1455 	if (!pe)
1456 		return -ENODEV;
1457 
1458 	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1459 		return -ENOENT;
1460 
1461 	switch (option) {
1462 	case EEH_RESET_DEACTIVATE:
1463 		ret = eeh_ops->reset(pe, option);
1464 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1465 		if (ret)
1466 			break;
1467 
1468 		ret = eeh_pe_reenable_devices(pe, include_passed);
1469 		break;
1470 	case EEH_RESET_HOT:
1471 	case EEH_RESET_FUNDAMENTAL:
1472 		/*
1473 		 * Proactively freeze the PE to drop all MMIO access
1474 		 * during reset, which should be banned as it's always
1475 		 * cause recursive EEH error.
1476 		 */
1477 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1478 
1479 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1480 		ret = eeh_ops->reset(pe, option);
1481 		break;
1482 	default:
1483 		pr_debug("%s: Unsupported option %d\n",
1484 			__func__, option);
1485 		ret = -EINVAL;
1486 	}
1487 
1488 	return ret;
1489 }
1490 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1491 
1492 /**
1493  * eeh_pe_configure - Configure PCI bridges after PE reset
1494  * @pe: EEH PE
1495  *
1496  * The routine is called to restore the PCI config space for
1497  * those PCI devices, especially PCI bridges affected by PE
1498  * reset issued previously.
1499  */
1500 int eeh_pe_configure(struct eeh_pe *pe)
1501 {
1502 	int ret = 0;
1503 
1504 	/* Invalid PE ? */
1505 	if (!pe)
1506 		return -ENODEV;
1507 
1508 	return ret;
1509 }
1510 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1511 
1512 /**
1513  * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1514  * @pe: the indicated PE
1515  * @type: error type
1516  * @function: error function
1517  * @addr: address
1518  * @mask: address mask
1519  *
1520  * The routine is called to inject the specified PCI error, which
1521  * is determined by @type and @function, to the indicated PE for
1522  * testing purpose.
1523  */
1524 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1525 		      unsigned long addr, unsigned long mask)
1526 {
1527 	/* Invalid PE ? */
1528 	if (!pe)
1529 		return -ENODEV;
1530 
1531 	/* Unsupported operation ? */
1532 	if (!eeh_ops || !eeh_ops->err_inject)
1533 		return -ENOENT;
1534 
1535 	/* Check on PCI error type */
1536 	if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1537 		return -EINVAL;
1538 
1539 	/* Check on PCI error function */
1540 	if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1541 		return -EINVAL;
1542 
1543 	return eeh_ops->err_inject(pe, type, func, addr, mask);
1544 }
1545 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1546 
1547 #ifdef CONFIG_PROC_FS
1548 static int proc_eeh_show(struct seq_file *m, void *v)
1549 {
1550 	if (!eeh_enabled()) {
1551 		seq_printf(m, "EEH Subsystem is globally disabled\n");
1552 		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1553 	} else {
1554 		seq_printf(m, "EEH Subsystem is enabled\n");
1555 		seq_printf(m,
1556 				"no device=%llu\n"
1557 				"no device node=%llu\n"
1558 				"no config address=%llu\n"
1559 				"check not wanted=%llu\n"
1560 				"eeh_total_mmio_ffs=%llu\n"
1561 				"eeh_false_positives=%llu\n"
1562 				"eeh_slot_resets=%llu\n",
1563 				eeh_stats.no_device,
1564 				eeh_stats.no_dn,
1565 				eeh_stats.no_cfg_addr,
1566 				eeh_stats.ignored_check,
1567 				eeh_stats.total_mmio_ffs,
1568 				eeh_stats.false_positives,
1569 				eeh_stats.slot_resets);
1570 	}
1571 
1572 	return 0;
1573 }
1574 #endif /* CONFIG_PROC_FS */
1575 
1576 #ifdef CONFIG_DEBUG_FS
1577 
1578 
1579 static struct pci_dev *eeh_debug_lookup_pdev(struct file *filp,
1580 					     const char __user *user_buf,
1581 					     size_t count, loff_t *ppos)
1582 {
1583 	uint32_t domain, bus, dev, fn;
1584 	struct pci_dev *pdev;
1585 	char buf[20];
1586 	int ret;
1587 
1588 	memset(buf, 0, sizeof(buf));
1589 	ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1590 	if (!ret)
1591 		return ERR_PTR(-EFAULT);
1592 
1593 	ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1594 	if (ret != 4) {
1595 		pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1596 		return ERR_PTR(-EINVAL);
1597 	}
1598 
1599 	pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1600 	if (!pdev)
1601 		return ERR_PTR(-ENODEV);
1602 
1603 	return pdev;
1604 }
1605 
1606 static int eeh_enable_dbgfs_set(void *data, u64 val)
1607 {
1608 	if (val)
1609 		eeh_clear_flag(EEH_FORCE_DISABLED);
1610 	else
1611 		eeh_add_flag(EEH_FORCE_DISABLED);
1612 
1613 	return 0;
1614 }
1615 
1616 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1617 {
1618 	if (eeh_enabled())
1619 		*val = 0x1ul;
1620 	else
1621 		*val = 0x0ul;
1622 	return 0;
1623 }
1624 
1625 DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1626 			 eeh_enable_dbgfs_set, "0x%llx\n");
1627 
1628 static ssize_t eeh_force_recover_write(struct file *filp,
1629 				const char __user *user_buf,
1630 				size_t count, loff_t *ppos)
1631 {
1632 	struct pci_controller *hose;
1633 	uint32_t phbid, pe_no;
1634 	struct eeh_pe *pe;
1635 	char buf[20];
1636 	int ret;
1637 
1638 	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1639 	if (!ret)
1640 		return -EFAULT;
1641 
1642 	/*
1643 	 * When PE is NULL the event is a "special" event. Rather than
1644 	 * recovering a specific PE it forces the EEH core to scan for failed
1645 	 * PHBs and recovers each. This needs to be done before any device
1646 	 * recoveries can occur.
1647 	 */
1648 	if (!strncmp(buf, "hwcheck", 7)) {
1649 		__eeh_send_failure_event(NULL);
1650 		return count;
1651 	}
1652 
1653 	ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1654 	if (ret != 2)
1655 		return -EINVAL;
1656 
1657 	hose = pci_find_controller_for_domain(phbid);
1658 	if (!hose)
1659 		return -ENODEV;
1660 
1661 	/* Retrieve PE */
1662 	pe = eeh_pe_get(hose, pe_no);
1663 	if (!pe)
1664 		return -ENODEV;
1665 
1666 	/*
1667 	 * We don't do any state checking here since the detection
1668 	 * process is async to the recovery process. The recovery
1669 	 * thread *should* not break even if we schedule a recovery
1670 	 * from an odd state (e.g. PE removed, or recovery of a
1671 	 * non-isolated PE)
1672 	 */
1673 	__eeh_send_failure_event(pe);
1674 
1675 	return ret < 0 ? ret : count;
1676 }
1677 
1678 static const struct file_operations eeh_force_recover_fops = {
1679 	.open	= simple_open,
1680 	.llseek	= no_llseek,
1681 	.write	= eeh_force_recover_write,
1682 };
1683 
1684 static ssize_t eeh_debugfs_dev_usage(struct file *filp,
1685 				char __user *user_buf,
1686 				size_t count, loff_t *ppos)
1687 {
1688 	static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
1689 
1690 	return simple_read_from_buffer(user_buf, count, ppos,
1691 				       usage, sizeof(usage) - 1);
1692 }
1693 
1694 static ssize_t eeh_dev_check_write(struct file *filp,
1695 				const char __user *user_buf,
1696 				size_t count, loff_t *ppos)
1697 {
1698 	struct pci_dev *pdev;
1699 	struct eeh_dev *edev;
1700 	int ret;
1701 
1702 	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1703 	if (IS_ERR(pdev))
1704 		return PTR_ERR(pdev);
1705 
1706 	edev = pci_dev_to_eeh_dev(pdev);
1707 	if (!edev) {
1708 		pci_err(pdev, "No eeh_dev for this device!\n");
1709 		pci_dev_put(pdev);
1710 		return -ENODEV;
1711 	}
1712 
1713 	ret = eeh_dev_check_failure(edev);
1714 	pci_info(pdev, "eeh_dev_check_failure(%s) = %d\n",
1715 			pci_name(pdev), ret);
1716 
1717 	pci_dev_put(pdev);
1718 
1719 	return count;
1720 }
1721 
1722 static const struct file_operations eeh_dev_check_fops = {
1723 	.open	= simple_open,
1724 	.llseek	= no_llseek,
1725 	.write	= eeh_dev_check_write,
1726 	.read   = eeh_debugfs_dev_usage,
1727 };
1728 
1729 static int eeh_debugfs_break_device(struct pci_dev *pdev)
1730 {
1731 	struct resource *bar = NULL;
1732 	void __iomem *mapped;
1733 	u16 old, bit;
1734 	int i, pos;
1735 
1736 	/* Do we have an MMIO BAR to disable? */
1737 	for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
1738 		struct resource *r = &pdev->resource[i];
1739 
1740 		if (!r->flags || !r->start)
1741 			continue;
1742 		if (r->flags & IORESOURCE_IO)
1743 			continue;
1744 		if (r->flags & IORESOURCE_UNSET)
1745 			continue;
1746 
1747 		bar = r;
1748 		break;
1749 	}
1750 
1751 	if (!bar) {
1752 		pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n");
1753 		return -ENXIO;
1754 	}
1755 
1756 	pci_err(pdev, "Going to break: %pR\n", bar);
1757 
1758 	if (pdev->is_virtfn) {
1759 #ifndef CONFIG_PCI_IOV
1760 		return -ENXIO;
1761 #else
1762 		/*
1763 		 * VFs don't have a per-function COMMAND register, so the best
1764 		 * we can do is clear the Memory Space Enable bit in the PF's
1765 		 * SRIOV control reg.
1766 		 *
1767 		 * Unfortunately, this requires that we have a PF (i.e doesn't
1768 		 * work for a passed-through VF) and it has the potential side
1769 		 * effect of also causing an EEH on every other VF under the
1770 		 * PF. Oh well.
1771 		 */
1772 		pdev = pdev->physfn;
1773 		if (!pdev)
1774 			return -ENXIO; /* passed through VFs have no PF */
1775 
1776 		pos  = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1777 		pos += PCI_SRIOV_CTRL;
1778 		bit  = PCI_SRIOV_CTRL_MSE;
1779 #endif /* !CONFIG_PCI_IOV */
1780 	} else {
1781 		bit = PCI_COMMAND_MEMORY;
1782 		pos = PCI_COMMAND;
1783 	}
1784 
1785 	/*
1786 	 * Process here is:
1787 	 *
1788 	 * 1. Disable Memory space.
1789 	 *
1790 	 * 2. Perform an MMIO to the device. This should result in an error
1791 	 *    (CA  / UR) being raised by the device which results in an EEH
1792 	 *    PE freeze. Using the in_8() accessor skips the eeh detection hook
1793 	 *    so the freeze hook so the EEH Detection machinery won't be
1794 	 *    triggered here. This is to match the usual behaviour of EEH
1795 	 *    where the HW will asyncronously freeze a PE and it's up to
1796 	 *    the kernel to notice and deal with it.
1797 	 *
1798 	 * 3. Turn Memory space back on. This is more important for VFs
1799 	 *    since recovery will probably fail if we don't. For normal
1800 	 *    the COMMAND register is reset as a part of re-initialising
1801 	 *    the device.
1802 	 *
1803 	 * Breaking stuff is the point so who cares if it's racy ;)
1804 	 */
1805 	pci_read_config_word(pdev, pos, &old);
1806 
1807 	mapped = ioremap(bar->start, PAGE_SIZE);
1808 	if (!mapped) {
1809 		pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar);
1810 		return -ENXIO;
1811 	}
1812 
1813 	pci_write_config_word(pdev, pos, old & ~bit);
1814 	in_8(mapped);
1815 	pci_write_config_word(pdev, pos, old);
1816 
1817 	iounmap(mapped);
1818 
1819 	return 0;
1820 }
1821 
1822 static ssize_t eeh_dev_break_write(struct file *filp,
1823 				const char __user *user_buf,
1824 				size_t count, loff_t *ppos)
1825 {
1826 	struct pci_dev *pdev;
1827 	int ret;
1828 
1829 	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1830 	if (IS_ERR(pdev))
1831 		return PTR_ERR(pdev);
1832 
1833 	ret = eeh_debugfs_break_device(pdev);
1834 	pci_dev_put(pdev);
1835 
1836 	if (ret < 0)
1837 		return ret;
1838 
1839 	return count;
1840 }
1841 
1842 static const struct file_operations eeh_dev_break_fops = {
1843 	.open	= simple_open,
1844 	.llseek	= no_llseek,
1845 	.write	= eeh_dev_break_write,
1846 	.read   = eeh_debugfs_dev_usage,
1847 };
1848 
1849 static ssize_t eeh_dev_can_recover(struct file *filp,
1850 				   const char __user *user_buf,
1851 				   size_t count, loff_t *ppos)
1852 {
1853 	struct pci_driver *drv;
1854 	struct pci_dev *pdev;
1855 	size_t ret;
1856 
1857 	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1858 	if (IS_ERR(pdev))
1859 		return PTR_ERR(pdev);
1860 
1861 	/*
1862 	 * In order for error recovery to work the driver needs to implement
1863 	 * .error_detected(), so it can quiesce IO to the device, and
1864 	 * .slot_reset() so it can re-initialise the device after a reset.
1865 	 *
1866 	 * Ideally they'd implement .resume() too, but some drivers which
1867 	 * we need to support (notably IPR) don't so I guess we can tolerate
1868 	 * that.
1869 	 *
1870 	 * .mmio_enabled() is mostly there as a work-around for devices which
1871 	 * take forever to re-init after a hot reset. Implementing that is
1872 	 * strictly optional.
1873 	 */
1874 	drv = pci_dev_driver(pdev);
1875 	if (drv &&
1876 	    drv->err_handler &&
1877 	    drv->err_handler->error_detected &&
1878 	    drv->err_handler->slot_reset) {
1879 		ret = count;
1880 	} else {
1881 		ret = -EOPNOTSUPP;
1882 	}
1883 
1884 	pci_dev_put(pdev);
1885 
1886 	return ret;
1887 }
1888 
1889 static const struct file_operations eeh_dev_can_recover_fops = {
1890 	.open	= simple_open,
1891 	.llseek	= no_llseek,
1892 	.write	= eeh_dev_can_recover,
1893 	.read   = eeh_debugfs_dev_usage,
1894 };
1895 
1896 #endif
1897 
1898 static int __init eeh_init_proc(void)
1899 {
1900 	if (machine_is(pseries) || machine_is(powernv)) {
1901 		proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1902 #ifdef CONFIG_DEBUG_FS
1903 		debugfs_create_file_unsafe("eeh_enable", 0600,
1904 					   arch_debugfs_dir, NULL,
1905 					   &eeh_enable_dbgfs_ops);
1906 		debugfs_create_u32("eeh_max_freezes", 0600,
1907 				arch_debugfs_dir, &eeh_max_freezes);
1908 		debugfs_create_bool("eeh_disable_recovery", 0600,
1909 				arch_debugfs_dir,
1910 				&eeh_debugfs_no_recover);
1911 		debugfs_create_file_unsafe("eeh_dev_check", 0600,
1912 				arch_debugfs_dir, NULL,
1913 				&eeh_dev_check_fops);
1914 		debugfs_create_file_unsafe("eeh_dev_break", 0600,
1915 				arch_debugfs_dir, NULL,
1916 				&eeh_dev_break_fops);
1917 		debugfs_create_file_unsafe("eeh_force_recover", 0600,
1918 				arch_debugfs_dir, NULL,
1919 				&eeh_force_recover_fops);
1920 		debugfs_create_file_unsafe("eeh_dev_can_recover", 0600,
1921 				arch_debugfs_dir, NULL,
1922 				&eeh_dev_can_recover_fops);
1923 		eeh_cache_debugfs_init();
1924 #endif
1925 	}
1926 
1927 	return 0;
1928 }
1929 __initcall(eeh_init_proc);
1930