xref: /openbmc/linux/arch/powerpc/kernel/eeh.c (revision 6a613ac6)
1 /*
2  * Copyright IBM Corporation 2001, 2005, 2006
3  * Copyright Dave Engebretsen & Todd Inglett 2001
4  * Copyright Linas Vepstas 2005, 2006
5  * Copyright 2001-2012 IBM Corporation.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/debugfs.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/pci.h>
30 #include <linux/iommu.h>
31 #include <linux/proc_fs.h>
32 #include <linux/rbtree.h>
33 #include <linux/reboot.h>
34 #include <linux/seq_file.h>
35 #include <linux/spinlock.h>
36 #include <linux/export.h>
37 #include <linux/of.h>
38 
39 #include <linux/atomic.h>
40 #include <asm/debug.h>
41 #include <asm/eeh.h>
42 #include <asm/eeh_event.h>
43 #include <asm/io.h>
44 #include <asm/iommu.h>
45 #include <asm/machdep.h>
46 #include <asm/ppc-pci.h>
47 #include <asm/rtas.h>
48 
49 
50 /** Overview:
51  *  EEH, or "Extended Error Handling" is a PCI bridge technology for
52  *  dealing with PCI bus errors that can't be dealt with within the
53  *  usual PCI framework, except by check-stopping the CPU.  Systems
54  *  that are designed for high-availability/reliability cannot afford
55  *  to crash due to a "mere" PCI error, thus the need for EEH.
56  *  An EEH-capable bridge operates by converting a detected error
57  *  into a "slot freeze", taking the PCI adapter off-line, making
58  *  the slot behave, from the OS'es point of view, as if the slot
59  *  were "empty": all reads return 0xff's and all writes are silently
60  *  ignored.  EEH slot isolation events can be triggered by parity
61  *  errors on the address or data busses (e.g. during posted writes),
62  *  which in turn might be caused by low voltage on the bus, dust,
63  *  vibration, humidity, radioactivity or plain-old failed hardware.
64  *
65  *  Note, however, that one of the leading causes of EEH slot
66  *  freeze events are buggy device drivers, buggy device microcode,
67  *  or buggy device hardware.  This is because any attempt by the
68  *  device to bus-master data to a memory address that is not
69  *  assigned to the device will trigger a slot freeze.   (The idea
70  *  is to prevent devices-gone-wild from corrupting system memory).
71  *  Buggy hardware/drivers will have a miserable time co-existing
72  *  with EEH.
73  *
74  *  Ideally, a PCI device driver, when suspecting that an isolation
75  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
76  *  whether this is the case, and then take appropriate steps to
77  *  reset the PCI slot, the PCI device, and then resume operations.
78  *  However, until that day,  the checking is done here, with the
79  *  eeh_check_failure() routine embedded in the MMIO macros.  If
80  *  the slot is found to be isolated, an "EEH Event" is synthesized
81  *  and sent out for processing.
82  */
83 
84 /* If a device driver keeps reading an MMIO register in an interrupt
85  * handler after a slot isolation event, it might be broken.
86  * This sets the threshold for how many read attempts we allow
87  * before printing an error message.
88  */
89 #define EEH_MAX_FAILS	2100000
90 
91 /* Time to wait for a PCI slot to report status, in milliseconds */
92 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
93 
94 /*
95  * EEH probe mode support, which is part of the flags,
96  * is to support multiple platforms for EEH. Some platforms
97  * like pSeries do PCI emunation based on device tree.
98  * However, other platforms like powernv probe PCI devices
99  * from hardware. The flag is used to distinguish that.
100  * In addition, struct eeh_ops::probe would be invoked for
101  * particular OF node or PCI device so that the corresponding
102  * PE would be created there.
103  */
104 int eeh_subsystem_flags;
105 EXPORT_SYMBOL(eeh_subsystem_flags);
106 
107 /*
108  * EEH allowed maximal frozen times. If one particular PE's
109  * frozen count in last hour exceeds this limit, the PE will
110  * be forced to be offline permanently.
111  */
112 int eeh_max_freezes = 5;
113 
114 /* Platform dependent EEH operations */
115 struct eeh_ops *eeh_ops = NULL;
116 
117 /* Lock to avoid races due to multiple reports of an error */
118 DEFINE_RAW_SPINLOCK(confirm_error_lock);
119 
120 /* Lock to protect passed flags */
121 static DEFINE_MUTEX(eeh_dev_mutex);
122 
123 /* Buffer for reporting pci register dumps. Its here in BSS, and
124  * not dynamically alloced, so that it ends up in RMO where RTAS
125  * can access it.
126  */
127 #define EEH_PCI_REGS_LOG_LEN 8192
128 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
129 
130 /*
131  * The struct is used to maintain the EEH global statistic
132  * information. Besides, the EEH global statistics will be
133  * exported to user space through procfs
134  */
135 struct eeh_stats {
136 	u64 no_device;		/* PCI device not found		*/
137 	u64 no_dn;		/* OF node not found		*/
138 	u64 no_cfg_addr;	/* Config address not found	*/
139 	u64 ignored_check;	/* EEH check skipped		*/
140 	u64 total_mmio_ffs;	/* Total EEH checks		*/
141 	u64 false_positives;	/* Unnecessary EEH checks	*/
142 	u64 slot_resets;	/* PE reset			*/
143 };
144 
145 static struct eeh_stats eeh_stats;
146 
147 static int __init eeh_setup(char *str)
148 {
149 	if (!strcmp(str, "off"))
150 		eeh_add_flag(EEH_FORCE_DISABLED);
151 	else if (!strcmp(str, "early_log"))
152 		eeh_add_flag(EEH_EARLY_DUMP_LOG);
153 
154 	return 1;
155 }
156 __setup("eeh=", eeh_setup);
157 
158 /*
159  * This routine captures assorted PCI configuration space data
160  * for the indicated PCI device, and puts them into a buffer
161  * for RTAS error logging.
162  */
163 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
164 {
165 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
166 	u32 cfg;
167 	int cap, i;
168 	int n = 0, l = 0;
169 	char buffer[128];
170 
171 	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x:%01x\n",
172 		       edev->phb->global_number, pdn->busno,
173 		       PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
174 	pr_warn("EEH: of node=%04x:%02x:%02x:%01x\n",
175 		edev->phb->global_number, pdn->busno,
176 		PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
177 
178 	eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
179 	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
180 	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
181 
182 	eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
183 	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
184 	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
185 
186 	/* Gather bridge-specific registers */
187 	if (edev->mode & EEH_DEV_BRIDGE) {
188 		eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
189 		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
190 		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
191 
192 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
193 		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
194 		pr_warn("EEH: Bridge control: %04x\n", cfg);
195 	}
196 
197 	/* Dump out the PCI-X command and status regs */
198 	cap = edev->pcix_cap;
199 	if (cap) {
200 		eeh_ops->read_config(pdn, cap, 4, &cfg);
201 		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
202 		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
203 
204 		eeh_ops->read_config(pdn, cap+4, 4, &cfg);
205 		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
206 		pr_warn("EEH: PCI-X status: %08x\n", cfg);
207 	}
208 
209 	/* If PCI-E capable, dump PCI-E cap 10 */
210 	cap = edev->pcie_cap;
211 	if (cap) {
212 		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
213 		pr_warn("EEH: PCI-E capabilities and status follow:\n");
214 
215 		for (i=0; i<=8; i++) {
216 			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
217 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
218 
219 			if ((i % 4) == 0) {
220 				if (i != 0)
221 					pr_warn("%s\n", buffer);
222 
223 				l = scnprintf(buffer, sizeof(buffer),
224 					      "EEH: PCI-E %02x: %08x ",
225 					      4*i, cfg);
226 			} else {
227 				l += scnprintf(buffer+l, sizeof(buffer)-l,
228 					       "%08x ", cfg);
229 			}
230 
231 		}
232 
233 		pr_warn("%s\n", buffer);
234 	}
235 
236 	/* If AER capable, dump it */
237 	cap = edev->aer_cap;
238 	if (cap) {
239 		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
240 		pr_warn("EEH: PCI-E AER capability register set follows:\n");
241 
242 		for (i=0; i<=13; i++) {
243 			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
244 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
245 
246 			if ((i % 4) == 0) {
247 				if (i != 0)
248 					pr_warn("%s\n", buffer);
249 
250 				l = scnprintf(buffer, sizeof(buffer),
251 					      "EEH: PCI-E AER %02x: %08x ",
252 					      4*i, cfg);
253 			} else {
254 				l += scnprintf(buffer+l, sizeof(buffer)-l,
255 					       "%08x ", cfg);
256 			}
257 		}
258 
259 		pr_warn("%s\n", buffer);
260 	}
261 
262 	return n;
263 }
264 
265 static void *eeh_dump_pe_log(void *data, void *flag)
266 {
267 	struct eeh_pe *pe = data;
268 	struct eeh_dev *edev, *tmp;
269 	size_t *plen = flag;
270 
271 	/* If the PE's config space is blocked, 0xFF's will be
272 	 * returned. It's pointless to collect the log in this
273 	 * case.
274 	 */
275 	if (pe->state & EEH_PE_CFG_BLOCKED)
276 		return NULL;
277 
278 	eeh_pe_for_each_dev(pe, edev, tmp)
279 		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
280 					  EEH_PCI_REGS_LOG_LEN - *plen);
281 
282 	return NULL;
283 }
284 
285 /**
286  * eeh_slot_error_detail - Generate combined log including driver log and error log
287  * @pe: EEH PE
288  * @severity: temporary or permanent error log
289  *
290  * This routine should be called to generate the combined log, which
291  * is comprised of driver log and error log. The driver log is figured
292  * out from the config space of the corresponding PCI device, while
293  * the error log is fetched through platform dependent function call.
294  */
295 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
296 {
297 	size_t loglen = 0;
298 
299 	/*
300 	 * When the PHB is fenced or dead, it's pointless to collect
301 	 * the data from PCI config space because it should return
302 	 * 0xFF's. For ER, we still retrieve the data from the PCI
303 	 * config space.
304 	 *
305 	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
306 	 * 0xFF's is always returned from PCI config space.
307 	 */
308 	if (!(pe->type & EEH_PE_PHB)) {
309 		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG))
310 			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
311 
312 		/*
313 		 * The config space of some PCI devices can't be accessed
314 		 * when their PEs are in frozen state. Otherwise, fenced
315 		 * PHB might be seen. Those PEs are identified with flag
316 		 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
317 		 * is set automatically when the PE is put to EEH_PE_ISOLATED.
318 		 *
319 		 * Restoring BARs possibly triggers PCI config access in
320 		 * (OPAL) firmware and then causes fenced PHB. If the
321 		 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
322 		 * pointless to restore BARs and dump config space.
323 		 */
324 		eeh_ops->configure_bridge(pe);
325 		if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
326 			eeh_pe_restore_bars(pe);
327 
328 			pci_regs_buf[0] = 0;
329 			eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
330 		}
331 	}
332 
333 	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
334 }
335 
336 /**
337  * eeh_token_to_phys - Convert EEH address token to phys address
338  * @token: I/O token, should be address in the form 0xA....
339  *
340  * This routine should be called to convert virtual I/O address
341  * to physical one.
342  */
343 static inline unsigned long eeh_token_to_phys(unsigned long token)
344 {
345 	pte_t *ptep;
346 	unsigned long pa;
347 	int hugepage_shift;
348 
349 	/*
350 	 * We won't find hugepages here(this is iomem). Hence we are not
351 	 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
352 	 * page table free, because of init_mm.
353 	 */
354 	ptep = __find_linux_pte_or_hugepte(init_mm.pgd, token,
355 					   NULL, &hugepage_shift);
356 	if (!ptep)
357 		return token;
358 	WARN_ON(hugepage_shift);
359 	pa = pte_pfn(*ptep) << PAGE_SHIFT;
360 
361 	return pa | (token & (PAGE_SIZE-1));
362 }
363 
364 /*
365  * On PowerNV platform, we might already have fenced PHB there.
366  * For that case, it's meaningless to recover frozen PE. Intead,
367  * We have to handle fenced PHB firstly.
368  */
369 static int eeh_phb_check_failure(struct eeh_pe *pe)
370 {
371 	struct eeh_pe *phb_pe;
372 	unsigned long flags;
373 	int ret;
374 
375 	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
376 		return -EPERM;
377 
378 	/* Find the PHB PE */
379 	phb_pe = eeh_phb_pe_get(pe->phb);
380 	if (!phb_pe) {
381 		pr_warn("%s Can't find PE for PHB#%d\n",
382 			__func__, pe->phb->global_number);
383 		return -EEXIST;
384 	}
385 
386 	/* If the PHB has been in problematic state */
387 	eeh_serialize_lock(&flags);
388 	if (phb_pe->state & EEH_PE_ISOLATED) {
389 		ret = 0;
390 		goto out;
391 	}
392 
393 	/* Check PHB state */
394 	ret = eeh_ops->get_state(phb_pe, NULL);
395 	if ((ret < 0) ||
396 	    (ret == EEH_STATE_NOT_SUPPORT) ||
397 	    (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
398 	    (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
399 		ret = 0;
400 		goto out;
401 	}
402 
403 	/* Isolate the PHB and send event */
404 	eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
405 	eeh_serialize_unlock(flags);
406 
407 	pr_err("EEH: PHB#%x failure detected, location: %s\n",
408 		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
409 	dump_stack();
410 	eeh_send_failure_event(phb_pe);
411 
412 	return 1;
413 out:
414 	eeh_serialize_unlock(flags);
415 	return ret;
416 }
417 
418 /**
419  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
420  * @edev: eeh device
421  *
422  * Check for an EEH failure for the given device node.  Call this
423  * routine if the result of a read was all 0xff's and you want to
424  * find out if this is due to an EEH slot freeze.  This routine
425  * will query firmware for the EEH status.
426  *
427  * Returns 0 if there has not been an EEH error; otherwise returns
428  * a non-zero value and queues up a slot isolation event notification.
429  *
430  * It is safe to call this routine in an interrupt context.
431  */
432 int eeh_dev_check_failure(struct eeh_dev *edev)
433 {
434 	int ret;
435 	int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
436 	unsigned long flags;
437 	struct pci_dn *pdn;
438 	struct pci_dev *dev;
439 	struct eeh_pe *pe, *parent_pe, *phb_pe;
440 	int rc = 0;
441 	const char *location = NULL;
442 
443 	eeh_stats.total_mmio_ffs++;
444 
445 	if (!eeh_enabled())
446 		return 0;
447 
448 	if (!edev) {
449 		eeh_stats.no_dn++;
450 		return 0;
451 	}
452 	dev = eeh_dev_to_pci_dev(edev);
453 	pe = eeh_dev_to_pe(edev);
454 
455 	/* Access to IO BARs might get this far and still not want checking. */
456 	if (!pe) {
457 		eeh_stats.ignored_check++;
458 		pr_debug("EEH: Ignored check for %s\n",
459 			eeh_pci_name(dev));
460 		return 0;
461 	}
462 
463 	if (!pe->addr && !pe->config_addr) {
464 		eeh_stats.no_cfg_addr++;
465 		return 0;
466 	}
467 
468 	/*
469 	 * On PowerNV platform, we might already have fenced PHB
470 	 * there and we need take care of that firstly.
471 	 */
472 	ret = eeh_phb_check_failure(pe);
473 	if (ret > 0)
474 		return ret;
475 
476 	/*
477 	 * If the PE isn't owned by us, we shouldn't check the
478 	 * state. Instead, let the owner handle it if the PE has
479 	 * been frozen.
480 	 */
481 	if (eeh_pe_passed(pe))
482 		return 0;
483 
484 	/* If we already have a pending isolation event for this
485 	 * slot, we know it's bad already, we don't need to check.
486 	 * Do this checking under a lock; as multiple PCI devices
487 	 * in one slot might report errors simultaneously, and we
488 	 * only want one error recovery routine running.
489 	 */
490 	eeh_serialize_lock(&flags);
491 	rc = 1;
492 	if (pe->state & EEH_PE_ISOLATED) {
493 		pe->check_count++;
494 		if (pe->check_count % EEH_MAX_FAILS == 0) {
495 			pdn = eeh_dev_to_pdn(edev);
496 			if (pdn->node)
497 				location = of_get_property(pdn->node, "ibm,loc-code", NULL);
498 			printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
499 				"location=%s driver=%s pci addr=%s\n",
500 				pe->check_count,
501 				location ? location : "unknown",
502 				eeh_driver_name(dev), eeh_pci_name(dev));
503 			printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
504 				eeh_driver_name(dev));
505 			dump_stack();
506 		}
507 		goto dn_unlock;
508 	}
509 
510 	/*
511 	 * Now test for an EEH failure.  This is VERY expensive.
512 	 * Note that the eeh_config_addr may be a parent device
513 	 * in the case of a device behind a bridge, or it may be
514 	 * function zero of a multi-function device.
515 	 * In any case they must share a common PHB.
516 	 */
517 	ret = eeh_ops->get_state(pe, NULL);
518 
519 	/* Note that config-io to empty slots may fail;
520 	 * they are empty when they don't have children.
521 	 * We will punt with the following conditions: Failure to get
522 	 * PE's state, EEH not support and Permanently unavailable
523 	 * state, PE is in good state.
524 	 */
525 	if ((ret < 0) ||
526 	    (ret == EEH_STATE_NOT_SUPPORT) ||
527 	    ((ret & active_flags) == active_flags)) {
528 		eeh_stats.false_positives++;
529 		pe->false_positives++;
530 		rc = 0;
531 		goto dn_unlock;
532 	}
533 
534 	/*
535 	 * It should be corner case that the parent PE has been
536 	 * put into frozen state as well. We should take care
537 	 * that at first.
538 	 */
539 	parent_pe = pe->parent;
540 	while (parent_pe) {
541 		/* Hit the ceiling ? */
542 		if (parent_pe->type & EEH_PE_PHB)
543 			break;
544 
545 		/* Frozen parent PE ? */
546 		ret = eeh_ops->get_state(parent_pe, NULL);
547 		if (ret > 0 &&
548 		    (ret & active_flags) != active_flags)
549 			pe = parent_pe;
550 
551 		/* Next parent level */
552 		parent_pe = parent_pe->parent;
553 	}
554 
555 	eeh_stats.slot_resets++;
556 
557 	/* Avoid repeated reports of this failure, including problems
558 	 * with other functions on this device, and functions under
559 	 * bridges.
560 	 */
561 	eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
562 	eeh_serialize_unlock(flags);
563 
564 	/* Most EEH events are due to device driver bugs.  Having
565 	 * a stack trace will help the device-driver authors figure
566 	 * out what happened.  So print that out.
567 	 */
568 	phb_pe = eeh_phb_pe_get(pe->phb);
569 	pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
570 	       pe->phb->global_number, pe->addr);
571 	pr_err("EEH: PE location: %s, PHB location: %s\n",
572 	       eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
573 	dump_stack();
574 
575 	eeh_send_failure_event(pe);
576 
577 	return 1;
578 
579 dn_unlock:
580 	eeh_serialize_unlock(flags);
581 	return rc;
582 }
583 
584 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
585 
586 /**
587  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
588  * @token: I/O address
589  *
590  * Check for an EEH failure at the given I/O address. Call this
591  * routine if the result of a read was all 0xff's and you want to
592  * find out if this is due to an EEH slot freeze event. This routine
593  * will query firmware for the EEH status.
594  *
595  * Note this routine is safe to call in an interrupt context.
596  */
597 int eeh_check_failure(const volatile void __iomem *token)
598 {
599 	unsigned long addr;
600 	struct eeh_dev *edev;
601 
602 	/* Finding the phys addr + pci device; this is pretty quick. */
603 	addr = eeh_token_to_phys((unsigned long __force) token);
604 	edev = eeh_addr_cache_get_dev(addr);
605 	if (!edev) {
606 		eeh_stats.no_device++;
607 		return 0;
608 	}
609 
610 	return eeh_dev_check_failure(edev);
611 }
612 EXPORT_SYMBOL(eeh_check_failure);
613 
614 
615 /**
616  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
617  * @pe: EEH PE
618  *
619  * This routine should be called to reenable frozen MMIO or DMA
620  * so that it would work correctly again. It's useful while doing
621  * recovery or log collection on the indicated device.
622  */
623 int eeh_pci_enable(struct eeh_pe *pe, int function)
624 {
625 	int active_flag, rc;
626 
627 	/*
628 	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
629 	 * Also, it's pointless to enable them on unfrozen PE. So
630 	 * we have to check before enabling IO or DMA.
631 	 */
632 	switch (function) {
633 	case EEH_OPT_THAW_MMIO:
634 		active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
635 		break;
636 	case EEH_OPT_THAW_DMA:
637 		active_flag = EEH_STATE_DMA_ACTIVE;
638 		break;
639 	case EEH_OPT_DISABLE:
640 	case EEH_OPT_ENABLE:
641 	case EEH_OPT_FREEZE_PE:
642 		active_flag = 0;
643 		break;
644 	default:
645 		pr_warn("%s: Invalid function %d\n",
646 			__func__, function);
647 		return -EINVAL;
648 	}
649 
650 	/*
651 	 * Check if IO or DMA has been enabled before
652 	 * enabling them.
653 	 */
654 	if (active_flag) {
655 		rc = eeh_ops->get_state(pe, NULL);
656 		if (rc < 0)
657 			return rc;
658 
659 		/* Needn't enable it at all */
660 		if (rc == EEH_STATE_NOT_SUPPORT)
661 			return 0;
662 
663 		/* It's already enabled */
664 		if (rc & active_flag)
665 			return 0;
666 	}
667 
668 
669 	/* Issue the request */
670 	rc = eeh_ops->set_option(pe, function);
671 	if (rc)
672 		pr_warn("%s: Unexpected state change %d on "
673 			"PHB#%d-PE#%x, err=%d\n",
674 			__func__, function, pe->phb->global_number,
675 			pe->addr, rc);
676 
677 	/* Check if the request is finished successfully */
678 	if (active_flag) {
679 		rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
680 		if (rc <= 0)
681 			return rc;
682 
683 		if (rc & active_flag)
684 			return 0;
685 
686 		return -EIO;
687 	}
688 
689 	return rc;
690 }
691 
692 static void *eeh_disable_and_save_dev_state(void *data, void *userdata)
693 {
694 	struct eeh_dev *edev = data;
695 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
696 	struct pci_dev *dev = userdata;
697 
698 	/*
699 	 * The caller should have disabled and saved the
700 	 * state for the specified device
701 	 */
702 	if (!pdev || pdev == dev)
703 		return NULL;
704 
705 	/* Ensure we have D0 power state */
706 	pci_set_power_state(pdev, PCI_D0);
707 
708 	/* Save device state */
709 	pci_save_state(pdev);
710 
711 	/*
712 	 * Disable device to avoid any DMA traffic and
713 	 * interrupt from the device
714 	 */
715 	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
716 
717 	return NULL;
718 }
719 
720 static void *eeh_restore_dev_state(void *data, void *userdata)
721 {
722 	struct eeh_dev *edev = data;
723 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
724 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
725 	struct pci_dev *dev = userdata;
726 
727 	if (!pdev)
728 		return NULL;
729 
730 	/* Apply customization from firmware */
731 	if (pdn && eeh_ops->restore_config)
732 		eeh_ops->restore_config(pdn);
733 
734 	/* The caller should restore state for the specified device */
735 	if (pdev != dev)
736 		pci_restore_state(pdev);
737 
738 	return NULL;
739 }
740 
741 /**
742  * pcibios_set_pcie_slot_reset - Set PCI-E reset state
743  * @dev: pci device struct
744  * @state: reset state to enter
745  *
746  * Return value:
747  * 	0 if success
748  */
749 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
750 {
751 	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
752 	struct eeh_pe *pe = eeh_dev_to_pe(edev);
753 
754 	if (!pe) {
755 		pr_err("%s: No PE found on PCI device %s\n",
756 			__func__, pci_name(dev));
757 		return -EINVAL;
758 	}
759 
760 	switch (state) {
761 	case pcie_deassert_reset:
762 		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
763 		eeh_unfreeze_pe(pe, false);
764 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
765 		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
766 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
767 		break;
768 	case pcie_hot_reset:
769 		eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
770 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
771 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
772 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
773 		eeh_ops->reset(pe, EEH_RESET_HOT);
774 		break;
775 	case pcie_warm_reset:
776 		eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
777 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
778 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
779 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
780 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
781 		break;
782 	default:
783 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
784 		return -EINVAL;
785 	};
786 
787 	return 0;
788 }
789 
790 /**
791  * eeh_set_pe_freset - Check the required reset for the indicated device
792  * @data: EEH device
793  * @flag: return value
794  *
795  * Each device might have its preferred reset type: fundamental or
796  * hot reset. The routine is used to collected the information for
797  * the indicated device and its children so that the bunch of the
798  * devices could be reset properly.
799  */
800 static void *eeh_set_dev_freset(void *data, void *flag)
801 {
802 	struct pci_dev *dev;
803 	unsigned int *freset = (unsigned int *)flag;
804 	struct eeh_dev *edev = (struct eeh_dev *)data;
805 
806 	dev = eeh_dev_to_pci_dev(edev);
807 	if (dev)
808 		*freset |= dev->needs_freset;
809 
810 	return NULL;
811 }
812 
813 /**
814  * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
815  * @pe: EEH PE
816  *
817  * Assert the PCI #RST line for 1/4 second.
818  */
819 static void eeh_reset_pe_once(struct eeh_pe *pe)
820 {
821 	unsigned int freset = 0;
822 
823 	/* Determine type of EEH reset required for
824 	 * Partitionable Endpoint, a hot-reset (1)
825 	 * or a fundamental reset (3).
826 	 * A fundamental reset required by any device under
827 	 * Partitionable Endpoint trumps hot-reset.
828 	 */
829 	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
830 
831 	if (freset)
832 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
833 	else
834 		eeh_ops->reset(pe, EEH_RESET_HOT);
835 
836 	eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
837 }
838 
839 /**
840  * eeh_reset_pe - Reset the indicated PE
841  * @pe: EEH PE
842  *
843  * This routine should be called to reset indicated device, including
844  * PE. A PE might include multiple PCI devices and sometimes PCI bridges
845  * might be involved as well.
846  */
847 int eeh_reset_pe(struct eeh_pe *pe)
848 {
849 	int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
850 	int i, state, ret;
851 
852 	/* Mark as reset and block config space */
853 	eeh_pe_state_mark(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
854 
855 	/* Take three shots at resetting the bus */
856 	for (i = 0; i < 3; i++) {
857 		eeh_reset_pe_once(pe);
858 
859 		/*
860 		 * EEH_PE_ISOLATED is expected to be removed after
861 		 * BAR restore.
862 		 */
863 		state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
864 		if ((state & flags) == flags) {
865 			ret = 0;
866 			goto out;
867 		}
868 
869 		if (state < 0) {
870 			pr_warn("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
871 				__func__, pe->phb->global_number, pe->addr);
872 			ret = -ENOTRECOVERABLE;
873 			goto out;
874 		}
875 
876 		/* We might run out of credits */
877 		ret = -EIO;
878 		pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
879 			__func__, state, pe->phb->global_number, pe->addr, (i + 1));
880 	}
881 
882 out:
883 	eeh_pe_state_clear(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
884 	return ret;
885 }
886 
887 /**
888  * eeh_save_bars - Save device bars
889  * @edev: PCI device associated EEH device
890  *
891  * Save the values of the device bars. Unlike the restore
892  * routine, this routine is *not* recursive. This is because
893  * PCI devices are added individually; but, for the restore,
894  * an entire slot is reset at a time.
895  */
896 void eeh_save_bars(struct eeh_dev *edev)
897 {
898 	struct pci_dn *pdn;
899 	int i;
900 
901 	pdn = eeh_dev_to_pdn(edev);
902 	if (!pdn)
903 		return;
904 
905 	for (i = 0; i < 16; i++)
906 		eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
907 
908 	/*
909 	 * For PCI bridges including root port, we need enable bus
910 	 * master explicitly. Otherwise, it can't fetch IODA table
911 	 * entries correctly. So we cache the bit in advance so that
912 	 * we can restore it after reset, either PHB range or PE range.
913 	 */
914 	if (edev->mode & EEH_DEV_BRIDGE)
915 		edev->config_space[1] |= PCI_COMMAND_MASTER;
916 }
917 
918 /**
919  * eeh_ops_register - Register platform dependent EEH operations
920  * @ops: platform dependent EEH operations
921  *
922  * Register the platform dependent EEH operation callback
923  * functions. The platform should call this function before
924  * any other EEH operations.
925  */
926 int __init eeh_ops_register(struct eeh_ops *ops)
927 {
928 	if (!ops->name) {
929 		pr_warn("%s: Invalid EEH ops name for %p\n",
930 			__func__, ops);
931 		return -EINVAL;
932 	}
933 
934 	if (eeh_ops && eeh_ops != ops) {
935 		pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
936 			__func__, eeh_ops->name, ops->name);
937 		return -EEXIST;
938 	}
939 
940 	eeh_ops = ops;
941 
942 	return 0;
943 }
944 
945 /**
946  * eeh_ops_unregister - Unreigster platform dependent EEH operations
947  * @name: name of EEH platform operations
948  *
949  * Unregister the platform dependent EEH operation callback
950  * functions.
951  */
952 int __exit eeh_ops_unregister(const char *name)
953 {
954 	if (!name || !strlen(name)) {
955 		pr_warn("%s: Invalid EEH ops name\n",
956 			__func__);
957 		return -EINVAL;
958 	}
959 
960 	if (eeh_ops && !strcmp(eeh_ops->name, name)) {
961 		eeh_ops = NULL;
962 		return 0;
963 	}
964 
965 	return -EEXIST;
966 }
967 
968 static int eeh_reboot_notifier(struct notifier_block *nb,
969 			       unsigned long action, void *unused)
970 {
971 	eeh_clear_flag(EEH_ENABLED);
972 	return NOTIFY_DONE;
973 }
974 
975 static struct notifier_block eeh_reboot_nb = {
976 	.notifier_call = eeh_reboot_notifier,
977 };
978 
979 /**
980  * eeh_init - EEH initialization
981  *
982  * Initialize EEH by trying to enable it for all of the adapters in the system.
983  * As a side effect we can determine here if eeh is supported at all.
984  * Note that we leave EEH on so failed config cycles won't cause a machine
985  * check.  If a user turns off EEH for a particular adapter they are really
986  * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
987  * grant access to a slot if EEH isn't enabled, and so we always enable
988  * EEH for all slots/all devices.
989  *
990  * The eeh-force-off option disables EEH checking globally, for all slots.
991  * Even if force-off is set, the EEH hardware is still enabled, so that
992  * newer systems can boot.
993  */
994 int eeh_init(void)
995 {
996 	struct pci_controller *hose, *tmp;
997 	struct pci_dn *pdn;
998 	static int cnt = 0;
999 	int ret = 0;
1000 
1001 	/*
1002 	 * We have to delay the initialization on PowerNV after
1003 	 * the PCI hierarchy tree has been built because the PEs
1004 	 * are figured out based on PCI devices instead of device
1005 	 * tree nodes
1006 	 */
1007 	if (machine_is(powernv) && cnt++ <= 0)
1008 		return ret;
1009 
1010 	/* Register reboot notifier */
1011 	ret = register_reboot_notifier(&eeh_reboot_nb);
1012 	if (ret) {
1013 		pr_warn("%s: Failed to register notifier (%d)\n",
1014 			__func__, ret);
1015 		return ret;
1016 	}
1017 
1018 	/* call platform initialization function */
1019 	if (!eeh_ops) {
1020 		pr_warn("%s: Platform EEH operation not found\n",
1021 			__func__);
1022 		return -EEXIST;
1023 	} else if ((ret = eeh_ops->init()))
1024 		return ret;
1025 
1026 	/* Initialize EEH event */
1027 	ret = eeh_event_init();
1028 	if (ret)
1029 		return ret;
1030 
1031 	/* Enable EEH for all adapters */
1032 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1033 		pdn = hose->pci_data;
1034 		traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1035 	}
1036 
1037 	/*
1038 	 * Call platform post-initialization. Actually, It's good chance
1039 	 * to inform platform that EEH is ready to supply service if the
1040 	 * I/O cache stuff has been built up.
1041 	 */
1042 	if (eeh_ops->post_init) {
1043 		ret = eeh_ops->post_init();
1044 		if (ret)
1045 			return ret;
1046 	}
1047 
1048 	if (eeh_enabled())
1049 		pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1050 	else
1051 		pr_warn("EEH: No capable adapters found\n");
1052 
1053 	return ret;
1054 }
1055 
1056 core_initcall_sync(eeh_init);
1057 
1058 /**
1059  * eeh_add_device_early - Enable EEH for the indicated device node
1060  * @pdn: PCI device node for which to set up EEH
1061  *
1062  * This routine must be used to perform EEH initialization for PCI
1063  * devices that were added after system boot (e.g. hotplug, dlpar).
1064  * This routine must be called before any i/o is performed to the
1065  * adapter (inluding any config-space i/o).
1066  * Whether this actually enables EEH or not for this device depends
1067  * on the CEC architecture, type of the device, on earlier boot
1068  * command-line arguments & etc.
1069  */
1070 void eeh_add_device_early(struct pci_dn *pdn)
1071 {
1072 	struct pci_controller *phb;
1073 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1074 
1075 	if (!edev || !eeh_enabled())
1076 		return;
1077 
1078 	if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1079 		return;
1080 
1081 	/* USB Bus children of PCI devices will not have BUID's */
1082 	phb = edev->phb;
1083 	if (NULL == phb ||
1084 	    (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1085 		return;
1086 
1087 	eeh_ops->probe(pdn, NULL);
1088 }
1089 
1090 /**
1091  * eeh_add_device_tree_early - Enable EEH for the indicated device
1092  * @pdn: PCI device node
1093  *
1094  * This routine must be used to perform EEH initialization for the
1095  * indicated PCI device that was added after system boot (e.g.
1096  * hotplug, dlpar).
1097  */
1098 void eeh_add_device_tree_early(struct pci_dn *pdn)
1099 {
1100 	struct pci_dn *n;
1101 
1102 	if (!pdn)
1103 		return;
1104 
1105 	list_for_each_entry(n, &pdn->child_list, list)
1106 		eeh_add_device_tree_early(n);
1107 	eeh_add_device_early(pdn);
1108 }
1109 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1110 
1111 /**
1112  * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1113  * @dev: pci device for which to set up EEH
1114  *
1115  * This routine must be used to complete EEH initialization for PCI
1116  * devices that were added after system boot (e.g. hotplug, dlpar).
1117  */
1118 void eeh_add_device_late(struct pci_dev *dev)
1119 {
1120 	struct pci_dn *pdn;
1121 	struct eeh_dev *edev;
1122 
1123 	if (!dev || !eeh_enabled())
1124 		return;
1125 
1126 	pr_debug("EEH: Adding device %s\n", pci_name(dev));
1127 
1128 	pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1129 	edev = pdn_to_eeh_dev(pdn);
1130 	if (edev->pdev == dev) {
1131 		pr_debug("EEH: Already referenced !\n");
1132 		return;
1133 	}
1134 
1135 	/*
1136 	 * The EEH cache might not be removed correctly because of
1137 	 * unbalanced kref to the device during unplug time, which
1138 	 * relies on pcibios_release_device(). So we have to remove
1139 	 * that here explicitly.
1140 	 */
1141 	if (edev->pdev) {
1142 		eeh_rmv_from_parent_pe(edev);
1143 		eeh_addr_cache_rmv_dev(edev->pdev);
1144 		eeh_sysfs_remove_device(edev->pdev);
1145 		edev->mode &= ~EEH_DEV_SYSFS;
1146 
1147 		/*
1148 		 * We definitely should have the PCI device removed
1149 		 * though it wasn't correctly. So we needn't call
1150 		 * into error handler afterwards.
1151 		 */
1152 		edev->mode |= EEH_DEV_NO_HANDLER;
1153 
1154 		edev->pdev = NULL;
1155 		dev->dev.archdata.edev = NULL;
1156 	}
1157 
1158 	if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1159 		eeh_ops->probe(pdn, NULL);
1160 
1161 	edev->pdev = dev;
1162 	dev->dev.archdata.edev = edev;
1163 
1164 	eeh_addr_cache_insert_dev(dev);
1165 }
1166 
1167 /**
1168  * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1169  * @bus: PCI bus
1170  *
1171  * This routine must be used to perform EEH initialization for PCI
1172  * devices which are attached to the indicated PCI bus. The PCI bus
1173  * is added after system boot through hotplug or dlpar.
1174  */
1175 void eeh_add_device_tree_late(struct pci_bus *bus)
1176 {
1177 	struct pci_dev *dev;
1178 
1179 	list_for_each_entry(dev, &bus->devices, bus_list) {
1180 		eeh_add_device_late(dev);
1181 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1182 			struct pci_bus *subbus = dev->subordinate;
1183 			if (subbus)
1184 				eeh_add_device_tree_late(subbus);
1185 		}
1186 	}
1187 }
1188 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1189 
1190 /**
1191  * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1192  * @bus: PCI bus
1193  *
1194  * This routine must be used to add EEH sysfs files for PCI
1195  * devices which are attached to the indicated PCI bus. The PCI bus
1196  * is added after system boot through hotplug or dlpar.
1197  */
1198 void eeh_add_sysfs_files(struct pci_bus *bus)
1199 {
1200 	struct pci_dev *dev;
1201 
1202 	list_for_each_entry(dev, &bus->devices, bus_list) {
1203 		eeh_sysfs_add_device(dev);
1204 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1205 			struct pci_bus *subbus = dev->subordinate;
1206 			if (subbus)
1207 				eeh_add_sysfs_files(subbus);
1208 		}
1209 	}
1210 }
1211 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1212 
1213 /**
1214  * eeh_remove_device - Undo EEH setup for the indicated pci device
1215  * @dev: pci device to be removed
1216  *
1217  * This routine should be called when a device is removed from
1218  * a running system (e.g. by hotplug or dlpar).  It unregisters
1219  * the PCI device from the EEH subsystem.  I/O errors affecting
1220  * this device will no longer be detected after this call; thus,
1221  * i/o errors affecting this slot may leave this device unusable.
1222  */
1223 void eeh_remove_device(struct pci_dev *dev)
1224 {
1225 	struct eeh_dev *edev;
1226 
1227 	if (!dev || !eeh_enabled())
1228 		return;
1229 	edev = pci_dev_to_eeh_dev(dev);
1230 
1231 	/* Unregister the device with the EEH/PCI address search system */
1232 	pr_debug("EEH: Removing device %s\n", pci_name(dev));
1233 
1234 	if (!edev || !edev->pdev || !edev->pe) {
1235 		pr_debug("EEH: Not referenced !\n");
1236 		return;
1237 	}
1238 
1239 	/*
1240 	 * During the hotplug for EEH error recovery, we need the EEH
1241 	 * device attached to the parent PE in order for BAR restore
1242 	 * a bit later. So we keep it for BAR restore and remove it
1243 	 * from the parent PE during the BAR resotre.
1244 	 */
1245 	edev->pdev = NULL;
1246 	dev->dev.archdata.edev = NULL;
1247 	if (!(edev->pe->state & EEH_PE_KEEP))
1248 		eeh_rmv_from_parent_pe(edev);
1249 	else
1250 		edev->mode |= EEH_DEV_DISCONNECTED;
1251 
1252 	/*
1253 	 * We're removing from the PCI subsystem, that means
1254 	 * the PCI device driver can't support EEH or not
1255 	 * well. So we rely on hotplug completely to do recovery
1256 	 * for the specific PCI device.
1257 	 */
1258 	edev->mode |= EEH_DEV_NO_HANDLER;
1259 
1260 	eeh_addr_cache_rmv_dev(dev);
1261 	eeh_sysfs_remove_device(dev);
1262 	edev->mode &= ~EEH_DEV_SYSFS;
1263 }
1264 
1265 int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1266 {
1267 	int ret;
1268 
1269 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1270 	if (ret) {
1271 		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1272 			__func__, ret, pe->phb->global_number, pe->addr);
1273 		return ret;
1274 	}
1275 
1276 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1277 	if (ret) {
1278 		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1279 			__func__, ret, pe->phb->global_number, pe->addr);
1280 		return ret;
1281 	}
1282 
1283 	/* Clear software isolated state */
1284 	if (sw_state && (pe->state & EEH_PE_ISOLATED))
1285 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1286 
1287 	return ret;
1288 }
1289 
1290 
1291 static struct pci_device_id eeh_reset_ids[] = {
1292 	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1293 	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1294 	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1295 	{ 0 }
1296 };
1297 
1298 static int eeh_pe_change_owner(struct eeh_pe *pe)
1299 {
1300 	struct eeh_dev *edev, *tmp;
1301 	struct pci_dev *pdev;
1302 	struct pci_device_id *id;
1303 	int flags, ret;
1304 
1305 	/* Check PE state */
1306 	flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1307 	ret = eeh_ops->get_state(pe, NULL);
1308 	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1309 		return 0;
1310 
1311 	/* Unfrozen PE, nothing to do */
1312 	if ((ret & flags) == flags)
1313 		return 0;
1314 
1315 	/* Frozen PE, check if it needs PE level reset */
1316 	eeh_pe_for_each_dev(pe, edev, tmp) {
1317 		pdev = eeh_dev_to_pci_dev(edev);
1318 		if (!pdev)
1319 			continue;
1320 
1321 		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1322 			if (id->vendor != PCI_ANY_ID &&
1323 			    id->vendor != pdev->vendor)
1324 				continue;
1325 			if (id->device != PCI_ANY_ID &&
1326 			    id->device != pdev->device)
1327 				continue;
1328 			if (id->subvendor != PCI_ANY_ID &&
1329 			    id->subvendor != pdev->subsystem_vendor)
1330 				continue;
1331 			if (id->subdevice != PCI_ANY_ID &&
1332 			    id->subdevice != pdev->subsystem_device)
1333 				continue;
1334 
1335 			goto reset;
1336 		}
1337 	}
1338 
1339 	return eeh_unfreeze_pe(pe, true);
1340 
1341 reset:
1342 	return eeh_pe_reset_and_recover(pe);
1343 }
1344 
1345 /**
1346  * eeh_dev_open - Increase count of pass through devices for PE
1347  * @pdev: PCI device
1348  *
1349  * Increase count of passed through devices for the indicated
1350  * PE. In the result, the EEH errors detected on the PE won't be
1351  * reported. The PE owner will be responsible for detection
1352  * and recovery.
1353  */
1354 int eeh_dev_open(struct pci_dev *pdev)
1355 {
1356 	struct eeh_dev *edev;
1357 	int ret = -ENODEV;
1358 
1359 	mutex_lock(&eeh_dev_mutex);
1360 
1361 	/* No PCI device ? */
1362 	if (!pdev)
1363 		goto out;
1364 
1365 	/* No EEH device or PE ? */
1366 	edev = pci_dev_to_eeh_dev(pdev);
1367 	if (!edev || !edev->pe)
1368 		goto out;
1369 
1370 	/*
1371 	 * The PE might have been put into frozen state, but we
1372 	 * didn't detect that yet. The passed through PCI devices
1373 	 * in frozen PE won't work properly. Clear the frozen state
1374 	 * in advance.
1375 	 */
1376 	ret = eeh_pe_change_owner(edev->pe);
1377 	if (ret)
1378 		goto out;
1379 
1380 	/* Increase PE's pass through count */
1381 	atomic_inc(&edev->pe->pass_dev_cnt);
1382 	mutex_unlock(&eeh_dev_mutex);
1383 
1384 	return 0;
1385 out:
1386 	mutex_unlock(&eeh_dev_mutex);
1387 	return ret;
1388 }
1389 EXPORT_SYMBOL_GPL(eeh_dev_open);
1390 
1391 /**
1392  * eeh_dev_release - Decrease count of pass through devices for PE
1393  * @pdev: PCI device
1394  *
1395  * Decrease count of pass through devices for the indicated PE. If
1396  * there is no passed through device in PE, the EEH errors detected
1397  * on the PE will be reported and handled as usual.
1398  */
1399 void eeh_dev_release(struct pci_dev *pdev)
1400 {
1401 	struct eeh_dev *edev;
1402 
1403 	mutex_lock(&eeh_dev_mutex);
1404 
1405 	/* No PCI device ? */
1406 	if (!pdev)
1407 		goto out;
1408 
1409 	/* No EEH device ? */
1410 	edev = pci_dev_to_eeh_dev(pdev);
1411 	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1412 		goto out;
1413 
1414 	/* Decrease PE's pass through count */
1415 	WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1416 	eeh_pe_change_owner(edev->pe);
1417 out:
1418 	mutex_unlock(&eeh_dev_mutex);
1419 }
1420 EXPORT_SYMBOL(eeh_dev_release);
1421 
1422 #ifdef CONFIG_IOMMU_API
1423 
1424 static int dev_has_iommu_table(struct device *dev, void *data)
1425 {
1426 	struct pci_dev *pdev = to_pci_dev(dev);
1427 	struct pci_dev **ppdev = data;
1428 
1429 	if (!dev)
1430 		return 0;
1431 
1432 	if (dev->iommu_group) {
1433 		*ppdev = pdev;
1434 		return 1;
1435 	}
1436 
1437 	return 0;
1438 }
1439 
1440 /**
1441  * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1442  * @group: IOMMU group
1443  *
1444  * The routine is called to convert IOMMU group to EEH PE.
1445  */
1446 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1447 {
1448 	struct pci_dev *pdev = NULL;
1449 	struct eeh_dev *edev;
1450 	int ret;
1451 
1452 	/* No IOMMU group ? */
1453 	if (!group)
1454 		return NULL;
1455 
1456 	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1457 	if (!ret || !pdev)
1458 		return NULL;
1459 
1460 	/* No EEH device or PE ? */
1461 	edev = pci_dev_to_eeh_dev(pdev);
1462 	if (!edev || !edev->pe)
1463 		return NULL;
1464 
1465 	return edev->pe;
1466 }
1467 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1468 
1469 #endif /* CONFIG_IOMMU_API */
1470 
1471 /**
1472  * eeh_pe_set_option - Set options for the indicated PE
1473  * @pe: EEH PE
1474  * @option: requested option
1475  *
1476  * The routine is called to enable or disable EEH functionality
1477  * on the indicated PE, to enable IO or DMA for the frozen PE.
1478  */
1479 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1480 {
1481 	int ret = 0;
1482 
1483 	/* Invalid PE ? */
1484 	if (!pe)
1485 		return -ENODEV;
1486 
1487 	/*
1488 	 * EEH functionality could possibly be disabled, just
1489 	 * return error for the case. And the EEH functinality
1490 	 * isn't expected to be disabled on one specific PE.
1491 	 */
1492 	switch (option) {
1493 	case EEH_OPT_ENABLE:
1494 		if (eeh_enabled()) {
1495 			ret = eeh_pe_change_owner(pe);
1496 			break;
1497 		}
1498 		ret = -EIO;
1499 		break;
1500 	case EEH_OPT_DISABLE:
1501 		break;
1502 	case EEH_OPT_THAW_MMIO:
1503 	case EEH_OPT_THAW_DMA:
1504 		if (!eeh_ops || !eeh_ops->set_option) {
1505 			ret = -ENOENT;
1506 			break;
1507 		}
1508 
1509 		ret = eeh_pci_enable(pe, option);
1510 		break;
1511 	default:
1512 		pr_debug("%s: Option %d out of range (%d, %d)\n",
1513 			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1514 		ret = -EINVAL;
1515 	}
1516 
1517 	return ret;
1518 }
1519 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1520 
1521 /**
1522  * eeh_pe_get_state - Retrieve PE's state
1523  * @pe: EEH PE
1524  *
1525  * Retrieve the PE's state, which includes 3 aspects: enabled
1526  * DMA, enabled IO and asserted reset.
1527  */
1528 int eeh_pe_get_state(struct eeh_pe *pe)
1529 {
1530 	int result, ret = 0;
1531 	bool rst_active, dma_en, mmio_en;
1532 
1533 	/* Existing PE ? */
1534 	if (!pe)
1535 		return -ENODEV;
1536 
1537 	if (!eeh_ops || !eeh_ops->get_state)
1538 		return -ENOENT;
1539 
1540 	result = eeh_ops->get_state(pe, NULL);
1541 	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1542 	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1543 	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1544 
1545 	if (rst_active)
1546 		ret = EEH_PE_STATE_RESET;
1547 	else if (dma_en && mmio_en)
1548 		ret = EEH_PE_STATE_NORMAL;
1549 	else if (!dma_en && !mmio_en)
1550 		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1551 	else if (!dma_en && mmio_en)
1552 		ret = EEH_PE_STATE_STOPPED_DMA;
1553 	else
1554 		ret = EEH_PE_STATE_UNAVAIL;
1555 
1556 	return ret;
1557 }
1558 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1559 
1560 static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1561 {
1562 	struct eeh_dev *edev, *tmp;
1563 	struct pci_dev *pdev;
1564 	int ret = 0;
1565 
1566 	/* Restore config space */
1567 	eeh_pe_restore_bars(pe);
1568 
1569 	/*
1570 	 * Reenable PCI devices as the devices passed
1571 	 * through are always enabled before the reset.
1572 	 */
1573 	eeh_pe_for_each_dev(pe, edev, tmp) {
1574 		pdev = eeh_dev_to_pci_dev(edev);
1575 		if (!pdev)
1576 			continue;
1577 
1578 		ret = pci_reenable_device(pdev);
1579 		if (ret) {
1580 			pr_warn("%s: Failure %d reenabling %s\n",
1581 				__func__, ret, pci_name(pdev));
1582 			return ret;
1583 		}
1584 	}
1585 
1586 	/* The PE is still in frozen state */
1587 	return eeh_unfreeze_pe(pe, true);
1588 }
1589 
1590 /**
1591  * eeh_pe_reset - Issue PE reset according to specified type
1592  * @pe: EEH PE
1593  * @option: reset type
1594  *
1595  * The routine is called to reset the specified PE with the
1596  * indicated type, either fundamental reset or hot reset.
1597  * PE reset is the most important part for error recovery.
1598  */
1599 int eeh_pe_reset(struct eeh_pe *pe, int option)
1600 {
1601 	int ret = 0;
1602 
1603 	/* Invalid PE ? */
1604 	if (!pe)
1605 		return -ENODEV;
1606 
1607 	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1608 		return -ENOENT;
1609 
1610 	switch (option) {
1611 	case EEH_RESET_DEACTIVATE:
1612 		ret = eeh_ops->reset(pe, option);
1613 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1614 		if (ret)
1615 			break;
1616 
1617 		ret = eeh_pe_reenable_devices(pe);
1618 		break;
1619 	case EEH_RESET_HOT:
1620 	case EEH_RESET_FUNDAMENTAL:
1621 		/*
1622 		 * Proactively freeze the PE to drop all MMIO access
1623 		 * during reset, which should be banned as it's always
1624 		 * cause recursive EEH error.
1625 		 */
1626 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1627 
1628 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1629 		ret = eeh_ops->reset(pe, option);
1630 		break;
1631 	default:
1632 		pr_debug("%s: Unsupported option %d\n",
1633 			__func__, option);
1634 		ret = -EINVAL;
1635 	}
1636 
1637 	return ret;
1638 }
1639 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1640 
1641 /**
1642  * eeh_pe_configure - Configure PCI bridges after PE reset
1643  * @pe: EEH PE
1644  *
1645  * The routine is called to restore the PCI config space for
1646  * those PCI devices, especially PCI bridges affected by PE
1647  * reset issued previously.
1648  */
1649 int eeh_pe_configure(struct eeh_pe *pe)
1650 {
1651 	int ret = 0;
1652 
1653 	/* Invalid PE ? */
1654 	if (!pe)
1655 		return -ENODEV;
1656 
1657 	return ret;
1658 }
1659 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1660 
1661 /**
1662  * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1663  * @pe: the indicated PE
1664  * @type: error type
1665  * @function: error function
1666  * @addr: address
1667  * @mask: address mask
1668  *
1669  * The routine is called to inject the specified PCI error, which
1670  * is determined by @type and @function, to the indicated PE for
1671  * testing purpose.
1672  */
1673 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1674 		      unsigned long addr, unsigned long mask)
1675 {
1676 	/* Invalid PE ? */
1677 	if (!pe)
1678 		return -ENODEV;
1679 
1680 	/* Unsupported operation ? */
1681 	if (!eeh_ops || !eeh_ops->err_inject)
1682 		return -ENOENT;
1683 
1684 	/* Check on PCI error type */
1685 	if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1686 		return -EINVAL;
1687 
1688 	/* Check on PCI error function */
1689 	if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1690 		return -EINVAL;
1691 
1692 	return eeh_ops->err_inject(pe, type, func, addr, mask);
1693 }
1694 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1695 
1696 static int proc_eeh_show(struct seq_file *m, void *v)
1697 {
1698 	if (!eeh_enabled()) {
1699 		seq_printf(m, "EEH Subsystem is globally disabled\n");
1700 		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1701 	} else {
1702 		seq_printf(m, "EEH Subsystem is enabled\n");
1703 		seq_printf(m,
1704 				"no device=%llu\n"
1705 				"no device node=%llu\n"
1706 				"no config address=%llu\n"
1707 				"check not wanted=%llu\n"
1708 				"eeh_total_mmio_ffs=%llu\n"
1709 				"eeh_false_positives=%llu\n"
1710 				"eeh_slot_resets=%llu\n",
1711 				eeh_stats.no_device,
1712 				eeh_stats.no_dn,
1713 				eeh_stats.no_cfg_addr,
1714 				eeh_stats.ignored_check,
1715 				eeh_stats.total_mmio_ffs,
1716 				eeh_stats.false_positives,
1717 				eeh_stats.slot_resets);
1718 	}
1719 
1720 	return 0;
1721 }
1722 
1723 static int proc_eeh_open(struct inode *inode, struct file *file)
1724 {
1725 	return single_open(file, proc_eeh_show, NULL);
1726 }
1727 
1728 static const struct file_operations proc_eeh_operations = {
1729 	.open      = proc_eeh_open,
1730 	.read      = seq_read,
1731 	.llseek    = seq_lseek,
1732 	.release   = single_release,
1733 };
1734 
1735 #ifdef CONFIG_DEBUG_FS
1736 static int eeh_enable_dbgfs_set(void *data, u64 val)
1737 {
1738 	if (val)
1739 		eeh_clear_flag(EEH_FORCE_DISABLED);
1740 	else
1741 		eeh_add_flag(EEH_FORCE_DISABLED);
1742 
1743 	/* Notify the backend */
1744 	if (eeh_ops->post_init)
1745 		eeh_ops->post_init();
1746 
1747 	return 0;
1748 }
1749 
1750 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1751 {
1752 	if (eeh_enabled())
1753 		*val = 0x1ul;
1754 	else
1755 		*val = 0x0ul;
1756 	return 0;
1757 }
1758 
1759 static int eeh_freeze_dbgfs_set(void *data, u64 val)
1760 {
1761 	eeh_max_freezes = val;
1762 	return 0;
1763 }
1764 
1765 static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1766 {
1767 	*val = eeh_max_freezes;
1768 	return 0;
1769 }
1770 
1771 DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1772 			eeh_enable_dbgfs_set, "0x%llx\n");
1773 DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1774 			eeh_freeze_dbgfs_set, "0x%llx\n");
1775 #endif
1776 
1777 static int __init eeh_init_proc(void)
1778 {
1779 	if (machine_is(pseries) || machine_is(powernv)) {
1780 		proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1781 #ifdef CONFIG_DEBUG_FS
1782 		debugfs_create_file("eeh_enable", 0600,
1783                                     powerpc_debugfs_root, NULL,
1784                                     &eeh_enable_dbgfs_ops);
1785 		debugfs_create_file("eeh_max_freezes", 0600,
1786 				    powerpc_debugfs_root, NULL,
1787 				    &eeh_freeze_dbgfs_ops);
1788 #endif
1789 	}
1790 
1791 	return 0;
1792 }
1793 __initcall(eeh_init_proc);
1794