xref: /openbmc/linux/arch/powerpc/kernel/eeh.c (revision 61163895)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright IBM Corporation 2001, 2005, 2006
4  * Copyright Dave Engebretsen & Todd Inglett 2001
5  * Copyright Linas Vepstas 2005, 2006
6  * Copyright 2001-2012 IBM Corporation.
7  *
8  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/sched.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/pci.h>
16 #include <linux/iommu.h>
17 #include <linux/proc_fs.h>
18 #include <linux/rbtree.h>
19 #include <linux/reboot.h>
20 #include <linux/seq_file.h>
21 #include <linux/spinlock.h>
22 #include <linux/export.h>
23 #include <linux/of.h>
24 
25 #include <linux/atomic.h>
26 #include <asm/debugfs.h>
27 #include <asm/eeh.h>
28 #include <asm/eeh_event.h>
29 #include <asm/io.h>
30 #include <asm/iommu.h>
31 #include <asm/machdep.h>
32 #include <asm/ppc-pci.h>
33 #include <asm/rtas.h>
34 #include <asm/pte-walk.h>
35 
36 
37 /** Overview:
38  *  EEH, or "Enhanced Error Handling" is a PCI bridge technology for
39  *  dealing with PCI bus errors that can't be dealt with within the
40  *  usual PCI framework, except by check-stopping the CPU.  Systems
41  *  that are designed for high-availability/reliability cannot afford
42  *  to crash due to a "mere" PCI error, thus the need for EEH.
43  *  An EEH-capable bridge operates by converting a detected error
44  *  into a "slot freeze", taking the PCI adapter off-line, making
45  *  the slot behave, from the OS'es point of view, as if the slot
46  *  were "empty": all reads return 0xff's and all writes are silently
47  *  ignored.  EEH slot isolation events can be triggered by parity
48  *  errors on the address or data busses (e.g. during posted writes),
49  *  which in turn might be caused by low voltage on the bus, dust,
50  *  vibration, humidity, radioactivity or plain-old failed hardware.
51  *
52  *  Note, however, that one of the leading causes of EEH slot
53  *  freeze events are buggy device drivers, buggy device microcode,
54  *  or buggy device hardware.  This is because any attempt by the
55  *  device to bus-master data to a memory address that is not
56  *  assigned to the device will trigger a slot freeze.   (The idea
57  *  is to prevent devices-gone-wild from corrupting system memory).
58  *  Buggy hardware/drivers will have a miserable time co-existing
59  *  with EEH.
60  *
61  *  Ideally, a PCI device driver, when suspecting that an isolation
62  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
63  *  whether this is the case, and then take appropriate steps to
64  *  reset the PCI slot, the PCI device, and then resume operations.
65  *  However, until that day,  the checking is done here, with the
66  *  eeh_check_failure() routine embedded in the MMIO macros.  If
67  *  the slot is found to be isolated, an "EEH Event" is synthesized
68  *  and sent out for processing.
69  */
70 
71 /* If a device driver keeps reading an MMIO register in an interrupt
72  * handler after a slot isolation event, it might be broken.
73  * This sets the threshold for how many read attempts we allow
74  * before printing an error message.
75  */
76 #define EEH_MAX_FAILS	2100000
77 
78 /* Time to wait for a PCI slot to report status, in milliseconds */
79 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
80 
81 /*
82  * EEH probe mode support, which is part of the flags,
83  * is to support multiple platforms for EEH. Some platforms
84  * like pSeries do PCI emunation based on device tree.
85  * However, other platforms like powernv probe PCI devices
86  * from hardware. The flag is used to distinguish that.
87  * In addition, struct eeh_ops::probe would be invoked for
88  * particular OF node or PCI device so that the corresponding
89  * PE would be created there.
90  */
91 int eeh_subsystem_flags;
92 EXPORT_SYMBOL(eeh_subsystem_flags);
93 
94 /*
95  * EEH allowed maximal frozen times. If one particular PE's
96  * frozen count in last hour exceeds this limit, the PE will
97  * be forced to be offline permanently.
98  */
99 u32 eeh_max_freezes = 5;
100 
101 /*
102  * Controls whether a recovery event should be scheduled when an
103  * isolated device is discovered. This is only really useful for
104  * debugging problems with the EEH core.
105  */
106 bool eeh_debugfs_no_recover;
107 
108 /* Platform dependent EEH operations */
109 struct eeh_ops *eeh_ops = NULL;
110 
111 /* Lock to avoid races due to multiple reports of an error */
112 DEFINE_RAW_SPINLOCK(confirm_error_lock);
113 EXPORT_SYMBOL_GPL(confirm_error_lock);
114 
115 /* Lock to protect passed flags */
116 static DEFINE_MUTEX(eeh_dev_mutex);
117 
118 /* Buffer for reporting pci register dumps. Its here in BSS, and
119  * not dynamically alloced, so that it ends up in RMO where RTAS
120  * can access it.
121  */
122 #define EEH_PCI_REGS_LOG_LEN 8192
123 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
124 
125 /*
126  * The struct is used to maintain the EEH global statistic
127  * information. Besides, the EEH global statistics will be
128  * exported to user space through procfs
129  */
130 struct eeh_stats {
131 	u64 no_device;		/* PCI device not found		*/
132 	u64 no_dn;		/* OF node not found		*/
133 	u64 no_cfg_addr;	/* Config address not found	*/
134 	u64 ignored_check;	/* EEH check skipped		*/
135 	u64 total_mmio_ffs;	/* Total EEH checks		*/
136 	u64 false_positives;	/* Unnecessary EEH checks	*/
137 	u64 slot_resets;	/* PE reset			*/
138 };
139 
140 static struct eeh_stats eeh_stats;
141 
142 static int __init eeh_setup(char *str)
143 {
144 	if (!strcmp(str, "off"))
145 		eeh_add_flag(EEH_FORCE_DISABLED);
146 	else if (!strcmp(str, "early_log"))
147 		eeh_add_flag(EEH_EARLY_DUMP_LOG);
148 
149 	return 1;
150 }
151 __setup("eeh=", eeh_setup);
152 
153 void eeh_show_enabled(void)
154 {
155 	if (eeh_has_flag(EEH_FORCE_DISABLED))
156 		pr_info("EEH: Recovery disabled by kernel parameter.\n");
157 	else if (eeh_has_flag(EEH_ENABLED))
158 		pr_info("EEH: Capable adapter found: recovery enabled.\n");
159 	else
160 		pr_info("EEH: No capable adapters found: recovery disabled.\n");
161 }
162 
163 /*
164  * This routine captures assorted PCI configuration space data
165  * for the indicated PCI device, and puts them into a buffer
166  * for RTAS error logging.
167  */
168 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
169 {
170 	u32 cfg;
171 	int cap, i;
172 	int n = 0, l = 0;
173 	char buffer[128];
174 
175 	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
176 			edev->pe->phb->global_number, edev->bdfn >> 8,
177 			PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
178 	pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
179 		edev->pe->phb->global_number, edev->bdfn >> 8,
180 		PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
181 
182 	eeh_ops->read_config(edev, PCI_VENDOR_ID, 4, &cfg);
183 	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
184 	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
185 
186 	eeh_ops->read_config(edev, PCI_COMMAND, 4, &cfg);
187 	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
188 	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
189 
190 	/* Gather bridge-specific registers */
191 	if (edev->mode & EEH_DEV_BRIDGE) {
192 		eeh_ops->read_config(edev, PCI_SEC_STATUS, 2, &cfg);
193 		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
194 		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
195 
196 		eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &cfg);
197 		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
198 		pr_warn("EEH: Bridge control: %04x\n", cfg);
199 	}
200 
201 	/* Dump out the PCI-X command and status regs */
202 	cap = edev->pcix_cap;
203 	if (cap) {
204 		eeh_ops->read_config(edev, cap, 4, &cfg);
205 		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
206 		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
207 
208 		eeh_ops->read_config(edev, cap+4, 4, &cfg);
209 		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
210 		pr_warn("EEH: PCI-X status: %08x\n", cfg);
211 	}
212 
213 	/* If PCI-E capable, dump PCI-E cap 10 */
214 	cap = edev->pcie_cap;
215 	if (cap) {
216 		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
217 		pr_warn("EEH: PCI-E capabilities and status follow:\n");
218 
219 		for (i=0; i<=8; i++) {
220 			eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
221 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
222 
223 			if ((i % 4) == 0) {
224 				if (i != 0)
225 					pr_warn("%s\n", buffer);
226 
227 				l = scnprintf(buffer, sizeof(buffer),
228 					      "EEH: PCI-E %02x: %08x ",
229 					      4*i, cfg);
230 			} else {
231 				l += scnprintf(buffer+l, sizeof(buffer)-l,
232 					       "%08x ", cfg);
233 			}
234 
235 		}
236 
237 		pr_warn("%s\n", buffer);
238 	}
239 
240 	/* If AER capable, dump it */
241 	cap = edev->aer_cap;
242 	if (cap) {
243 		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
244 		pr_warn("EEH: PCI-E AER capability register set follows:\n");
245 
246 		for (i=0; i<=13; i++) {
247 			eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
248 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
249 
250 			if ((i % 4) == 0) {
251 				if (i != 0)
252 					pr_warn("%s\n", buffer);
253 
254 				l = scnprintf(buffer, sizeof(buffer),
255 					      "EEH: PCI-E AER %02x: %08x ",
256 					      4*i, cfg);
257 			} else {
258 				l += scnprintf(buffer+l, sizeof(buffer)-l,
259 					       "%08x ", cfg);
260 			}
261 		}
262 
263 		pr_warn("%s\n", buffer);
264 	}
265 
266 	return n;
267 }
268 
269 static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
270 {
271 	struct eeh_dev *edev, *tmp;
272 	size_t *plen = flag;
273 
274 	eeh_pe_for_each_dev(pe, edev, tmp)
275 		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
276 					  EEH_PCI_REGS_LOG_LEN - *plen);
277 
278 	return NULL;
279 }
280 
281 /**
282  * eeh_slot_error_detail - Generate combined log including driver log and error log
283  * @pe: EEH PE
284  * @severity: temporary or permanent error log
285  *
286  * This routine should be called to generate the combined log, which
287  * is comprised of driver log and error log. The driver log is figured
288  * out from the config space of the corresponding PCI device, while
289  * the error log is fetched through platform dependent function call.
290  */
291 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
292 {
293 	size_t loglen = 0;
294 
295 	/*
296 	 * When the PHB is fenced or dead, it's pointless to collect
297 	 * the data from PCI config space because it should return
298 	 * 0xFF's. For ER, we still retrieve the data from the PCI
299 	 * config space.
300 	 *
301 	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
302 	 * 0xFF's is always returned from PCI config space.
303 	 *
304 	 * When the @severity is EEH_LOG_PERM, the PE is going to be
305 	 * removed. Prior to that, the drivers for devices included in
306 	 * the PE will be closed. The drivers rely on working IO path
307 	 * to bring the devices to quiet state. Otherwise, PCI traffic
308 	 * from those devices after they are removed is like to cause
309 	 * another unexpected EEH error.
310 	 */
311 	if (!(pe->type & EEH_PE_PHB)) {
312 		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
313 		    severity == EEH_LOG_PERM)
314 			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
315 
316 		/*
317 		 * The config space of some PCI devices can't be accessed
318 		 * when their PEs are in frozen state. Otherwise, fenced
319 		 * PHB might be seen. Those PEs are identified with flag
320 		 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
321 		 * is set automatically when the PE is put to EEH_PE_ISOLATED.
322 		 *
323 		 * Restoring BARs possibly triggers PCI config access in
324 		 * (OPAL) firmware and then causes fenced PHB. If the
325 		 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
326 		 * pointless to restore BARs and dump config space.
327 		 */
328 		eeh_ops->configure_bridge(pe);
329 		if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
330 			eeh_pe_restore_bars(pe);
331 
332 			pci_regs_buf[0] = 0;
333 			eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
334 		}
335 	}
336 
337 	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
338 }
339 
340 /**
341  * eeh_token_to_phys - Convert EEH address token to phys address
342  * @token: I/O token, should be address in the form 0xA....
343  *
344  * This routine should be called to convert virtual I/O address
345  * to physical one.
346  */
347 static inline unsigned long eeh_token_to_phys(unsigned long token)
348 {
349 	pte_t *ptep;
350 	unsigned long pa;
351 	int hugepage_shift;
352 
353 	/*
354 	 * We won't find hugepages here(this is iomem). Hence we are not
355 	 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
356 	 * page table free, because of init_mm.
357 	 */
358 	ptep = find_init_mm_pte(token, &hugepage_shift);
359 	if (!ptep)
360 		return token;
361 
362 	pa = pte_pfn(*ptep);
363 
364 	/* On radix we can do hugepage mappings for io, so handle that */
365 	if (hugepage_shift) {
366 		pa <<= hugepage_shift;
367 		pa |= token & ((1ul << hugepage_shift) - 1);
368 	} else {
369 		pa <<= PAGE_SHIFT;
370 		pa |= token & (PAGE_SIZE - 1);
371 	}
372 
373 	return pa;
374 }
375 
376 /*
377  * On PowerNV platform, we might already have fenced PHB there.
378  * For that case, it's meaningless to recover frozen PE. Intead,
379  * We have to handle fenced PHB firstly.
380  */
381 static int eeh_phb_check_failure(struct eeh_pe *pe)
382 {
383 	struct eeh_pe *phb_pe;
384 	unsigned long flags;
385 	int ret;
386 
387 	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
388 		return -EPERM;
389 
390 	/* Find the PHB PE */
391 	phb_pe = eeh_phb_pe_get(pe->phb);
392 	if (!phb_pe) {
393 		pr_warn("%s Can't find PE for PHB#%x\n",
394 			__func__, pe->phb->global_number);
395 		return -EEXIST;
396 	}
397 
398 	/* If the PHB has been in problematic state */
399 	eeh_serialize_lock(&flags);
400 	if (phb_pe->state & EEH_PE_ISOLATED) {
401 		ret = 0;
402 		goto out;
403 	}
404 
405 	/* Check PHB state */
406 	ret = eeh_ops->get_state(phb_pe, NULL);
407 	if ((ret < 0) ||
408 	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
409 		ret = 0;
410 		goto out;
411 	}
412 
413 	/* Isolate the PHB and send event */
414 	eeh_pe_mark_isolated(phb_pe);
415 	eeh_serialize_unlock(flags);
416 
417 	pr_debug("EEH: PHB#%x failure detected, location: %s\n",
418 		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
419 	eeh_send_failure_event(phb_pe);
420 	return 1;
421 out:
422 	eeh_serialize_unlock(flags);
423 	return ret;
424 }
425 
426 /**
427  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
428  * @edev: eeh device
429  *
430  * Check for an EEH failure for the given device node.  Call this
431  * routine if the result of a read was all 0xff's and you want to
432  * find out if this is due to an EEH slot freeze.  This routine
433  * will query firmware for the EEH status.
434  *
435  * Returns 0 if there has not been an EEH error; otherwise returns
436  * a non-zero value and queues up a slot isolation event notification.
437  *
438  * It is safe to call this routine in an interrupt context.
439  */
440 int eeh_dev_check_failure(struct eeh_dev *edev)
441 {
442 	int ret;
443 	unsigned long flags;
444 	struct device_node *dn;
445 	struct pci_dev *dev;
446 	struct eeh_pe *pe, *parent_pe;
447 	int rc = 0;
448 	const char *location = NULL;
449 
450 	eeh_stats.total_mmio_ffs++;
451 
452 	if (!eeh_enabled())
453 		return 0;
454 
455 	if (!edev) {
456 		eeh_stats.no_dn++;
457 		return 0;
458 	}
459 	dev = eeh_dev_to_pci_dev(edev);
460 	pe = eeh_dev_to_pe(edev);
461 
462 	/* Access to IO BARs might get this far and still not want checking. */
463 	if (!pe) {
464 		eeh_stats.ignored_check++;
465 		eeh_edev_dbg(edev, "Ignored check\n");
466 		return 0;
467 	}
468 
469 	if (!pe->addr && !pe->config_addr) {
470 		eeh_stats.no_cfg_addr++;
471 		return 0;
472 	}
473 
474 	/*
475 	 * On PowerNV platform, we might already have fenced PHB
476 	 * there and we need take care of that firstly.
477 	 */
478 	ret = eeh_phb_check_failure(pe);
479 	if (ret > 0)
480 		return ret;
481 
482 	/*
483 	 * If the PE isn't owned by us, we shouldn't check the
484 	 * state. Instead, let the owner handle it if the PE has
485 	 * been frozen.
486 	 */
487 	if (eeh_pe_passed(pe))
488 		return 0;
489 
490 	/* If we already have a pending isolation event for this
491 	 * slot, we know it's bad already, we don't need to check.
492 	 * Do this checking under a lock; as multiple PCI devices
493 	 * in one slot might report errors simultaneously, and we
494 	 * only want one error recovery routine running.
495 	 */
496 	eeh_serialize_lock(&flags);
497 	rc = 1;
498 	if (pe->state & EEH_PE_ISOLATED) {
499 		pe->check_count++;
500 		if (pe->check_count == EEH_MAX_FAILS) {
501 			dn = pci_device_to_OF_node(dev);
502 			if (dn)
503 				location = of_get_property(dn, "ibm,loc-code",
504 						NULL);
505 			eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n",
506 				pe->check_count,
507 				location ? location : "unknown",
508 				eeh_driver_name(dev));
509 			eeh_edev_err(edev, "Might be infinite loop in %s driver\n",
510 				eeh_driver_name(dev));
511 			dump_stack();
512 		}
513 		goto dn_unlock;
514 	}
515 
516 	/*
517 	 * Now test for an EEH failure.  This is VERY expensive.
518 	 * Note that the eeh_config_addr may be a parent device
519 	 * in the case of a device behind a bridge, or it may be
520 	 * function zero of a multi-function device.
521 	 * In any case they must share a common PHB.
522 	 */
523 	ret = eeh_ops->get_state(pe, NULL);
524 
525 	/* Note that config-io to empty slots may fail;
526 	 * they are empty when they don't have children.
527 	 * We will punt with the following conditions: Failure to get
528 	 * PE's state, EEH not support and Permanently unavailable
529 	 * state, PE is in good state.
530 	 */
531 	if ((ret < 0) ||
532 	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
533 		eeh_stats.false_positives++;
534 		pe->false_positives++;
535 		rc = 0;
536 		goto dn_unlock;
537 	}
538 
539 	/*
540 	 * It should be corner case that the parent PE has been
541 	 * put into frozen state as well. We should take care
542 	 * that at first.
543 	 */
544 	parent_pe = pe->parent;
545 	while (parent_pe) {
546 		/* Hit the ceiling ? */
547 		if (parent_pe->type & EEH_PE_PHB)
548 			break;
549 
550 		/* Frozen parent PE ? */
551 		ret = eeh_ops->get_state(parent_pe, NULL);
552 		if (ret > 0 && !eeh_state_active(ret)) {
553 			pe = parent_pe;
554 			pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
555 			       pe->phb->global_number, pe->addr,
556 			       pe->phb->global_number, parent_pe->addr);
557 		}
558 
559 		/* Next parent level */
560 		parent_pe = parent_pe->parent;
561 	}
562 
563 	eeh_stats.slot_resets++;
564 
565 	/* Avoid repeated reports of this failure, including problems
566 	 * with other functions on this device, and functions under
567 	 * bridges.
568 	 */
569 	eeh_pe_mark_isolated(pe);
570 	eeh_serialize_unlock(flags);
571 
572 	/* Most EEH events are due to device driver bugs.  Having
573 	 * a stack trace will help the device-driver authors figure
574 	 * out what happened.  So print that out.
575 	 */
576 	pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
577 		__func__, pe->phb->global_number, pe->addr);
578 	eeh_send_failure_event(pe);
579 
580 	return 1;
581 
582 dn_unlock:
583 	eeh_serialize_unlock(flags);
584 	return rc;
585 }
586 
587 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
588 
589 /**
590  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
591  * @token: I/O address
592  *
593  * Check for an EEH failure at the given I/O address. Call this
594  * routine if the result of a read was all 0xff's and you want to
595  * find out if this is due to an EEH slot freeze event. This routine
596  * will query firmware for the EEH status.
597  *
598  * Note this routine is safe to call in an interrupt context.
599  */
600 int eeh_check_failure(const volatile void __iomem *token)
601 {
602 	unsigned long addr;
603 	struct eeh_dev *edev;
604 
605 	/* Finding the phys addr + pci device; this is pretty quick. */
606 	addr = eeh_token_to_phys((unsigned long __force) token);
607 	edev = eeh_addr_cache_get_dev(addr);
608 	if (!edev) {
609 		eeh_stats.no_device++;
610 		return 0;
611 	}
612 
613 	return eeh_dev_check_failure(edev);
614 }
615 EXPORT_SYMBOL(eeh_check_failure);
616 
617 
618 /**
619  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
620  * @pe: EEH PE
621  *
622  * This routine should be called to reenable frozen MMIO or DMA
623  * so that it would work correctly again. It's useful while doing
624  * recovery or log collection on the indicated device.
625  */
626 int eeh_pci_enable(struct eeh_pe *pe, int function)
627 {
628 	int active_flag, rc;
629 
630 	/*
631 	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
632 	 * Also, it's pointless to enable them on unfrozen PE. So
633 	 * we have to check before enabling IO or DMA.
634 	 */
635 	switch (function) {
636 	case EEH_OPT_THAW_MMIO:
637 		active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
638 		break;
639 	case EEH_OPT_THAW_DMA:
640 		active_flag = EEH_STATE_DMA_ACTIVE;
641 		break;
642 	case EEH_OPT_DISABLE:
643 	case EEH_OPT_ENABLE:
644 	case EEH_OPT_FREEZE_PE:
645 		active_flag = 0;
646 		break;
647 	default:
648 		pr_warn("%s: Invalid function %d\n",
649 			__func__, function);
650 		return -EINVAL;
651 	}
652 
653 	/*
654 	 * Check if IO or DMA has been enabled before
655 	 * enabling them.
656 	 */
657 	if (active_flag) {
658 		rc = eeh_ops->get_state(pe, NULL);
659 		if (rc < 0)
660 			return rc;
661 
662 		/* Needn't enable it at all */
663 		if (rc == EEH_STATE_NOT_SUPPORT)
664 			return 0;
665 
666 		/* It's already enabled */
667 		if (rc & active_flag)
668 			return 0;
669 	}
670 
671 
672 	/* Issue the request */
673 	rc = eeh_ops->set_option(pe, function);
674 	if (rc)
675 		pr_warn("%s: Unexpected state change %d on "
676 			"PHB#%x-PE#%x, err=%d\n",
677 			__func__, function, pe->phb->global_number,
678 			pe->addr, rc);
679 
680 	/* Check if the request is finished successfully */
681 	if (active_flag) {
682 		rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
683 		if (rc < 0)
684 			return rc;
685 
686 		if (rc & active_flag)
687 			return 0;
688 
689 		return -EIO;
690 	}
691 
692 	return rc;
693 }
694 
695 static void eeh_disable_and_save_dev_state(struct eeh_dev *edev,
696 					    void *userdata)
697 {
698 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
699 	struct pci_dev *dev = userdata;
700 
701 	/*
702 	 * The caller should have disabled and saved the
703 	 * state for the specified device
704 	 */
705 	if (!pdev || pdev == dev)
706 		return;
707 
708 	/* Ensure we have D0 power state */
709 	pci_set_power_state(pdev, PCI_D0);
710 
711 	/* Save device state */
712 	pci_save_state(pdev);
713 
714 	/*
715 	 * Disable device to avoid any DMA traffic and
716 	 * interrupt from the device
717 	 */
718 	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
719 }
720 
721 static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
722 {
723 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
724 	struct pci_dev *dev = userdata;
725 
726 	if (!pdev)
727 		return;
728 
729 	/* Apply customization from firmware */
730 	if (eeh_ops->restore_config)
731 		eeh_ops->restore_config(edev);
732 
733 	/* The caller should restore state for the specified device */
734 	if (pdev != dev)
735 		pci_restore_state(pdev);
736 }
737 
738 /**
739  * pcibios_set_pcie_reset_state - Set PCI-E reset state
740  * @dev: pci device struct
741  * @state: reset state to enter
742  *
743  * Return value:
744  * 	0 if success
745  */
746 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
747 {
748 	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
749 	struct eeh_pe *pe = eeh_dev_to_pe(edev);
750 
751 	if (!pe) {
752 		pr_err("%s: No PE found on PCI device %s\n",
753 			__func__, pci_name(dev));
754 		return -EINVAL;
755 	}
756 
757 	switch (state) {
758 	case pcie_deassert_reset:
759 		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
760 		eeh_unfreeze_pe(pe);
761 		if (!(pe->type & EEH_PE_VF))
762 			eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
763 		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
764 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
765 		break;
766 	case pcie_hot_reset:
767 		eeh_pe_mark_isolated(pe);
768 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
769 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
770 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
771 		if (!(pe->type & EEH_PE_VF))
772 			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
773 		eeh_ops->reset(pe, EEH_RESET_HOT);
774 		break;
775 	case pcie_warm_reset:
776 		eeh_pe_mark_isolated(pe);
777 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
778 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
779 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
780 		if (!(pe->type & EEH_PE_VF))
781 			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
782 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
783 		break;
784 	default:
785 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
786 		return -EINVAL;
787 	};
788 
789 	return 0;
790 }
791 
792 /**
793  * eeh_set_pe_freset - Check the required reset for the indicated device
794  * @data: EEH device
795  * @flag: return value
796  *
797  * Each device might have its preferred reset type: fundamental or
798  * hot reset. The routine is used to collected the information for
799  * the indicated device and its children so that the bunch of the
800  * devices could be reset properly.
801  */
802 static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
803 {
804 	struct pci_dev *dev;
805 	unsigned int *freset = (unsigned int *)flag;
806 
807 	dev = eeh_dev_to_pci_dev(edev);
808 	if (dev)
809 		*freset |= dev->needs_freset;
810 }
811 
812 static void eeh_pe_refreeze_passed(struct eeh_pe *root)
813 {
814 	struct eeh_pe *pe;
815 	int state;
816 
817 	eeh_for_each_pe(root, pe) {
818 		if (eeh_pe_passed(pe)) {
819 			state = eeh_ops->get_state(pe, NULL);
820 			if (state &
821 			   (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
822 				pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
823 					pe->phb->global_number, pe->addr);
824 				eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
825 			}
826 		}
827 	}
828 }
829 
830 /**
831  * eeh_pe_reset_full - Complete a full reset process on the indicated PE
832  * @pe: EEH PE
833  *
834  * This function executes a full reset procedure on a PE, including setting
835  * the appropriate flags, performing a fundamental or hot reset, and then
836  * deactivating the reset status.  It is designed to be used within the EEH
837  * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
838  * only performs a single operation at a time.
839  *
840  * This function will attempt to reset a PE three times before failing.
841  */
842 int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
843 {
844 	int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
845 	int type = EEH_RESET_HOT;
846 	unsigned int freset = 0;
847 	int i, state = 0, ret;
848 
849 	/*
850 	 * Determine the type of reset to perform - hot or fundamental.
851 	 * Hot reset is the default operation, unless any device under the
852 	 * PE requires a fundamental reset.
853 	 */
854 	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
855 
856 	if (freset)
857 		type = EEH_RESET_FUNDAMENTAL;
858 
859 	/* Mark the PE as in reset state and block config space accesses */
860 	eeh_pe_state_mark(pe, reset_state);
861 
862 	/* Make three attempts at resetting the bus */
863 	for (i = 0; i < 3; i++) {
864 		ret = eeh_pe_reset(pe, type, include_passed);
865 		if (!ret)
866 			ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
867 					   include_passed);
868 		if (ret) {
869 			ret = -EIO;
870 			pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
871 				state, pe->phb->global_number, pe->addr, i + 1);
872 			continue;
873 		}
874 		if (i)
875 			pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
876 				pe->phb->global_number, pe->addr, i + 1);
877 
878 		/* Wait until the PE is in a functioning state */
879 		state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
880 		if (state < 0) {
881 			pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
882 				pe->phb->global_number, pe->addr);
883 			ret = -ENOTRECOVERABLE;
884 			break;
885 		}
886 		if (eeh_state_active(state))
887 			break;
888 		else
889 			pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
890 				pe->phb->global_number, pe->addr, state, i + 1);
891 	}
892 
893 	/* Resetting the PE may have unfrozen child PEs. If those PEs have been
894 	 * (potentially) passed through to a guest, re-freeze them:
895 	 */
896 	if (!include_passed)
897 		eeh_pe_refreeze_passed(pe);
898 
899 	eeh_pe_state_clear(pe, reset_state, true);
900 	return ret;
901 }
902 
903 /**
904  * eeh_save_bars - Save device bars
905  * @edev: PCI device associated EEH device
906  *
907  * Save the values of the device bars. Unlike the restore
908  * routine, this routine is *not* recursive. This is because
909  * PCI devices are added individually; but, for the restore,
910  * an entire slot is reset at a time.
911  */
912 void eeh_save_bars(struct eeh_dev *edev)
913 {
914 	int i;
915 
916 	if (!edev)
917 		return;
918 
919 	for (i = 0; i < 16; i++)
920 		eeh_ops->read_config(edev, i * 4, 4, &edev->config_space[i]);
921 
922 	/*
923 	 * For PCI bridges including root port, we need enable bus
924 	 * master explicitly. Otherwise, it can't fetch IODA table
925 	 * entries correctly. So we cache the bit in advance so that
926 	 * we can restore it after reset, either PHB range or PE range.
927 	 */
928 	if (edev->mode & EEH_DEV_BRIDGE)
929 		edev->config_space[1] |= PCI_COMMAND_MASTER;
930 }
931 
932 /**
933  * eeh_ops_register - Register platform dependent EEH operations
934  * @ops: platform dependent EEH operations
935  *
936  * Register the platform dependent EEH operation callback
937  * functions. The platform should call this function before
938  * any other EEH operations.
939  */
940 int __init eeh_ops_register(struct eeh_ops *ops)
941 {
942 	if (!ops->name) {
943 		pr_warn("%s: Invalid EEH ops name for %p\n",
944 			__func__, ops);
945 		return -EINVAL;
946 	}
947 
948 	if (eeh_ops && eeh_ops != ops) {
949 		pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
950 			__func__, eeh_ops->name, ops->name);
951 		return -EEXIST;
952 	}
953 
954 	eeh_ops = ops;
955 
956 	return 0;
957 }
958 
959 /**
960  * eeh_ops_unregister - Unreigster platform dependent EEH operations
961  * @name: name of EEH platform operations
962  *
963  * Unregister the platform dependent EEH operation callback
964  * functions.
965  */
966 int __exit eeh_ops_unregister(const char *name)
967 {
968 	if (!name || !strlen(name)) {
969 		pr_warn("%s: Invalid EEH ops name\n",
970 			__func__);
971 		return -EINVAL;
972 	}
973 
974 	if (eeh_ops && !strcmp(eeh_ops->name, name)) {
975 		eeh_ops = NULL;
976 		return 0;
977 	}
978 
979 	return -EEXIST;
980 }
981 
982 static int eeh_reboot_notifier(struct notifier_block *nb,
983 			       unsigned long action, void *unused)
984 {
985 	eeh_clear_flag(EEH_ENABLED);
986 	return NOTIFY_DONE;
987 }
988 
989 static struct notifier_block eeh_reboot_nb = {
990 	.notifier_call = eeh_reboot_notifier,
991 };
992 
993 /**
994  * eeh_init - EEH initialization
995  *
996  * Initialize EEH by trying to enable it for all of the adapters in the system.
997  * As a side effect we can determine here if eeh is supported at all.
998  * Note that we leave EEH on so failed config cycles won't cause a machine
999  * check.  If a user turns off EEH for a particular adapter they are really
1000  * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
1001  * grant access to a slot if EEH isn't enabled, and so we always enable
1002  * EEH for all slots/all devices.
1003  *
1004  * The eeh-force-off option disables EEH checking globally, for all slots.
1005  * Even if force-off is set, the EEH hardware is still enabled, so that
1006  * newer systems can boot.
1007  */
1008 static int eeh_init(void)
1009 {
1010 	struct pci_controller *hose, *tmp;
1011 	int ret = 0;
1012 
1013 	/* Register reboot notifier */
1014 	ret = register_reboot_notifier(&eeh_reboot_nb);
1015 	if (ret) {
1016 		pr_warn("%s: Failed to register notifier (%d)\n",
1017 			__func__, ret);
1018 		return ret;
1019 	}
1020 
1021 	/* call platform initialization function */
1022 	if (!eeh_ops) {
1023 		pr_warn("%s: Platform EEH operation not found\n",
1024 			__func__);
1025 		return -EEXIST;
1026 	} else if ((ret = eeh_ops->init()))
1027 		return ret;
1028 
1029 	/* Initialize PHB PEs */
1030 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
1031 		eeh_phb_pe_create(hose);
1032 
1033 	eeh_addr_cache_init();
1034 
1035 	/* Initialize EEH event */
1036 	return eeh_event_init();
1037 }
1038 
1039 core_initcall_sync(eeh_init);
1040 
1041 static int eeh_device_notifier(struct notifier_block *nb,
1042 			       unsigned long action, void *data)
1043 {
1044 	struct device *dev = data;
1045 
1046 	switch (action) {
1047 	/*
1048 	 * Note: It's not possible to perform EEH device addition (i.e.
1049 	 * {pseries,pnv}_pcibios_bus_add_device()) here because it depends on
1050 	 * the device's resources, which have not yet been set up.
1051 	 */
1052 	case BUS_NOTIFY_DEL_DEVICE:
1053 		eeh_remove_device(to_pci_dev(dev));
1054 		break;
1055 	default:
1056 		break;
1057 	}
1058 	return NOTIFY_DONE;
1059 }
1060 
1061 static struct notifier_block eeh_device_nb = {
1062 	.notifier_call = eeh_device_notifier,
1063 };
1064 
1065 static __init int eeh_set_bus_notifier(void)
1066 {
1067 	bus_register_notifier(&pci_bus_type, &eeh_device_nb);
1068 	return 0;
1069 }
1070 arch_initcall(eeh_set_bus_notifier);
1071 
1072 /**
1073  * eeh_probe_device() - Perform EEH initialization for the indicated pci device
1074  * @dev: pci device for which to set up EEH
1075  *
1076  * This routine must be used to complete EEH initialization for PCI
1077  * devices that were added after system boot (e.g. hotplug, dlpar).
1078  */
1079 void eeh_probe_device(struct pci_dev *dev)
1080 {
1081 	struct eeh_dev *edev;
1082 
1083 	pr_debug("EEH: Adding device %s\n", pci_name(dev));
1084 
1085 	/*
1086 	 * pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was
1087 	 * already called for this device.
1088 	 */
1089 	if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev))) {
1090 		pci_dbg(dev, "Already bound to an eeh_dev!\n");
1091 		return;
1092 	}
1093 
1094 	edev = eeh_ops->probe(dev);
1095 	if (!edev) {
1096 		pr_debug("EEH: Adding device failed\n");
1097 		return;
1098 	}
1099 
1100 	/*
1101 	 * FIXME: We rely on pcibios_release_device() to remove the
1102 	 * existing EEH state. The release function is only called if
1103 	 * the pci_dev's refcount drops to zero so if something is
1104 	 * keeping a ref to a device (e.g. a filesystem) we need to
1105 	 * remove the old EEH state.
1106 	 *
1107 	 * FIXME: HEY MA, LOOK AT ME, NO LOCKING!
1108 	 */
1109 	if (edev->pdev && edev->pdev != dev) {
1110 		eeh_pe_tree_remove(edev);
1111 		eeh_addr_cache_rmv_dev(edev->pdev);
1112 		eeh_sysfs_remove_device(edev->pdev);
1113 
1114 		/*
1115 		 * We definitely should have the PCI device removed
1116 		 * though it wasn't correctly. So we needn't call
1117 		 * into error handler afterwards.
1118 		 */
1119 		edev->mode |= EEH_DEV_NO_HANDLER;
1120 	}
1121 
1122 	/* bind the pdev and the edev together */
1123 	edev->pdev = dev;
1124 	dev->dev.archdata.edev = edev;
1125 	eeh_addr_cache_insert_dev(dev);
1126 	eeh_sysfs_add_device(dev);
1127 }
1128 
1129 /**
1130  * eeh_remove_device - Undo EEH setup for the indicated pci device
1131  * @dev: pci device to be removed
1132  *
1133  * This routine should be called when a device is removed from
1134  * a running system (e.g. by hotplug or dlpar).  It unregisters
1135  * the PCI device from the EEH subsystem.  I/O errors affecting
1136  * this device will no longer be detected after this call; thus,
1137  * i/o errors affecting this slot may leave this device unusable.
1138  */
1139 void eeh_remove_device(struct pci_dev *dev)
1140 {
1141 	struct eeh_dev *edev;
1142 
1143 	if (!dev || !eeh_enabled())
1144 		return;
1145 	edev = pci_dev_to_eeh_dev(dev);
1146 
1147 	/* Unregister the device with the EEH/PCI address search system */
1148 	dev_dbg(&dev->dev, "EEH: Removing device\n");
1149 
1150 	if (!edev || !edev->pdev || !edev->pe) {
1151 		dev_dbg(&dev->dev, "EEH: Device not referenced!\n");
1152 		return;
1153 	}
1154 
1155 	/*
1156 	 * During the hotplug for EEH error recovery, we need the EEH
1157 	 * device attached to the parent PE in order for BAR restore
1158 	 * a bit later. So we keep it for BAR restore and remove it
1159 	 * from the parent PE during the BAR resotre.
1160 	 */
1161 	edev->pdev = NULL;
1162 
1163 	/*
1164 	 * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
1165 	 * remove the sysfs files before clearing dev.archdata.edev
1166 	 */
1167 	if (edev->mode & EEH_DEV_SYSFS)
1168 		eeh_sysfs_remove_device(dev);
1169 
1170 	/*
1171 	 * We're removing from the PCI subsystem, that means
1172 	 * the PCI device driver can't support EEH or not
1173 	 * well. So we rely on hotplug completely to do recovery
1174 	 * for the specific PCI device.
1175 	 */
1176 	edev->mode |= EEH_DEV_NO_HANDLER;
1177 
1178 	eeh_addr_cache_rmv_dev(dev);
1179 
1180 	/*
1181 	 * The flag "in_error" is used to trace EEH devices for VFs
1182 	 * in error state or not. It's set in eeh_report_error(). If
1183 	 * it's not set, eeh_report_{reset,resume}() won't be called
1184 	 * for the VF EEH device.
1185 	 */
1186 	edev->in_error = false;
1187 	dev->dev.archdata.edev = NULL;
1188 	if (!(edev->pe->state & EEH_PE_KEEP))
1189 		eeh_pe_tree_remove(edev);
1190 	else
1191 		edev->mode |= EEH_DEV_DISCONNECTED;
1192 }
1193 
1194 int eeh_unfreeze_pe(struct eeh_pe *pe)
1195 {
1196 	int ret;
1197 
1198 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1199 	if (ret) {
1200 		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1201 			__func__, ret, pe->phb->global_number, pe->addr);
1202 		return ret;
1203 	}
1204 
1205 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1206 	if (ret) {
1207 		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1208 			__func__, ret, pe->phb->global_number, pe->addr);
1209 		return ret;
1210 	}
1211 
1212 	return ret;
1213 }
1214 
1215 
1216 static struct pci_device_id eeh_reset_ids[] = {
1217 	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1218 	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1219 	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1220 	{ 0 }
1221 };
1222 
1223 static int eeh_pe_change_owner(struct eeh_pe *pe)
1224 {
1225 	struct eeh_dev *edev, *tmp;
1226 	struct pci_dev *pdev;
1227 	struct pci_device_id *id;
1228 	int ret;
1229 
1230 	/* Check PE state */
1231 	ret = eeh_ops->get_state(pe, NULL);
1232 	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1233 		return 0;
1234 
1235 	/* Unfrozen PE, nothing to do */
1236 	if (eeh_state_active(ret))
1237 		return 0;
1238 
1239 	/* Frozen PE, check if it needs PE level reset */
1240 	eeh_pe_for_each_dev(pe, edev, tmp) {
1241 		pdev = eeh_dev_to_pci_dev(edev);
1242 		if (!pdev)
1243 			continue;
1244 
1245 		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1246 			if (id->vendor != PCI_ANY_ID &&
1247 			    id->vendor != pdev->vendor)
1248 				continue;
1249 			if (id->device != PCI_ANY_ID &&
1250 			    id->device != pdev->device)
1251 				continue;
1252 			if (id->subvendor != PCI_ANY_ID &&
1253 			    id->subvendor != pdev->subsystem_vendor)
1254 				continue;
1255 			if (id->subdevice != PCI_ANY_ID &&
1256 			    id->subdevice != pdev->subsystem_device)
1257 				continue;
1258 
1259 			return eeh_pe_reset_and_recover(pe);
1260 		}
1261 	}
1262 
1263 	ret = eeh_unfreeze_pe(pe);
1264 	if (!ret)
1265 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1266 	return ret;
1267 }
1268 
1269 /**
1270  * eeh_dev_open - Increase count of pass through devices for PE
1271  * @pdev: PCI device
1272  *
1273  * Increase count of passed through devices for the indicated
1274  * PE. In the result, the EEH errors detected on the PE won't be
1275  * reported. The PE owner will be responsible for detection
1276  * and recovery.
1277  */
1278 int eeh_dev_open(struct pci_dev *pdev)
1279 {
1280 	struct eeh_dev *edev;
1281 	int ret = -ENODEV;
1282 
1283 	mutex_lock(&eeh_dev_mutex);
1284 
1285 	/* No PCI device ? */
1286 	if (!pdev)
1287 		goto out;
1288 
1289 	/* No EEH device or PE ? */
1290 	edev = pci_dev_to_eeh_dev(pdev);
1291 	if (!edev || !edev->pe)
1292 		goto out;
1293 
1294 	/*
1295 	 * The PE might have been put into frozen state, but we
1296 	 * didn't detect that yet. The passed through PCI devices
1297 	 * in frozen PE won't work properly. Clear the frozen state
1298 	 * in advance.
1299 	 */
1300 	ret = eeh_pe_change_owner(edev->pe);
1301 	if (ret)
1302 		goto out;
1303 
1304 	/* Increase PE's pass through count */
1305 	atomic_inc(&edev->pe->pass_dev_cnt);
1306 	mutex_unlock(&eeh_dev_mutex);
1307 
1308 	return 0;
1309 out:
1310 	mutex_unlock(&eeh_dev_mutex);
1311 	return ret;
1312 }
1313 EXPORT_SYMBOL_GPL(eeh_dev_open);
1314 
1315 /**
1316  * eeh_dev_release - Decrease count of pass through devices for PE
1317  * @pdev: PCI device
1318  *
1319  * Decrease count of pass through devices for the indicated PE. If
1320  * there is no passed through device in PE, the EEH errors detected
1321  * on the PE will be reported and handled as usual.
1322  */
1323 void eeh_dev_release(struct pci_dev *pdev)
1324 {
1325 	struct eeh_dev *edev;
1326 
1327 	mutex_lock(&eeh_dev_mutex);
1328 
1329 	/* No PCI device ? */
1330 	if (!pdev)
1331 		goto out;
1332 
1333 	/* No EEH device ? */
1334 	edev = pci_dev_to_eeh_dev(pdev);
1335 	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1336 		goto out;
1337 
1338 	/* Decrease PE's pass through count */
1339 	WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1340 	eeh_pe_change_owner(edev->pe);
1341 out:
1342 	mutex_unlock(&eeh_dev_mutex);
1343 }
1344 EXPORT_SYMBOL(eeh_dev_release);
1345 
1346 #ifdef CONFIG_IOMMU_API
1347 
1348 static int dev_has_iommu_table(struct device *dev, void *data)
1349 {
1350 	struct pci_dev *pdev = to_pci_dev(dev);
1351 	struct pci_dev **ppdev = data;
1352 
1353 	if (!dev)
1354 		return 0;
1355 
1356 	if (device_iommu_mapped(dev)) {
1357 		*ppdev = pdev;
1358 		return 1;
1359 	}
1360 
1361 	return 0;
1362 }
1363 
1364 /**
1365  * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1366  * @group: IOMMU group
1367  *
1368  * The routine is called to convert IOMMU group to EEH PE.
1369  */
1370 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1371 {
1372 	struct pci_dev *pdev = NULL;
1373 	struct eeh_dev *edev;
1374 	int ret;
1375 
1376 	/* No IOMMU group ? */
1377 	if (!group)
1378 		return NULL;
1379 
1380 	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1381 	if (!ret || !pdev)
1382 		return NULL;
1383 
1384 	/* No EEH device or PE ? */
1385 	edev = pci_dev_to_eeh_dev(pdev);
1386 	if (!edev || !edev->pe)
1387 		return NULL;
1388 
1389 	return edev->pe;
1390 }
1391 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1392 
1393 #endif /* CONFIG_IOMMU_API */
1394 
1395 /**
1396  * eeh_pe_set_option - Set options for the indicated PE
1397  * @pe: EEH PE
1398  * @option: requested option
1399  *
1400  * The routine is called to enable or disable EEH functionality
1401  * on the indicated PE, to enable IO or DMA for the frozen PE.
1402  */
1403 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1404 {
1405 	int ret = 0;
1406 
1407 	/* Invalid PE ? */
1408 	if (!pe)
1409 		return -ENODEV;
1410 
1411 	/*
1412 	 * EEH functionality could possibly be disabled, just
1413 	 * return error for the case. And the EEH functinality
1414 	 * isn't expected to be disabled on one specific PE.
1415 	 */
1416 	switch (option) {
1417 	case EEH_OPT_ENABLE:
1418 		if (eeh_enabled()) {
1419 			ret = eeh_pe_change_owner(pe);
1420 			break;
1421 		}
1422 		ret = -EIO;
1423 		break;
1424 	case EEH_OPT_DISABLE:
1425 		break;
1426 	case EEH_OPT_THAW_MMIO:
1427 	case EEH_OPT_THAW_DMA:
1428 	case EEH_OPT_FREEZE_PE:
1429 		if (!eeh_ops || !eeh_ops->set_option) {
1430 			ret = -ENOENT;
1431 			break;
1432 		}
1433 
1434 		ret = eeh_pci_enable(pe, option);
1435 		break;
1436 	default:
1437 		pr_debug("%s: Option %d out of range (%d, %d)\n",
1438 			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1439 		ret = -EINVAL;
1440 	}
1441 
1442 	return ret;
1443 }
1444 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1445 
1446 /**
1447  * eeh_pe_get_state - Retrieve PE's state
1448  * @pe: EEH PE
1449  *
1450  * Retrieve the PE's state, which includes 3 aspects: enabled
1451  * DMA, enabled IO and asserted reset.
1452  */
1453 int eeh_pe_get_state(struct eeh_pe *pe)
1454 {
1455 	int result, ret = 0;
1456 	bool rst_active, dma_en, mmio_en;
1457 
1458 	/* Existing PE ? */
1459 	if (!pe)
1460 		return -ENODEV;
1461 
1462 	if (!eeh_ops || !eeh_ops->get_state)
1463 		return -ENOENT;
1464 
1465 	/*
1466 	 * If the parent PE is owned by the host kernel and is undergoing
1467 	 * error recovery, we should return the PE state as temporarily
1468 	 * unavailable so that the error recovery on the guest is suspended
1469 	 * until the recovery completes on the host.
1470 	 */
1471 	if (pe->parent &&
1472 	    !(pe->state & EEH_PE_REMOVED) &&
1473 	    (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1474 		return EEH_PE_STATE_UNAVAIL;
1475 
1476 	result = eeh_ops->get_state(pe, NULL);
1477 	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1478 	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1479 	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1480 
1481 	if (rst_active)
1482 		ret = EEH_PE_STATE_RESET;
1483 	else if (dma_en && mmio_en)
1484 		ret = EEH_PE_STATE_NORMAL;
1485 	else if (!dma_en && !mmio_en)
1486 		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1487 	else if (!dma_en && mmio_en)
1488 		ret = EEH_PE_STATE_STOPPED_DMA;
1489 	else
1490 		ret = EEH_PE_STATE_UNAVAIL;
1491 
1492 	return ret;
1493 }
1494 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1495 
1496 static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1497 {
1498 	struct eeh_dev *edev, *tmp;
1499 	struct pci_dev *pdev;
1500 	int ret = 0;
1501 
1502 	eeh_pe_restore_bars(pe);
1503 
1504 	/*
1505 	 * Reenable PCI devices as the devices passed
1506 	 * through are always enabled before the reset.
1507 	 */
1508 	eeh_pe_for_each_dev(pe, edev, tmp) {
1509 		pdev = eeh_dev_to_pci_dev(edev);
1510 		if (!pdev)
1511 			continue;
1512 
1513 		ret = pci_reenable_device(pdev);
1514 		if (ret) {
1515 			pr_warn("%s: Failure %d reenabling %s\n",
1516 				__func__, ret, pci_name(pdev));
1517 			return ret;
1518 		}
1519 	}
1520 
1521 	/* The PE is still in frozen state */
1522 	if (include_passed || !eeh_pe_passed(pe)) {
1523 		ret = eeh_unfreeze_pe(pe);
1524 	} else
1525 		pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1526 			pe->phb->global_number, pe->addr);
1527 	if (!ret)
1528 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1529 	return ret;
1530 }
1531 
1532 
1533 /**
1534  * eeh_pe_reset - Issue PE reset according to specified type
1535  * @pe: EEH PE
1536  * @option: reset type
1537  *
1538  * The routine is called to reset the specified PE with the
1539  * indicated type, either fundamental reset or hot reset.
1540  * PE reset is the most important part for error recovery.
1541  */
1542 int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1543 {
1544 	int ret = 0;
1545 
1546 	/* Invalid PE ? */
1547 	if (!pe)
1548 		return -ENODEV;
1549 
1550 	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1551 		return -ENOENT;
1552 
1553 	switch (option) {
1554 	case EEH_RESET_DEACTIVATE:
1555 		ret = eeh_ops->reset(pe, option);
1556 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1557 		if (ret)
1558 			break;
1559 
1560 		ret = eeh_pe_reenable_devices(pe, include_passed);
1561 		break;
1562 	case EEH_RESET_HOT:
1563 	case EEH_RESET_FUNDAMENTAL:
1564 		/*
1565 		 * Proactively freeze the PE to drop all MMIO access
1566 		 * during reset, which should be banned as it's always
1567 		 * cause recursive EEH error.
1568 		 */
1569 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1570 
1571 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1572 		ret = eeh_ops->reset(pe, option);
1573 		break;
1574 	default:
1575 		pr_debug("%s: Unsupported option %d\n",
1576 			__func__, option);
1577 		ret = -EINVAL;
1578 	}
1579 
1580 	return ret;
1581 }
1582 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1583 
1584 /**
1585  * eeh_pe_configure - Configure PCI bridges after PE reset
1586  * @pe: EEH PE
1587  *
1588  * The routine is called to restore the PCI config space for
1589  * those PCI devices, especially PCI bridges affected by PE
1590  * reset issued previously.
1591  */
1592 int eeh_pe_configure(struct eeh_pe *pe)
1593 {
1594 	int ret = 0;
1595 
1596 	/* Invalid PE ? */
1597 	if (!pe)
1598 		return -ENODEV;
1599 
1600 	return ret;
1601 }
1602 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1603 
1604 /**
1605  * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1606  * @pe: the indicated PE
1607  * @type: error type
1608  * @function: error function
1609  * @addr: address
1610  * @mask: address mask
1611  *
1612  * The routine is called to inject the specified PCI error, which
1613  * is determined by @type and @function, to the indicated PE for
1614  * testing purpose.
1615  */
1616 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1617 		      unsigned long addr, unsigned long mask)
1618 {
1619 	/* Invalid PE ? */
1620 	if (!pe)
1621 		return -ENODEV;
1622 
1623 	/* Unsupported operation ? */
1624 	if (!eeh_ops || !eeh_ops->err_inject)
1625 		return -ENOENT;
1626 
1627 	/* Check on PCI error type */
1628 	if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1629 		return -EINVAL;
1630 
1631 	/* Check on PCI error function */
1632 	if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1633 		return -EINVAL;
1634 
1635 	return eeh_ops->err_inject(pe, type, func, addr, mask);
1636 }
1637 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1638 
1639 static int proc_eeh_show(struct seq_file *m, void *v)
1640 {
1641 	if (!eeh_enabled()) {
1642 		seq_printf(m, "EEH Subsystem is globally disabled\n");
1643 		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1644 	} else {
1645 		seq_printf(m, "EEH Subsystem is enabled\n");
1646 		seq_printf(m,
1647 				"no device=%llu\n"
1648 				"no device node=%llu\n"
1649 				"no config address=%llu\n"
1650 				"check not wanted=%llu\n"
1651 				"eeh_total_mmio_ffs=%llu\n"
1652 				"eeh_false_positives=%llu\n"
1653 				"eeh_slot_resets=%llu\n",
1654 				eeh_stats.no_device,
1655 				eeh_stats.no_dn,
1656 				eeh_stats.no_cfg_addr,
1657 				eeh_stats.ignored_check,
1658 				eeh_stats.total_mmio_ffs,
1659 				eeh_stats.false_positives,
1660 				eeh_stats.slot_resets);
1661 	}
1662 
1663 	return 0;
1664 }
1665 
1666 #ifdef CONFIG_DEBUG_FS
1667 static int eeh_enable_dbgfs_set(void *data, u64 val)
1668 {
1669 	if (val)
1670 		eeh_clear_flag(EEH_FORCE_DISABLED);
1671 	else
1672 		eeh_add_flag(EEH_FORCE_DISABLED);
1673 
1674 	return 0;
1675 }
1676 
1677 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1678 {
1679 	if (eeh_enabled())
1680 		*val = 0x1ul;
1681 	else
1682 		*val = 0x0ul;
1683 	return 0;
1684 }
1685 
1686 DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1687 			 eeh_enable_dbgfs_set, "0x%llx\n");
1688 
1689 static ssize_t eeh_force_recover_write(struct file *filp,
1690 				const char __user *user_buf,
1691 				size_t count, loff_t *ppos)
1692 {
1693 	struct pci_controller *hose;
1694 	uint32_t phbid, pe_no;
1695 	struct eeh_pe *pe;
1696 	char buf[20];
1697 	int ret;
1698 
1699 	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1700 	if (!ret)
1701 		return -EFAULT;
1702 
1703 	/*
1704 	 * When PE is NULL the event is a "special" event. Rather than
1705 	 * recovering a specific PE it forces the EEH core to scan for failed
1706 	 * PHBs and recovers each. This needs to be done before any device
1707 	 * recoveries can occur.
1708 	 */
1709 	if (!strncmp(buf, "hwcheck", 7)) {
1710 		__eeh_send_failure_event(NULL);
1711 		return count;
1712 	}
1713 
1714 	ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1715 	if (ret != 2)
1716 		return -EINVAL;
1717 
1718 	hose = pci_find_controller_for_domain(phbid);
1719 	if (!hose)
1720 		return -ENODEV;
1721 
1722 	/* Retrieve PE */
1723 	pe = eeh_pe_get(hose, pe_no, 0);
1724 	if (!pe)
1725 		return -ENODEV;
1726 
1727 	/*
1728 	 * We don't do any state checking here since the detection
1729 	 * process is async to the recovery process. The recovery
1730 	 * thread *should* not break even if we schedule a recovery
1731 	 * from an odd state (e.g. PE removed, or recovery of a
1732 	 * non-isolated PE)
1733 	 */
1734 	__eeh_send_failure_event(pe);
1735 
1736 	return ret < 0 ? ret : count;
1737 }
1738 
1739 static const struct file_operations eeh_force_recover_fops = {
1740 	.open	= simple_open,
1741 	.llseek	= no_llseek,
1742 	.write	= eeh_force_recover_write,
1743 };
1744 
1745 static ssize_t eeh_debugfs_dev_usage(struct file *filp,
1746 				char __user *user_buf,
1747 				size_t count, loff_t *ppos)
1748 {
1749 	static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
1750 
1751 	return simple_read_from_buffer(user_buf, count, ppos,
1752 				       usage, sizeof(usage) - 1);
1753 }
1754 
1755 static ssize_t eeh_dev_check_write(struct file *filp,
1756 				const char __user *user_buf,
1757 				size_t count, loff_t *ppos)
1758 {
1759 	uint32_t domain, bus, dev, fn;
1760 	struct pci_dev *pdev;
1761 	struct eeh_dev *edev;
1762 	char buf[20];
1763 	int ret;
1764 
1765 	memset(buf, 0, sizeof(buf));
1766 	ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1767 	if (!ret)
1768 		return -EFAULT;
1769 
1770 	ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1771 	if (ret != 4) {
1772 		pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1773 		return -EINVAL;
1774 	}
1775 
1776 	pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1777 	if (!pdev)
1778 		return -ENODEV;
1779 
1780 	edev = pci_dev_to_eeh_dev(pdev);
1781 	if (!edev) {
1782 		pci_err(pdev, "No eeh_dev for this device!\n");
1783 		pci_dev_put(pdev);
1784 		return -ENODEV;
1785 	}
1786 
1787 	ret = eeh_dev_check_failure(edev);
1788 	pci_info(pdev, "eeh_dev_check_failure(%04x:%02x:%02x.%01x) = %d\n",
1789 			domain, bus, dev, fn, ret);
1790 
1791 	pci_dev_put(pdev);
1792 
1793 	return count;
1794 }
1795 
1796 static const struct file_operations eeh_dev_check_fops = {
1797 	.open	= simple_open,
1798 	.llseek	= no_llseek,
1799 	.write	= eeh_dev_check_write,
1800 	.read   = eeh_debugfs_dev_usage,
1801 };
1802 
1803 static int eeh_debugfs_break_device(struct pci_dev *pdev)
1804 {
1805 	struct resource *bar = NULL;
1806 	void __iomem *mapped;
1807 	u16 old, bit;
1808 	int i, pos;
1809 
1810 	/* Do we have an MMIO BAR to disable? */
1811 	for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
1812 		struct resource *r = &pdev->resource[i];
1813 
1814 		if (!r->flags || !r->start)
1815 			continue;
1816 		if (r->flags & IORESOURCE_IO)
1817 			continue;
1818 		if (r->flags & IORESOURCE_UNSET)
1819 			continue;
1820 
1821 		bar = r;
1822 		break;
1823 	}
1824 
1825 	if (!bar) {
1826 		pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n");
1827 		return -ENXIO;
1828 	}
1829 
1830 	pci_err(pdev, "Going to break: %pR\n", bar);
1831 
1832 	if (pdev->is_virtfn) {
1833 #ifndef CONFIG_PCI_IOV
1834 		return -ENXIO;
1835 #else
1836 		/*
1837 		 * VFs don't have a per-function COMMAND register, so the best
1838 		 * we can do is clear the Memory Space Enable bit in the PF's
1839 		 * SRIOV control reg.
1840 		 *
1841 		 * Unfortunately, this requires that we have a PF (i.e doesn't
1842 		 * work for a passed-through VF) and it has the potential side
1843 		 * effect of also causing an EEH on every other VF under the
1844 		 * PF. Oh well.
1845 		 */
1846 		pdev = pdev->physfn;
1847 		if (!pdev)
1848 			return -ENXIO; /* passed through VFs have no PF */
1849 
1850 		pos  = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1851 		pos += PCI_SRIOV_CTRL;
1852 		bit  = PCI_SRIOV_CTRL_MSE;
1853 #endif /* !CONFIG_PCI_IOV */
1854 	} else {
1855 		bit = PCI_COMMAND_MEMORY;
1856 		pos = PCI_COMMAND;
1857 	}
1858 
1859 	/*
1860 	 * Process here is:
1861 	 *
1862 	 * 1. Disable Memory space.
1863 	 *
1864 	 * 2. Perform an MMIO to the device. This should result in an error
1865 	 *    (CA  / UR) being raised by the device which results in an EEH
1866 	 *    PE freeze. Using the in_8() accessor skips the eeh detection hook
1867 	 *    so the freeze hook so the EEH Detection machinery won't be
1868 	 *    triggered here. This is to match the usual behaviour of EEH
1869 	 *    where the HW will asyncronously freeze a PE and it's up to
1870 	 *    the kernel to notice and deal with it.
1871 	 *
1872 	 * 3. Turn Memory space back on. This is more important for VFs
1873 	 *    since recovery will probably fail if we don't. For normal
1874 	 *    the COMMAND register is reset as a part of re-initialising
1875 	 *    the device.
1876 	 *
1877 	 * Breaking stuff is the point so who cares if it's racy ;)
1878 	 */
1879 	pci_read_config_word(pdev, pos, &old);
1880 
1881 	mapped = ioremap(bar->start, PAGE_SIZE);
1882 	if (!mapped) {
1883 		pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar);
1884 		return -ENXIO;
1885 	}
1886 
1887 	pci_write_config_word(pdev, pos, old & ~bit);
1888 	in_8(mapped);
1889 	pci_write_config_word(pdev, pos, old);
1890 
1891 	iounmap(mapped);
1892 
1893 	return 0;
1894 }
1895 
1896 static ssize_t eeh_dev_break_write(struct file *filp,
1897 				const char __user *user_buf,
1898 				size_t count, loff_t *ppos)
1899 {
1900 	uint32_t domain, bus, dev, fn;
1901 	struct pci_dev *pdev;
1902 	char buf[20];
1903 	int ret;
1904 
1905 	memset(buf, 0, sizeof(buf));
1906 	ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1907 	if (!ret)
1908 		return -EFAULT;
1909 
1910 	ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1911 	if (ret != 4) {
1912 		pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1913 		return -EINVAL;
1914 	}
1915 
1916 	pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1917 	if (!pdev)
1918 		return -ENODEV;
1919 
1920 	ret = eeh_debugfs_break_device(pdev);
1921 	pci_dev_put(pdev);
1922 
1923 	if (ret < 0)
1924 		return ret;
1925 
1926 	return count;
1927 }
1928 
1929 static const struct file_operations eeh_dev_break_fops = {
1930 	.open	= simple_open,
1931 	.llseek	= no_llseek,
1932 	.write	= eeh_dev_break_write,
1933 	.read   = eeh_debugfs_dev_usage,
1934 };
1935 
1936 #endif
1937 
1938 static int __init eeh_init_proc(void)
1939 {
1940 	if (machine_is(pseries) || machine_is(powernv)) {
1941 		proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1942 #ifdef CONFIG_DEBUG_FS
1943 		debugfs_create_file_unsafe("eeh_enable", 0600,
1944 					   powerpc_debugfs_root, NULL,
1945 					   &eeh_enable_dbgfs_ops);
1946 		debugfs_create_u32("eeh_max_freezes", 0600,
1947 				powerpc_debugfs_root, &eeh_max_freezes);
1948 		debugfs_create_bool("eeh_disable_recovery", 0600,
1949 				powerpc_debugfs_root,
1950 				&eeh_debugfs_no_recover);
1951 		debugfs_create_file_unsafe("eeh_dev_check", 0600,
1952 				powerpc_debugfs_root, NULL,
1953 				&eeh_dev_check_fops);
1954 		debugfs_create_file_unsafe("eeh_dev_break", 0600,
1955 				powerpc_debugfs_root, NULL,
1956 				&eeh_dev_break_fops);
1957 		debugfs_create_file_unsafe("eeh_force_recover", 0600,
1958 				powerpc_debugfs_root, NULL,
1959 				&eeh_force_recover_fops);
1960 		eeh_cache_debugfs_init();
1961 #endif
1962 	}
1963 
1964 	return 0;
1965 }
1966 __initcall(eeh_init_proc);
1967