xref: /openbmc/linux/arch/powerpc/kernel/eeh.c (revision 4bce6fce)
1 /*
2  * Copyright IBM Corporation 2001, 2005, 2006
3  * Copyright Dave Engebretsen & Todd Inglett 2001
4  * Copyright Linas Vepstas 2005, 2006
5  * Copyright 2001-2012 IBM Corporation.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/debugfs.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/pci.h>
30 #include <linux/iommu.h>
31 #include <linux/proc_fs.h>
32 #include <linux/rbtree.h>
33 #include <linux/reboot.h>
34 #include <linux/seq_file.h>
35 #include <linux/spinlock.h>
36 #include <linux/export.h>
37 #include <linux/of.h>
38 
39 #include <linux/atomic.h>
40 #include <asm/debug.h>
41 #include <asm/eeh.h>
42 #include <asm/eeh_event.h>
43 #include <asm/io.h>
44 #include <asm/iommu.h>
45 #include <asm/machdep.h>
46 #include <asm/ppc-pci.h>
47 #include <asm/rtas.h>
48 
49 
50 /** Overview:
51  *  EEH, or "Extended Error Handling" is a PCI bridge technology for
52  *  dealing with PCI bus errors that can't be dealt with within the
53  *  usual PCI framework, except by check-stopping the CPU.  Systems
54  *  that are designed for high-availability/reliability cannot afford
55  *  to crash due to a "mere" PCI error, thus the need for EEH.
56  *  An EEH-capable bridge operates by converting a detected error
57  *  into a "slot freeze", taking the PCI adapter off-line, making
58  *  the slot behave, from the OS'es point of view, as if the slot
59  *  were "empty": all reads return 0xff's and all writes are silently
60  *  ignored.  EEH slot isolation events can be triggered by parity
61  *  errors on the address or data busses (e.g. during posted writes),
62  *  which in turn might be caused by low voltage on the bus, dust,
63  *  vibration, humidity, radioactivity or plain-old failed hardware.
64  *
65  *  Note, however, that one of the leading causes of EEH slot
66  *  freeze events are buggy device drivers, buggy device microcode,
67  *  or buggy device hardware.  This is because any attempt by the
68  *  device to bus-master data to a memory address that is not
69  *  assigned to the device will trigger a slot freeze.   (The idea
70  *  is to prevent devices-gone-wild from corrupting system memory).
71  *  Buggy hardware/drivers will have a miserable time co-existing
72  *  with EEH.
73  *
74  *  Ideally, a PCI device driver, when suspecting that an isolation
75  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
76  *  whether this is the case, and then take appropriate steps to
77  *  reset the PCI slot, the PCI device, and then resume operations.
78  *  However, until that day,  the checking is done here, with the
79  *  eeh_check_failure() routine embedded in the MMIO macros.  If
80  *  the slot is found to be isolated, an "EEH Event" is synthesized
81  *  and sent out for processing.
82  */
83 
84 /* If a device driver keeps reading an MMIO register in an interrupt
85  * handler after a slot isolation event, it might be broken.
86  * This sets the threshold for how many read attempts we allow
87  * before printing an error message.
88  */
89 #define EEH_MAX_FAILS	2100000
90 
91 /* Time to wait for a PCI slot to report status, in milliseconds */
92 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
93 
94 /*
95  * EEH probe mode support, which is part of the flags,
96  * is to support multiple platforms for EEH. Some platforms
97  * like pSeries do PCI emunation based on device tree.
98  * However, other platforms like powernv probe PCI devices
99  * from hardware. The flag is used to distinguish that.
100  * In addition, struct eeh_ops::probe would be invoked for
101  * particular OF node or PCI device so that the corresponding
102  * PE would be created there.
103  */
104 int eeh_subsystem_flags;
105 EXPORT_SYMBOL(eeh_subsystem_flags);
106 
107 /*
108  * EEH allowed maximal frozen times. If one particular PE's
109  * frozen count in last hour exceeds this limit, the PE will
110  * be forced to be offline permanently.
111  */
112 int eeh_max_freezes = 5;
113 
114 /* Platform dependent EEH operations */
115 struct eeh_ops *eeh_ops = NULL;
116 
117 /* Lock to avoid races due to multiple reports of an error */
118 DEFINE_RAW_SPINLOCK(confirm_error_lock);
119 
120 /* Lock to protect passed flags */
121 static DEFINE_MUTEX(eeh_dev_mutex);
122 
123 /* Buffer for reporting pci register dumps. Its here in BSS, and
124  * not dynamically alloced, so that it ends up in RMO where RTAS
125  * can access it.
126  */
127 #define EEH_PCI_REGS_LOG_LEN 8192
128 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
129 
130 /*
131  * The struct is used to maintain the EEH global statistic
132  * information. Besides, the EEH global statistics will be
133  * exported to user space through procfs
134  */
135 struct eeh_stats {
136 	u64 no_device;		/* PCI device not found		*/
137 	u64 no_dn;		/* OF node not found		*/
138 	u64 no_cfg_addr;	/* Config address not found	*/
139 	u64 ignored_check;	/* EEH check skipped		*/
140 	u64 total_mmio_ffs;	/* Total EEH checks		*/
141 	u64 false_positives;	/* Unnecessary EEH checks	*/
142 	u64 slot_resets;	/* PE reset			*/
143 };
144 
145 static struct eeh_stats eeh_stats;
146 
147 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
148 
149 static int __init eeh_setup(char *str)
150 {
151 	if (!strcmp(str, "off"))
152 		eeh_add_flag(EEH_FORCE_DISABLED);
153 	else if (!strcmp(str, "early_log"))
154 		eeh_add_flag(EEH_EARLY_DUMP_LOG);
155 
156 	return 1;
157 }
158 __setup("eeh=", eeh_setup);
159 
160 /*
161  * This routine captures assorted PCI configuration space data
162  * for the indicated PCI device, and puts them into a buffer
163  * for RTAS error logging.
164  */
165 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
166 {
167 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
168 	u32 cfg;
169 	int cap, i;
170 	int n = 0, l = 0;
171 	char buffer[128];
172 
173 	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x:%01x\n",
174 		       edev->phb->global_number, pdn->busno,
175 		       PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
176 	pr_warn("EEH: of node=%04x:%02x:%02x:%01x\n",
177 		edev->phb->global_number, pdn->busno,
178 		PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
179 
180 	eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
181 	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
182 	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
183 
184 	eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
185 	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
186 	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
187 
188 	/* Gather bridge-specific registers */
189 	if (edev->mode & EEH_DEV_BRIDGE) {
190 		eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
191 		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
192 		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
193 
194 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
195 		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
196 		pr_warn("EEH: Bridge control: %04x\n", cfg);
197 	}
198 
199 	/* Dump out the PCI-X command and status regs */
200 	cap = edev->pcix_cap;
201 	if (cap) {
202 		eeh_ops->read_config(pdn, cap, 4, &cfg);
203 		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
204 		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
205 
206 		eeh_ops->read_config(pdn, cap+4, 4, &cfg);
207 		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
208 		pr_warn("EEH: PCI-X status: %08x\n", cfg);
209 	}
210 
211 	/* If PCI-E capable, dump PCI-E cap 10 */
212 	cap = edev->pcie_cap;
213 	if (cap) {
214 		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
215 		pr_warn("EEH: PCI-E capabilities and status follow:\n");
216 
217 		for (i=0; i<=8; i++) {
218 			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
219 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
220 
221 			if ((i % 4) == 0) {
222 				if (i != 0)
223 					pr_warn("%s\n", buffer);
224 
225 				l = scnprintf(buffer, sizeof(buffer),
226 					      "EEH: PCI-E %02x: %08x ",
227 					      4*i, cfg);
228 			} else {
229 				l += scnprintf(buffer+l, sizeof(buffer)-l,
230 					       "%08x ", cfg);
231 			}
232 
233 		}
234 
235 		pr_warn("%s\n", buffer);
236 	}
237 
238 	/* If AER capable, dump it */
239 	cap = edev->aer_cap;
240 	if (cap) {
241 		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
242 		pr_warn("EEH: PCI-E AER capability register set follows:\n");
243 
244 		for (i=0; i<=13; i++) {
245 			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
246 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
247 
248 			if ((i % 4) == 0) {
249 				if (i != 0)
250 					pr_warn("%s\n", buffer);
251 
252 				l = scnprintf(buffer, sizeof(buffer),
253 					      "EEH: PCI-E AER %02x: %08x ",
254 					      4*i, cfg);
255 			} else {
256 				l += scnprintf(buffer+l, sizeof(buffer)-l,
257 					       "%08x ", cfg);
258 			}
259 		}
260 
261 		pr_warn("%s\n", buffer);
262 	}
263 
264 	return n;
265 }
266 
267 static void *eeh_dump_pe_log(void *data, void *flag)
268 {
269 	struct eeh_pe *pe = data;
270 	struct eeh_dev *edev, *tmp;
271 	size_t *plen = flag;
272 
273 	/* If the PE's config space is blocked, 0xFF's will be
274 	 * returned. It's pointless to collect the log in this
275 	 * case.
276 	 */
277 	if (pe->state & EEH_PE_CFG_BLOCKED)
278 		return NULL;
279 
280 	eeh_pe_for_each_dev(pe, edev, tmp)
281 		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
282 					  EEH_PCI_REGS_LOG_LEN - *plen);
283 
284 	return NULL;
285 }
286 
287 /**
288  * eeh_slot_error_detail - Generate combined log including driver log and error log
289  * @pe: EEH PE
290  * @severity: temporary or permanent error log
291  *
292  * This routine should be called to generate the combined log, which
293  * is comprised of driver log and error log. The driver log is figured
294  * out from the config space of the corresponding PCI device, while
295  * the error log is fetched through platform dependent function call.
296  */
297 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
298 {
299 	size_t loglen = 0;
300 
301 	/*
302 	 * When the PHB is fenced or dead, it's pointless to collect
303 	 * the data from PCI config space because it should return
304 	 * 0xFF's. For ER, we still retrieve the data from the PCI
305 	 * config space.
306 	 *
307 	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
308 	 * 0xFF's is always returned from PCI config space.
309 	 */
310 	if (!(pe->type & EEH_PE_PHB)) {
311 		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG))
312 			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
313 		eeh_ops->configure_bridge(pe);
314 		eeh_pe_restore_bars(pe);
315 
316 		pci_regs_buf[0] = 0;
317 		eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
318 	}
319 
320 	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
321 }
322 
323 /**
324  * eeh_token_to_phys - Convert EEH address token to phys address
325  * @token: I/O token, should be address in the form 0xA....
326  *
327  * This routine should be called to convert virtual I/O address
328  * to physical one.
329  */
330 static inline unsigned long eeh_token_to_phys(unsigned long token)
331 {
332 	pte_t *ptep;
333 	unsigned long pa;
334 	int hugepage_shift;
335 
336 	/*
337 	 * We won't find hugepages here(this is iomem). Hence we are not
338 	 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
339 	 * page table free, because of init_mm.
340 	 */
341 	ptep = __find_linux_pte_or_hugepte(init_mm.pgd, token, &hugepage_shift);
342 	if (!ptep)
343 		return token;
344 	WARN_ON(hugepage_shift);
345 	pa = pte_pfn(*ptep) << PAGE_SHIFT;
346 
347 	return pa | (token & (PAGE_SIZE-1));
348 }
349 
350 /*
351  * On PowerNV platform, we might already have fenced PHB there.
352  * For that case, it's meaningless to recover frozen PE. Intead,
353  * We have to handle fenced PHB firstly.
354  */
355 static int eeh_phb_check_failure(struct eeh_pe *pe)
356 {
357 	struct eeh_pe *phb_pe;
358 	unsigned long flags;
359 	int ret;
360 
361 	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
362 		return -EPERM;
363 
364 	/* Find the PHB PE */
365 	phb_pe = eeh_phb_pe_get(pe->phb);
366 	if (!phb_pe) {
367 		pr_warn("%s Can't find PE for PHB#%d\n",
368 			__func__, pe->phb->global_number);
369 		return -EEXIST;
370 	}
371 
372 	/* If the PHB has been in problematic state */
373 	eeh_serialize_lock(&flags);
374 	if (phb_pe->state & EEH_PE_ISOLATED) {
375 		ret = 0;
376 		goto out;
377 	}
378 
379 	/* Check PHB state */
380 	ret = eeh_ops->get_state(phb_pe, NULL);
381 	if ((ret < 0) ||
382 	    (ret == EEH_STATE_NOT_SUPPORT) ||
383 	    (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
384 	    (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
385 		ret = 0;
386 		goto out;
387 	}
388 
389 	/* Isolate the PHB and send event */
390 	eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
391 	eeh_serialize_unlock(flags);
392 
393 	pr_err("EEH: PHB#%x failure detected, location: %s\n",
394 		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
395 	dump_stack();
396 	eeh_send_failure_event(phb_pe);
397 
398 	return 1;
399 out:
400 	eeh_serialize_unlock(flags);
401 	return ret;
402 }
403 
404 /**
405  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
406  * @edev: eeh device
407  *
408  * Check for an EEH failure for the given device node.  Call this
409  * routine if the result of a read was all 0xff's and you want to
410  * find out if this is due to an EEH slot freeze.  This routine
411  * will query firmware for the EEH status.
412  *
413  * Returns 0 if there has not been an EEH error; otherwise returns
414  * a non-zero value and queues up a slot isolation event notification.
415  *
416  * It is safe to call this routine in an interrupt context.
417  */
418 int eeh_dev_check_failure(struct eeh_dev *edev)
419 {
420 	int ret;
421 	int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
422 	unsigned long flags;
423 	struct pci_dn *pdn;
424 	struct pci_dev *dev;
425 	struct eeh_pe *pe, *parent_pe, *phb_pe;
426 	int rc = 0;
427 	const char *location = NULL;
428 
429 	eeh_stats.total_mmio_ffs++;
430 
431 	if (!eeh_enabled())
432 		return 0;
433 
434 	if (!edev) {
435 		eeh_stats.no_dn++;
436 		return 0;
437 	}
438 	dev = eeh_dev_to_pci_dev(edev);
439 	pe = eeh_dev_to_pe(edev);
440 
441 	/* Access to IO BARs might get this far and still not want checking. */
442 	if (!pe) {
443 		eeh_stats.ignored_check++;
444 		pr_debug("EEH: Ignored check for %s\n",
445 			eeh_pci_name(dev));
446 		return 0;
447 	}
448 
449 	if (!pe->addr && !pe->config_addr) {
450 		eeh_stats.no_cfg_addr++;
451 		return 0;
452 	}
453 
454 	/*
455 	 * On PowerNV platform, we might already have fenced PHB
456 	 * there and we need take care of that firstly.
457 	 */
458 	ret = eeh_phb_check_failure(pe);
459 	if (ret > 0)
460 		return ret;
461 
462 	/*
463 	 * If the PE isn't owned by us, we shouldn't check the
464 	 * state. Instead, let the owner handle it if the PE has
465 	 * been frozen.
466 	 */
467 	if (eeh_pe_passed(pe))
468 		return 0;
469 
470 	/* If we already have a pending isolation event for this
471 	 * slot, we know it's bad already, we don't need to check.
472 	 * Do this checking under a lock; as multiple PCI devices
473 	 * in one slot might report errors simultaneously, and we
474 	 * only want one error recovery routine running.
475 	 */
476 	eeh_serialize_lock(&flags);
477 	rc = 1;
478 	if (pe->state & EEH_PE_ISOLATED) {
479 		pe->check_count++;
480 		if (pe->check_count % EEH_MAX_FAILS == 0) {
481 			pdn = eeh_dev_to_pdn(edev);
482 			if (pdn->node)
483 				location = of_get_property(pdn->node, "ibm,loc-code", NULL);
484 			printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
485 				"location=%s driver=%s pci addr=%s\n",
486 				pe->check_count,
487 				location ? location : "unknown",
488 				eeh_driver_name(dev), eeh_pci_name(dev));
489 			printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
490 				eeh_driver_name(dev));
491 			dump_stack();
492 		}
493 		goto dn_unlock;
494 	}
495 
496 	/*
497 	 * Now test for an EEH failure.  This is VERY expensive.
498 	 * Note that the eeh_config_addr may be a parent device
499 	 * in the case of a device behind a bridge, or it may be
500 	 * function zero of a multi-function device.
501 	 * In any case they must share a common PHB.
502 	 */
503 	ret = eeh_ops->get_state(pe, NULL);
504 
505 	/* Note that config-io to empty slots may fail;
506 	 * they are empty when they don't have children.
507 	 * We will punt with the following conditions: Failure to get
508 	 * PE's state, EEH not support and Permanently unavailable
509 	 * state, PE is in good state.
510 	 */
511 	if ((ret < 0) ||
512 	    (ret == EEH_STATE_NOT_SUPPORT) ||
513 	    ((ret & active_flags) == active_flags)) {
514 		eeh_stats.false_positives++;
515 		pe->false_positives++;
516 		rc = 0;
517 		goto dn_unlock;
518 	}
519 
520 	/*
521 	 * It should be corner case that the parent PE has been
522 	 * put into frozen state as well. We should take care
523 	 * that at first.
524 	 */
525 	parent_pe = pe->parent;
526 	while (parent_pe) {
527 		/* Hit the ceiling ? */
528 		if (parent_pe->type & EEH_PE_PHB)
529 			break;
530 
531 		/* Frozen parent PE ? */
532 		ret = eeh_ops->get_state(parent_pe, NULL);
533 		if (ret > 0 &&
534 		    (ret & active_flags) != active_flags)
535 			pe = parent_pe;
536 
537 		/* Next parent level */
538 		parent_pe = parent_pe->parent;
539 	}
540 
541 	eeh_stats.slot_resets++;
542 
543 	/* Avoid repeated reports of this failure, including problems
544 	 * with other functions on this device, and functions under
545 	 * bridges.
546 	 */
547 	eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
548 	eeh_serialize_unlock(flags);
549 
550 	/* Most EEH events are due to device driver bugs.  Having
551 	 * a stack trace will help the device-driver authors figure
552 	 * out what happened.  So print that out.
553 	 */
554 	phb_pe = eeh_phb_pe_get(pe->phb);
555 	pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
556 	       pe->phb->global_number, pe->addr);
557 	pr_err("EEH: PE location: %s, PHB location: %s\n",
558 	       eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
559 	dump_stack();
560 
561 	eeh_send_failure_event(pe);
562 
563 	return 1;
564 
565 dn_unlock:
566 	eeh_serialize_unlock(flags);
567 	return rc;
568 }
569 
570 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
571 
572 /**
573  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
574  * @token: I/O address
575  *
576  * Check for an EEH failure at the given I/O address. Call this
577  * routine if the result of a read was all 0xff's and you want to
578  * find out if this is due to an EEH slot freeze event. This routine
579  * will query firmware for the EEH status.
580  *
581  * Note this routine is safe to call in an interrupt context.
582  */
583 int eeh_check_failure(const volatile void __iomem *token)
584 {
585 	unsigned long addr;
586 	struct eeh_dev *edev;
587 
588 	/* Finding the phys addr + pci device; this is pretty quick. */
589 	addr = eeh_token_to_phys((unsigned long __force) token);
590 	edev = eeh_addr_cache_get_dev(addr);
591 	if (!edev) {
592 		eeh_stats.no_device++;
593 		return 0;
594 	}
595 
596 	return eeh_dev_check_failure(edev);
597 }
598 EXPORT_SYMBOL(eeh_check_failure);
599 
600 
601 /**
602  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
603  * @pe: EEH PE
604  *
605  * This routine should be called to reenable frozen MMIO or DMA
606  * so that it would work correctly again. It's useful while doing
607  * recovery or log collection on the indicated device.
608  */
609 int eeh_pci_enable(struct eeh_pe *pe, int function)
610 {
611 	int active_flag, rc;
612 
613 	/*
614 	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
615 	 * Also, it's pointless to enable them on unfrozen PE. So
616 	 * we have to check before enabling IO or DMA.
617 	 */
618 	switch (function) {
619 	case EEH_OPT_THAW_MMIO:
620 		active_flag = EEH_STATE_MMIO_ACTIVE;
621 		break;
622 	case EEH_OPT_THAW_DMA:
623 		active_flag = EEH_STATE_DMA_ACTIVE;
624 		break;
625 	case EEH_OPT_DISABLE:
626 	case EEH_OPT_ENABLE:
627 	case EEH_OPT_FREEZE_PE:
628 		active_flag = 0;
629 		break;
630 	default:
631 		pr_warn("%s: Invalid function %d\n",
632 			__func__, function);
633 		return -EINVAL;
634 	}
635 
636 	/*
637 	 * Check if IO or DMA has been enabled before
638 	 * enabling them.
639 	 */
640 	if (active_flag) {
641 		rc = eeh_ops->get_state(pe, NULL);
642 		if (rc < 0)
643 			return rc;
644 
645 		/* Needn't enable it at all */
646 		if (rc == EEH_STATE_NOT_SUPPORT)
647 			return 0;
648 
649 		/* It's already enabled */
650 		if (rc & active_flag)
651 			return 0;
652 	}
653 
654 
655 	/* Issue the request */
656 	rc = eeh_ops->set_option(pe, function);
657 	if (rc)
658 		pr_warn("%s: Unexpected state change %d on "
659 			"PHB#%d-PE#%x, err=%d\n",
660 			__func__, function, pe->phb->global_number,
661 			pe->addr, rc);
662 
663 	/* Check if the request is finished successfully */
664 	if (active_flag) {
665 		rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
666 		if (rc <= 0)
667 			return rc;
668 
669 		if (rc & active_flag)
670 			return 0;
671 
672 		return -EIO;
673 	}
674 
675 	return rc;
676 }
677 
678 static void *eeh_disable_and_save_dev_state(void *data, void *userdata)
679 {
680 	struct eeh_dev *edev = data;
681 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
682 	struct pci_dev *dev = userdata;
683 
684 	/*
685 	 * The caller should have disabled and saved the
686 	 * state for the specified device
687 	 */
688 	if (!pdev || pdev == dev)
689 		return NULL;
690 
691 	/* Ensure we have D0 power state */
692 	pci_set_power_state(pdev, PCI_D0);
693 
694 	/* Save device state */
695 	pci_save_state(pdev);
696 
697 	/*
698 	 * Disable device to avoid any DMA traffic and
699 	 * interrupt from the device
700 	 */
701 	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
702 
703 	return NULL;
704 }
705 
706 static void *eeh_restore_dev_state(void *data, void *userdata)
707 {
708 	struct eeh_dev *edev = data;
709 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
710 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
711 	struct pci_dev *dev = userdata;
712 
713 	if (!pdev)
714 		return NULL;
715 
716 	/* Apply customization from firmware */
717 	if (pdn && eeh_ops->restore_config)
718 		eeh_ops->restore_config(pdn);
719 
720 	/* The caller should restore state for the specified device */
721 	if (pdev != dev)
722 		pci_save_state(pdev);
723 
724 	return NULL;
725 }
726 
727 /**
728  * pcibios_set_pcie_slot_reset - Set PCI-E reset state
729  * @dev: pci device struct
730  * @state: reset state to enter
731  *
732  * Return value:
733  * 	0 if success
734  */
735 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
736 {
737 	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
738 	struct eeh_pe *pe = eeh_dev_to_pe(edev);
739 
740 	if (!pe) {
741 		pr_err("%s: No PE found on PCI device %s\n",
742 			__func__, pci_name(dev));
743 		return -EINVAL;
744 	}
745 
746 	switch (state) {
747 	case pcie_deassert_reset:
748 		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
749 		eeh_unfreeze_pe(pe, false);
750 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
751 		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
752 		break;
753 	case pcie_hot_reset:
754 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
755 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
756 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
757 		eeh_ops->reset(pe, EEH_RESET_HOT);
758 		break;
759 	case pcie_warm_reset:
760 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
761 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
762 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
763 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
764 		break;
765 	default:
766 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
767 		return -EINVAL;
768 	};
769 
770 	return 0;
771 }
772 
773 /**
774  * eeh_set_pe_freset - Check the required reset for the indicated device
775  * @data: EEH device
776  * @flag: return value
777  *
778  * Each device might have its preferred reset type: fundamental or
779  * hot reset. The routine is used to collected the information for
780  * the indicated device and its children so that the bunch of the
781  * devices could be reset properly.
782  */
783 static void *eeh_set_dev_freset(void *data, void *flag)
784 {
785 	struct pci_dev *dev;
786 	unsigned int *freset = (unsigned int *)flag;
787 	struct eeh_dev *edev = (struct eeh_dev *)data;
788 
789 	dev = eeh_dev_to_pci_dev(edev);
790 	if (dev)
791 		*freset |= dev->needs_freset;
792 
793 	return NULL;
794 }
795 
796 /**
797  * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
798  * @pe: EEH PE
799  *
800  * Assert the PCI #RST line for 1/4 second.
801  */
802 static void eeh_reset_pe_once(struct eeh_pe *pe)
803 {
804 	unsigned int freset = 0;
805 
806 	/* Determine type of EEH reset required for
807 	 * Partitionable Endpoint, a hot-reset (1)
808 	 * or a fundamental reset (3).
809 	 * A fundamental reset required by any device under
810 	 * Partitionable Endpoint trumps hot-reset.
811 	 */
812 	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
813 
814 	if (freset)
815 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
816 	else
817 		eeh_ops->reset(pe, EEH_RESET_HOT);
818 
819 	eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
820 }
821 
822 /**
823  * eeh_reset_pe - Reset the indicated PE
824  * @pe: EEH PE
825  *
826  * This routine should be called to reset indicated device, including
827  * PE. A PE might include multiple PCI devices and sometimes PCI bridges
828  * might be involved as well.
829  */
830 int eeh_reset_pe(struct eeh_pe *pe)
831 {
832 	int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
833 	int i, state, ret;
834 
835 	/* Mark as reset and block config space */
836 	eeh_pe_state_mark(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
837 
838 	/* Take three shots at resetting the bus */
839 	for (i = 0; i < 3; i++) {
840 		eeh_reset_pe_once(pe);
841 
842 		/*
843 		 * EEH_PE_ISOLATED is expected to be removed after
844 		 * BAR restore.
845 		 */
846 		state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
847 		if ((state & flags) == flags) {
848 			ret = 0;
849 			goto out;
850 		}
851 
852 		if (state < 0) {
853 			pr_warn("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
854 				__func__, pe->phb->global_number, pe->addr);
855 			ret = -ENOTRECOVERABLE;
856 			goto out;
857 		}
858 
859 		/* We might run out of credits */
860 		ret = -EIO;
861 		pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
862 			__func__, state, pe->phb->global_number, pe->addr, (i + 1));
863 	}
864 
865 out:
866 	eeh_pe_state_clear(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
867 	return ret;
868 }
869 
870 /**
871  * eeh_save_bars - Save device bars
872  * @edev: PCI device associated EEH device
873  *
874  * Save the values of the device bars. Unlike the restore
875  * routine, this routine is *not* recursive. This is because
876  * PCI devices are added individually; but, for the restore,
877  * an entire slot is reset at a time.
878  */
879 void eeh_save_bars(struct eeh_dev *edev)
880 {
881 	struct pci_dn *pdn;
882 	int i;
883 
884 	pdn = eeh_dev_to_pdn(edev);
885 	if (!pdn)
886 		return;
887 
888 	for (i = 0; i < 16; i++)
889 		eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
890 
891 	/*
892 	 * For PCI bridges including root port, we need enable bus
893 	 * master explicitly. Otherwise, it can't fetch IODA table
894 	 * entries correctly. So we cache the bit in advance so that
895 	 * we can restore it after reset, either PHB range or PE range.
896 	 */
897 	if (edev->mode & EEH_DEV_BRIDGE)
898 		edev->config_space[1] |= PCI_COMMAND_MASTER;
899 }
900 
901 /**
902  * eeh_ops_register - Register platform dependent EEH operations
903  * @ops: platform dependent EEH operations
904  *
905  * Register the platform dependent EEH operation callback
906  * functions. The platform should call this function before
907  * any other EEH operations.
908  */
909 int __init eeh_ops_register(struct eeh_ops *ops)
910 {
911 	if (!ops->name) {
912 		pr_warn("%s: Invalid EEH ops name for %p\n",
913 			__func__, ops);
914 		return -EINVAL;
915 	}
916 
917 	if (eeh_ops && eeh_ops != ops) {
918 		pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
919 			__func__, eeh_ops->name, ops->name);
920 		return -EEXIST;
921 	}
922 
923 	eeh_ops = ops;
924 
925 	return 0;
926 }
927 
928 /**
929  * eeh_ops_unregister - Unreigster platform dependent EEH operations
930  * @name: name of EEH platform operations
931  *
932  * Unregister the platform dependent EEH operation callback
933  * functions.
934  */
935 int __exit eeh_ops_unregister(const char *name)
936 {
937 	if (!name || !strlen(name)) {
938 		pr_warn("%s: Invalid EEH ops name\n",
939 			__func__);
940 		return -EINVAL;
941 	}
942 
943 	if (eeh_ops && !strcmp(eeh_ops->name, name)) {
944 		eeh_ops = NULL;
945 		return 0;
946 	}
947 
948 	return -EEXIST;
949 }
950 
951 static int eeh_reboot_notifier(struct notifier_block *nb,
952 			       unsigned long action, void *unused)
953 {
954 	eeh_clear_flag(EEH_ENABLED);
955 	return NOTIFY_DONE;
956 }
957 
958 static struct notifier_block eeh_reboot_nb = {
959 	.notifier_call = eeh_reboot_notifier,
960 };
961 
962 /**
963  * eeh_init - EEH initialization
964  *
965  * Initialize EEH by trying to enable it for all of the adapters in the system.
966  * As a side effect we can determine here if eeh is supported at all.
967  * Note that we leave EEH on so failed config cycles won't cause a machine
968  * check.  If a user turns off EEH for a particular adapter they are really
969  * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
970  * grant access to a slot if EEH isn't enabled, and so we always enable
971  * EEH for all slots/all devices.
972  *
973  * The eeh-force-off option disables EEH checking globally, for all slots.
974  * Even if force-off is set, the EEH hardware is still enabled, so that
975  * newer systems can boot.
976  */
977 int eeh_init(void)
978 {
979 	struct pci_controller *hose, *tmp;
980 	struct pci_dn *pdn;
981 	static int cnt = 0;
982 	int ret = 0;
983 
984 	/*
985 	 * We have to delay the initialization on PowerNV after
986 	 * the PCI hierarchy tree has been built because the PEs
987 	 * are figured out based on PCI devices instead of device
988 	 * tree nodes
989 	 */
990 	if (machine_is(powernv) && cnt++ <= 0)
991 		return ret;
992 
993 	/* Register reboot notifier */
994 	ret = register_reboot_notifier(&eeh_reboot_nb);
995 	if (ret) {
996 		pr_warn("%s: Failed to register notifier (%d)\n",
997 			__func__, ret);
998 		return ret;
999 	}
1000 
1001 	/* call platform initialization function */
1002 	if (!eeh_ops) {
1003 		pr_warn("%s: Platform EEH operation not found\n",
1004 			__func__);
1005 		return -EEXIST;
1006 	} else if ((ret = eeh_ops->init()))
1007 		return ret;
1008 
1009 	/* Initialize EEH event */
1010 	ret = eeh_event_init();
1011 	if (ret)
1012 		return ret;
1013 
1014 	/* Enable EEH for all adapters */
1015 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1016 		pdn = hose->pci_data;
1017 		traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1018 	}
1019 
1020 	/*
1021 	 * Call platform post-initialization. Actually, It's good chance
1022 	 * to inform platform that EEH is ready to supply service if the
1023 	 * I/O cache stuff has been built up.
1024 	 */
1025 	if (eeh_ops->post_init) {
1026 		ret = eeh_ops->post_init();
1027 		if (ret)
1028 			return ret;
1029 	}
1030 
1031 	if (eeh_enabled())
1032 		pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1033 	else
1034 		pr_warn("EEH: No capable adapters found\n");
1035 
1036 	return ret;
1037 }
1038 
1039 core_initcall_sync(eeh_init);
1040 
1041 /**
1042  * eeh_add_device_early - Enable EEH for the indicated device node
1043  * @pdn: PCI device node for which to set up EEH
1044  *
1045  * This routine must be used to perform EEH initialization for PCI
1046  * devices that were added after system boot (e.g. hotplug, dlpar).
1047  * This routine must be called before any i/o is performed to the
1048  * adapter (inluding any config-space i/o).
1049  * Whether this actually enables EEH or not for this device depends
1050  * on the CEC architecture, type of the device, on earlier boot
1051  * command-line arguments & etc.
1052  */
1053 void eeh_add_device_early(struct pci_dn *pdn)
1054 {
1055 	struct pci_controller *phb;
1056 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1057 
1058 	if (!edev || !eeh_enabled())
1059 		return;
1060 
1061 	/* USB Bus children of PCI devices will not have BUID's */
1062 	phb = edev->phb;
1063 	if (NULL == phb ||
1064 	    (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1065 		return;
1066 
1067 	eeh_ops->probe(pdn, NULL);
1068 }
1069 
1070 /**
1071  * eeh_add_device_tree_early - Enable EEH for the indicated device
1072  * @pdn: PCI device node
1073  *
1074  * This routine must be used to perform EEH initialization for the
1075  * indicated PCI device that was added after system boot (e.g.
1076  * hotplug, dlpar).
1077  */
1078 void eeh_add_device_tree_early(struct pci_dn *pdn)
1079 {
1080 	struct pci_dn *n;
1081 
1082 	if (!pdn)
1083 		return;
1084 
1085 	list_for_each_entry(n, &pdn->child_list, list)
1086 		eeh_add_device_tree_early(n);
1087 	eeh_add_device_early(pdn);
1088 }
1089 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1090 
1091 /**
1092  * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1093  * @dev: pci device for which to set up EEH
1094  *
1095  * This routine must be used to complete EEH initialization for PCI
1096  * devices that were added after system boot (e.g. hotplug, dlpar).
1097  */
1098 void eeh_add_device_late(struct pci_dev *dev)
1099 {
1100 	struct pci_dn *pdn;
1101 	struct eeh_dev *edev;
1102 
1103 	if (!dev || !eeh_enabled())
1104 		return;
1105 
1106 	pr_debug("EEH: Adding device %s\n", pci_name(dev));
1107 
1108 	pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1109 	edev = pdn_to_eeh_dev(pdn);
1110 	if (edev->pdev == dev) {
1111 		pr_debug("EEH: Already referenced !\n");
1112 		return;
1113 	}
1114 
1115 	/*
1116 	 * The EEH cache might not be removed correctly because of
1117 	 * unbalanced kref to the device during unplug time, which
1118 	 * relies on pcibios_release_device(). So we have to remove
1119 	 * that here explicitly.
1120 	 */
1121 	if (edev->pdev) {
1122 		eeh_rmv_from_parent_pe(edev);
1123 		eeh_addr_cache_rmv_dev(edev->pdev);
1124 		eeh_sysfs_remove_device(edev->pdev);
1125 		edev->mode &= ~EEH_DEV_SYSFS;
1126 
1127 		/*
1128 		 * We definitely should have the PCI device removed
1129 		 * though it wasn't correctly. So we needn't call
1130 		 * into error handler afterwards.
1131 		 */
1132 		edev->mode |= EEH_DEV_NO_HANDLER;
1133 
1134 		edev->pdev = NULL;
1135 		dev->dev.archdata.edev = NULL;
1136 	}
1137 
1138 	edev->pdev = dev;
1139 	dev->dev.archdata.edev = edev;
1140 
1141 	eeh_addr_cache_insert_dev(dev);
1142 }
1143 
1144 /**
1145  * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1146  * @bus: PCI bus
1147  *
1148  * This routine must be used to perform EEH initialization for PCI
1149  * devices which are attached to the indicated PCI bus. The PCI bus
1150  * is added after system boot through hotplug or dlpar.
1151  */
1152 void eeh_add_device_tree_late(struct pci_bus *bus)
1153 {
1154 	struct pci_dev *dev;
1155 
1156 	list_for_each_entry(dev, &bus->devices, bus_list) {
1157 		eeh_add_device_late(dev);
1158 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1159 			struct pci_bus *subbus = dev->subordinate;
1160 			if (subbus)
1161 				eeh_add_device_tree_late(subbus);
1162 		}
1163 	}
1164 }
1165 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1166 
1167 /**
1168  * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1169  * @bus: PCI bus
1170  *
1171  * This routine must be used to add EEH sysfs files for PCI
1172  * devices which are attached to the indicated PCI bus. The PCI bus
1173  * is added after system boot through hotplug or dlpar.
1174  */
1175 void eeh_add_sysfs_files(struct pci_bus *bus)
1176 {
1177 	struct pci_dev *dev;
1178 
1179 	list_for_each_entry(dev, &bus->devices, bus_list) {
1180 		eeh_sysfs_add_device(dev);
1181 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1182 			struct pci_bus *subbus = dev->subordinate;
1183 			if (subbus)
1184 				eeh_add_sysfs_files(subbus);
1185 		}
1186 	}
1187 }
1188 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1189 
1190 /**
1191  * eeh_remove_device - Undo EEH setup for the indicated pci device
1192  * @dev: pci device to be removed
1193  *
1194  * This routine should be called when a device is removed from
1195  * a running system (e.g. by hotplug or dlpar).  It unregisters
1196  * the PCI device from the EEH subsystem.  I/O errors affecting
1197  * this device will no longer be detected after this call; thus,
1198  * i/o errors affecting this slot may leave this device unusable.
1199  */
1200 void eeh_remove_device(struct pci_dev *dev)
1201 {
1202 	struct eeh_dev *edev;
1203 
1204 	if (!dev || !eeh_enabled())
1205 		return;
1206 	edev = pci_dev_to_eeh_dev(dev);
1207 
1208 	/* Unregister the device with the EEH/PCI address search system */
1209 	pr_debug("EEH: Removing device %s\n", pci_name(dev));
1210 
1211 	if (!edev || !edev->pdev || !edev->pe) {
1212 		pr_debug("EEH: Not referenced !\n");
1213 		return;
1214 	}
1215 
1216 	/*
1217 	 * During the hotplug for EEH error recovery, we need the EEH
1218 	 * device attached to the parent PE in order for BAR restore
1219 	 * a bit later. So we keep it for BAR restore and remove it
1220 	 * from the parent PE during the BAR resotre.
1221 	 */
1222 	edev->pdev = NULL;
1223 	dev->dev.archdata.edev = NULL;
1224 	if (!(edev->pe->state & EEH_PE_KEEP))
1225 		eeh_rmv_from_parent_pe(edev);
1226 	else
1227 		edev->mode |= EEH_DEV_DISCONNECTED;
1228 
1229 	/*
1230 	 * We're removing from the PCI subsystem, that means
1231 	 * the PCI device driver can't support EEH or not
1232 	 * well. So we rely on hotplug completely to do recovery
1233 	 * for the specific PCI device.
1234 	 */
1235 	edev->mode |= EEH_DEV_NO_HANDLER;
1236 
1237 	eeh_addr_cache_rmv_dev(dev);
1238 	eeh_sysfs_remove_device(dev);
1239 	edev->mode &= ~EEH_DEV_SYSFS;
1240 }
1241 
1242 int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1243 {
1244 	int ret;
1245 
1246 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1247 	if (ret) {
1248 		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1249 			__func__, ret, pe->phb->global_number, pe->addr);
1250 		return ret;
1251 	}
1252 
1253 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1254 	if (ret) {
1255 		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1256 			__func__, ret, pe->phb->global_number, pe->addr);
1257 		return ret;
1258 	}
1259 
1260 	/* Clear software isolated state */
1261 	if (sw_state && (pe->state & EEH_PE_ISOLATED))
1262 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1263 
1264 	return ret;
1265 }
1266 
1267 
1268 static struct pci_device_id eeh_reset_ids[] = {
1269 	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1270 	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1271 	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1272 	{ 0 }
1273 };
1274 
1275 static int eeh_pe_change_owner(struct eeh_pe *pe)
1276 {
1277 	struct eeh_dev *edev, *tmp;
1278 	struct pci_dev *pdev;
1279 	struct pci_device_id *id;
1280 	int flags, ret;
1281 
1282 	/* Check PE state */
1283 	flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1284 	ret = eeh_ops->get_state(pe, NULL);
1285 	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1286 		return 0;
1287 
1288 	/* Unfrozen PE, nothing to do */
1289 	if ((ret & flags) == flags)
1290 		return 0;
1291 
1292 	/* Frozen PE, check if it needs PE level reset */
1293 	eeh_pe_for_each_dev(pe, edev, tmp) {
1294 		pdev = eeh_dev_to_pci_dev(edev);
1295 		if (!pdev)
1296 			continue;
1297 
1298 		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1299 			if (id->vendor != PCI_ANY_ID &&
1300 			    id->vendor != pdev->vendor)
1301 				continue;
1302 			if (id->device != PCI_ANY_ID &&
1303 			    id->device != pdev->device)
1304 				continue;
1305 			if (id->subvendor != PCI_ANY_ID &&
1306 			    id->subvendor != pdev->subsystem_vendor)
1307 				continue;
1308 			if (id->subdevice != PCI_ANY_ID &&
1309 			    id->subdevice != pdev->subsystem_device)
1310 				continue;
1311 
1312 			goto reset;
1313 		}
1314 	}
1315 
1316 	return eeh_unfreeze_pe(pe, true);
1317 
1318 reset:
1319 	return eeh_pe_reset_and_recover(pe);
1320 }
1321 
1322 /**
1323  * eeh_dev_open - Increase count of pass through devices for PE
1324  * @pdev: PCI device
1325  *
1326  * Increase count of passed through devices for the indicated
1327  * PE. In the result, the EEH errors detected on the PE won't be
1328  * reported. The PE owner will be responsible for detection
1329  * and recovery.
1330  */
1331 int eeh_dev_open(struct pci_dev *pdev)
1332 {
1333 	struct eeh_dev *edev;
1334 	int ret = -ENODEV;
1335 
1336 	mutex_lock(&eeh_dev_mutex);
1337 
1338 	/* No PCI device ? */
1339 	if (!pdev)
1340 		goto out;
1341 
1342 	/* No EEH device or PE ? */
1343 	edev = pci_dev_to_eeh_dev(pdev);
1344 	if (!edev || !edev->pe)
1345 		goto out;
1346 
1347 	/*
1348 	 * The PE might have been put into frozen state, but we
1349 	 * didn't detect that yet. The passed through PCI devices
1350 	 * in frozen PE won't work properly. Clear the frozen state
1351 	 * in advance.
1352 	 */
1353 	ret = eeh_pe_change_owner(edev->pe);
1354 	if (ret)
1355 		goto out;
1356 
1357 	/* Increase PE's pass through count */
1358 	atomic_inc(&edev->pe->pass_dev_cnt);
1359 	mutex_unlock(&eeh_dev_mutex);
1360 
1361 	return 0;
1362 out:
1363 	mutex_unlock(&eeh_dev_mutex);
1364 	return ret;
1365 }
1366 EXPORT_SYMBOL_GPL(eeh_dev_open);
1367 
1368 /**
1369  * eeh_dev_release - Decrease count of pass through devices for PE
1370  * @pdev: PCI device
1371  *
1372  * Decrease count of pass through devices for the indicated PE. If
1373  * there is no passed through device in PE, the EEH errors detected
1374  * on the PE will be reported and handled as usual.
1375  */
1376 void eeh_dev_release(struct pci_dev *pdev)
1377 {
1378 	struct eeh_dev *edev;
1379 
1380 	mutex_lock(&eeh_dev_mutex);
1381 
1382 	/* No PCI device ? */
1383 	if (!pdev)
1384 		goto out;
1385 
1386 	/* No EEH device ? */
1387 	edev = pci_dev_to_eeh_dev(pdev);
1388 	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1389 		goto out;
1390 
1391 	/* Decrease PE's pass through count */
1392 	atomic_dec(&edev->pe->pass_dev_cnt);
1393 	WARN_ON(atomic_read(&edev->pe->pass_dev_cnt) < 0);
1394 	eeh_pe_change_owner(edev->pe);
1395 out:
1396 	mutex_unlock(&eeh_dev_mutex);
1397 }
1398 EXPORT_SYMBOL(eeh_dev_release);
1399 
1400 #ifdef CONFIG_IOMMU_API
1401 
1402 static int dev_has_iommu_table(struct device *dev, void *data)
1403 {
1404 	struct pci_dev *pdev = to_pci_dev(dev);
1405 	struct pci_dev **ppdev = data;
1406 	struct iommu_table *tbl;
1407 
1408 	if (!dev)
1409 		return 0;
1410 
1411 	tbl = get_iommu_table_base(dev);
1412 	if (tbl && tbl->it_group) {
1413 		*ppdev = pdev;
1414 		return 1;
1415 	}
1416 
1417 	return 0;
1418 }
1419 
1420 /**
1421  * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1422  * @group: IOMMU group
1423  *
1424  * The routine is called to convert IOMMU group to EEH PE.
1425  */
1426 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1427 {
1428 	struct pci_dev *pdev = NULL;
1429 	struct eeh_dev *edev;
1430 	int ret;
1431 
1432 	/* No IOMMU group ? */
1433 	if (!group)
1434 		return NULL;
1435 
1436 	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1437 	if (!ret || !pdev)
1438 		return NULL;
1439 
1440 	/* No EEH device or PE ? */
1441 	edev = pci_dev_to_eeh_dev(pdev);
1442 	if (!edev || !edev->pe)
1443 		return NULL;
1444 
1445 	return edev->pe;
1446 }
1447 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1448 
1449 #endif /* CONFIG_IOMMU_API */
1450 
1451 /**
1452  * eeh_pe_set_option - Set options for the indicated PE
1453  * @pe: EEH PE
1454  * @option: requested option
1455  *
1456  * The routine is called to enable or disable EEH functionality
1457  * on the indicated PE, to enable IO or DMA for the frozen PE.
1458  */
1459 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1460 {
1461 	int ret = 0;
1462 
1463 	/* Invalid PE ? */
1464 	if (!pe)
1465 		return -ENODEV;
1466 
1467 	/*
1468 	 * EEH functionality could possibly be disabled, just
1469 	 * return error for the case. And the EEH functinality
1470 	 * isn't expected to be disabled on one specific PE.
1471 	 */
1472 	switch (option) {
1473 	case EEH_OPT_ENABLE:
1474 		if (eeh_enabled()) {
1475 			ret = eeh_pe_change_owner(pe);
1476 			break;
1477 		}
1478 		ret = -EIO;
1479 		break;
1480 	case EEH_OPT_DISABLE:
1481 		break;
1482 	case EEH_OPT_THAW_MMIO:
1483 	case EEH_OPT_THAW_DMA:
1484 		if (!eeh_ops || !eeh_ops->set_option) {
1485 			ret = -ENOENT;
1486 			break;
1487 		}
1488 
1489 		ret = eeh_pci_enable(pe, option);
1490 		break;
1491 	default:
1492 		pr_debug("%s: Option %d out of range (%d, %d)\n",
1493 			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1494 		ret = -EINVAL;
1495 	}
1496 
1497 	return ret;
1498 }
1499 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1500 
1501 /**
1502  * eeh_pe_get_state - Retrieve PE's state
1503  * @pe: EEH PE
1504  *
1505  * Retrieve the PE's state, which includes 3 aspects: enabled
1506  * DMA, enabled IO and asserted reset.
1507  */
1508 int eeh_pe_get_state(struct eeh_pe *pe)
1509 {
1510 	int result, ret = 0;
1511 	bool rst_active, dma_en, mmio_en;
1512 
1513 	/* Existing PE ? */
1514 	if (!pe)
1515 		return -ENODEV;
1516 
1517 	if (!eeh_ops || !eeh_ops->get_state)
1518 		return -ENOENT;
1519 
1520 	result = eeh_ops->get_state(pe, NULL);
1521 	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1522 	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1523 	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1524 
1525 	if (rst_active)
1526 		ret = EEH_PE_STATE_RESET;
1527 	else if (dma_en && mmio_en)
1528 		ret = EEH_PE_STATE_NORMAL;
1529 	else if (!dma_en && !mmio_en)
1530 		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1531 	else if (!dma_en && mmio_en)
1532 		ret = EEH_PE_STATE_STOPPED_DMA;
1533 	else
1534 		ret = EEH_PE_STATE_UNAVAIL;
1535 
1536 	return ret;
1537 }
1538 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1539 
1540 static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1541 {
1542 	struct eeh_dev *edev, *tmp;
1543 	struct pci_dev *pdev;
1544 	int ret = 0;
1545 
1546 	/* Restore config space */
1547 	eeh_pe_restore_bars(pe);
1548 
1549 	/*
1550 	 * Reenable PCI devices as the devices passed
1551 	 * through are always enabled before the reset.
1552 	 */
1553 	eeh_pe_for_each_dev(pe, edev, tmp) {
1554 		pdev = eeh_dev_to_pci_dev(edev);
1555 		if (!pdev)
1556 			continue;
1557 
1558 		ret = pci_reenable_device(pdev);
1559 		if (ret) {
1560 			pr_warn("%s: Failure %d reenabling %s\n",
1561 				__func__, ret, pci_name(pdev));
1562 			return ret;
1563 		}
1564 	}
1565 
1566 	/* The PE is still in frozen state */
1567 	return eeh_unfreeze_pe(pe, true);
1568 }
1569 
1570 /**
1571  * eeh_pe_reset - Issue PE reset according to specified type
1572  * @pe: EEH PE
1573  * @option: reset type
1574  *
1575  * The routine is called to reset the specified PE with the
1576  * indicated type, either fundamental reset or hot reset.
1577  * PE reset is the most important part for error recovery.
1578  */
1579 int eeh_pe_reset(struct eeh_pe *pe, int option)
1580 {
1581 	int ret = 0;
1582 
1583 	/* Invalid PE ? */
1584 	if (!pe)
1585 		return -ENODEV;
1586 
1587 	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1588 		return -ENOENT;
1589 
1590 	switch (option) {
1591 	case EEH_RESET_DEACTIVATE:
1592 		ret = eeh_ops->reset(pe, option);
1593 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1594 		if (ret)
1595 			break;
1596 
1597 		ret = eeh_pe_reenable_devices(pe);
1598 		break;
1599 	case EEH_RESET_HOT:
1600 	case EEH_RESET_FUNDAMENTAL:
1601 		/*
1602 		 * Proactively freeze the PE to drop all MMIO access
1603 		 * during reset, which should be banned as it's always
1604 		 * cause recursive EEH error.
1605 		 */
1606 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1607 
1608 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1609 		ret = eeh_ops->reset(pe, option);
1610 		break;
1611 	default:
1612 		pr_debug("%s: Unsupported option %d\n",
1613 			__func__, option);
1614 		ret = -EINVAL;
1615 	}
1616 
1617 	return ret;
1618 }
1619 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1620 
1621 /**
1622  * eeh_pe_configure - Configure PCI bridges after PE reset
1623  * @pe: EEH PE
1624  *
1625  * The routine is called to restore the PCI config space for
1626  * those PCI devices, especially PCI bridges affected by PE
1627  * reset issued previously.
1628  */
1629 int eeh_pe_configure(struct eeh_pe *pe)
1630 {
1631 	int ret = 0;
1632 
1633 	/* Invalid PE ? */
1634 	if (!pe)
1635 		return -ENODEV;
1636 
1637 	return ret;
1638 }
1639 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1640 
1641 static int proc_eeh_show(struct seq_file *m, void *v)
1642 {
1643 	if (!eeh_enabled()) {
1644 		seq_printf(m, "EEH Subsystem is globally disabled\n");
1645 		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1646 	} else {
1647 		seq_printf(m, "EEH Subsystem is enabled\n");
1648 		seq_printf(m,
1649 				"no device=%llu\n"
1650 				"no device node=%llu\n"
1651 				"no config address=%llu\n"
1652 				"check not wanted=%llu\n"
1653 				"eeh_total_mmio_ffs=%llu\n"
1654 				"eeh_false_positives=%llu\n"
1655 				"eeh_slot_resets=%llu\n",
1656 				eeh_stats.no_device,
1657 				eeh_stats.no_dn,
1658 				eeh_stats.no_cfg_addr,
1659 				eeh_stats.ignored_check,
1660 				eeh_stats.total_mmio_ffs,
1661 				eeh_stats.false_positives,
1662 				eeh_stats.slot_resets);
1663 	}
1664 
1665 	return 0;
1666 }
1667 
1668 static int proc_eeh_open(struct inode *inode, struct file *file)
1669 {
1670 	return single_open(file, proc_eeh_show, NULL);
1671 }
1672 
1673 static const struct file_operations proc_eeh_operations = {
1674 	.open      = proc_eeh_open,
1675 	.read      = seq_read,
1676 	.llseek    = seq_lseek,
1677 	.release   = single_release,
1678 };
1679 
1680 #ifdef CONFIG_DEBUG_FS
1681 static int eeh_enable_dbgfs_set(void *data, u64 val)
1682 {
1683 	if (val)
1684 		eeh_clear_flag(EEH_FORCE_DISABLED);
1685 	else
1686 		eeh_add_flag(EEH_FORCE_DISABLED);
1687 
1688 	/* Notify the backend */
1689 	if (eeh_ops->post_init)
1690 		eeh_ops->post_init();
1691 
1692 	return 0;
1693 }
1694 
1695 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1696 {
1697 	if (eeh_enabled())
1698 		*val = 0x1ul;
1699 	else
1700 		*val = 0x0ul;
1701 	return 0;
1702 }
1703 
1704 static int eeh_freeze_dbgfs_set(void *data, u64 val)
1705 {
1706 	eeh_max_freezes = val;
1707 	return 0;
1708 }
1709 
1710 static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1711 {
1712 	*val = eeh_max_freezes;
1713 	return 0;
1714 }
1715 
1716 DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1717 			eeh_enable_dbgfs_set, "0x%llx\n");
1718 DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1719 			eeh_freeze_dbgfs_set, "0x%llx\n");
1720 #endif
1721 
1722 static int __init eeh_init_proc(void)
1723 {
1724 	if (machine_is(pseries) || machine_is(powernv)) {
1725 		proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1726 #ifdef CONFIG_DEBUG_FS
1727 		debugfs_create_file("eeh_enable", 0600,
1728                                     powerpc_debugfs_root, NULL,
1729                                     &eeh_enable_dbgfs_ops);
1730 		debugfs_create_file("eeh_max_freezes", 0600,
1731 				    powerpc_debugfs_root, NULL,
1732 				    &eeh_freeze_dbgfs_ops);
1733 #endif
1734 	}
1735 
1736 	return 0;
1737 }
1738 __initcall(eeh_init_proc);
1739