xref: /openbmc/linux/arch/powerpc/kernel/eeh.c (revision 3c6a73cc)
1 /*
2  * Copyright IBM Corporation 2001, 2005, 2006
3  * Copyright Dave Engebretsen & Todd Inglett 2001
4  * Copyright Linas Vepstas 2005, 2006
5  * Copyright 2001-2012 IBM Corporation.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/debugfs.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/pci.h>
30 #include <linux/iommu.h>
31 #include <linux/proc_fs.h>
32 #include <linux/rbtree.h>
33 #include <linux/reboot.h>
34 #include <linux/seq_file.h>
35 #include <linux/spinlock.h>
36 #include <linux/export.h>
37 #include <linux/of.h>
38 
39 #include <linux/atomic.h>
40 #include <asm/debug.h>
41 #include <asm/eeh.h>
42 #include <asm/eeh_event.h>
43 #include <asm/io.h>
44 #include <asm/iommu.h>
45 #include <asm/machdep.h>
46 #include <asm/ppc-pci.h>
47 #include <asm/rtas.h>
48 
49 
50 /** Overview:
51  *  EEH, or "Extended Error Handling" is a PCI bridge technology for
52  *  dealing with PCI bus errors that can't be dealt with within the
53  *  usual PCI framework, except by check-stopping the CPU.  Systems
54  *  that are designed for high-availability/reliability cannot afford
55  *  to crash due to a "mere" PCI error, thus the need for EEH.
56  *  An EEH-capable bridge operates by converting a detected error
57  *  into a "slot freeze", taking the PCI adapter off-line, making
58  *  the slot behave, from the OS'es point of view, as if the slot
59  *  were "empty": all reads return 0xff's and all writes are silently
60  *  ignored.  EEH slot isolation events can be triggered by parity
61  *  errors on the address or data busses (e.g. during posted writes),
62  *  which in turn might be caused by low voltage on the bus, dust,
63  *  vibration, humidity, radioactivity or plain-old failed hardware.
64  *
65  *  Note, however, that one of the leading causes of EEH slot
66  *  freeze events are buggy device drivers, buggy device microcode,
67  *  or buggy device hardware.  This is because any attempt by the
68  *  device to bus-master data to a memory address that is not
69  *  assigned to the device will trigger a slot freeze.   (The idea
70  *  is to prevent devices-gone-wild from corrupting system memory).
71  *  Buggy hardware/drivers will have a miserable time co-existing
72  *  with EEH.
73  *
74  *  Ideally, a PCI device driver, when suspecting that an isolation
75  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
76  *  whether this is the case, and then take appropriate steps to
77  *  reset the PCI slot, the PCI device, and then resume operations.
78  *  However, until that day,  the checking is done here, with the
79  *  eeh_check_failure() routine embedded in the MMIO macros.  If
80  *  the slot is found to be isolated, an "EEH Event" is synthesized
81  *  and sent out for processing.
82  */
83 
84 /* If a device driver keeps reading an MMIO register in an interrupt
85  * handler after a slot isolation event, it might be broken.
86  * This sets the threshold for how many read attempts we allow
87  * before printing an error message.
88  */
89 #define EEH_MAX_FAILS	2100000
90 
91 /* Time to wait for a PCI slot to report status, in milliseconds */
92 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
93 
94 /*
95  * EEH probe mode support, which is part of the flags,
96  * is to support multiple platforms for EEH. Some platforms
97  * like pSeries do PCI emunation based on device tree.
98  * However, other platforms like powernv probe PCI devices
99  * from hardware. The flag is used to distinguish that.
100  * In addition, struct eeh_ops::probe would be invoked for
101  * particular OF node or PCI device so that the corresponding
102  * PE would be created there.
103  */
104 int eeh_subsystem_flags;
105 EXPORT_SYMBOL(eeh_subsystem_flags);
106 
107 /* Platform dependent EEH operations */
108 struct eeh_ops *eeh_ops = NULL;
109 
110 /* Lock to avoid races due to multiple reports of an error */
111 DEFINE_RAW_SPINLOCK(confirm_error_lock);
112 
113 /* Lock to protect passed flags */
114 static DEFINE_MUTEX(eeh_dev_mutex);
115 
116 /* Buffer for reporting pci register dumps. Its here in BSS, and
117  * not dynamically alloced, so that it ends up in RMO where RTAS
118  * can access it.
119  */
120 #define EEH_PCI_REGS_LOG_LEN 8192
121 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
122 
123 /*
124  * The struct is used to maintain the EEH global statistic
125  * information. Besides, the EEH global statistics will be
126  * exported to user space through procfs
127  */
128 struct eeh_stats {
129 	u64 no_device;		/* PCI device not found		*/
130 	u64 no_dn;		/* OF node not found		*/
131 	u64 no_cfg_addr;	/* Config address not found	*/
132 	u64 ignored_check;	/* EEH check skipped		*/
133 	u64 total_mmio_ffs;	/* Total EEH checks		*/
134 	u64 false_positives;	/* Unnecessary EEH checks	*/
135 	u64 slot_resets;	/* PE reset			*/
136 };
137 
138 static struct eeh_stats eeh_stats;
139 
140 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
141 
142 static int __init eeh_setup(char *str)
143 {
144 	if (!strcmp(str, "off"))
145 		eeh_add_flag(EEH_FORCE_DISABLED);
146 
147 	return 1;
148 }
149 __setup("eeh=", eeh_setup);
150 
151 /*
152  * This routine captures assorted PCI configuration space data
153  * for the indicated PCI device, and puts them into a buffer
154  * for RTAS error logging.
155  */
156 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
157 {
158 	struct device_node *dn = eeh_dev_to_of_node(edev);
159 	u32 cfg;
160 	int cap, i;
161 	int n = 0, l = 0;
162 	char buffer[128];
163 
164 	n += scnprintf(buf+n, len-n, "%s\n", dn->full_name);
165 	pr_warn("EEH: of node=%s\n", dn->full_name);
166 
167 	eeh_ops->read_config(dn, PCI_VENDOR_ID, 4, &cfg);
168 	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
169 	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
170 
171 	eeh_ops->read_config(dn, PCI_COMMAND, 4, &cfg);
172 	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
173 	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
174 
175 	/* Gather bridge-specific registers */
176 	if (edev->mode & EEH_DEV_BRIDGE) {
177 		eeh_ops->read_config(dn, PCI_SEC_STATUS, 2, &cfg);
178 		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
179 		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
180 
181 		eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &cfg);
182 		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
183 		pr_warn("EEH: Bridge control: %04x\n", cfg);
184 	}
185 
186 	/* Dump out the PCI-X command and status regs */
187 	cap = edev->pcix_cap;
188 	if (cap) {
189 		eeh_ops->read_config(dn, cap, 4, &cfg);
190 		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
191 		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
192 
193 		eeh_ops->read_config(dn, cap+4, 4, &cfg);
194 		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
195 		pr_warn("EEH: PCI-X status: %08x\n", cfg);
196 	}
197 
198 	/* If PCI-E capable, dump PCI-E cap 10 */
199 	cap = edev->pcie_cap;
200 	if (cap) {
201 		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
202 		pr_warn("EEH: PCI-E capabilities and status follow:\n");
203 
204 		for (i=0; i<=8; i++) {
205 			eeh_ops->read_config(dn, cap+4*i, 4, &cfg);
206 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
207 
208 			if ((i % 4) == 0) {
209 				if (i != 0)
210 					pr_warn("%s\n", buffer);
211 
212 				l = scnprintf(buffer, sizeof(buffer),
213 					      "EEH: PCI-E %02x: %08x ",
214 					      4*i, cfg);
215 			} else {
216 				l += scnprintf(buffer+l, sizeof(buffer)-l,
217 					       "%08x ", cfg);
218 			}
219 
220 		}
221 
222 		pr_warn("%s\n", buffer);
223 	}
224 
225 	/* If AER capable, dump it */
226 	cap = edev->aer_cap;
227 	if (cap) {
228 		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
229 		pr_warn("EEH: PCI-E AER capability register set follows:\n");
230 
231 		for (i=0; i<=13; i++) {
232 			eeh_ops->read_config(dn, cap+4*i, 4, &cfg);
233 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
234 
235 			if ((i % 4) == 0) {
236 				if (i != 0)
237 					pr_warn("%s\n", buffer);
238 
239 				l = scnprintf(buffer, sizeof(buffer),
240 					      "EEH: PCI-E AER %02x: %08x ",
241 					      4*i, cfg);
242 			} else {
243 				l += scnprintf(buffer+l, sizeof(buffer)-l,
244 					       "%08x ", cfg);
245 			}
246 		}
247 
248 		pr_warn("%s\n", buffer);
249 	}
250 
251 	return n;
252 }
253 
254 static void *eeh_dump_pe_log(void *data, void *flag)
255 {
256 	struct eeh_pe *pe = data;
257 	struct eeh_dev *edev, *tmp;
258 	size_t *plen = flag;
259 
260 	eeh_pe_for_each_dev(pe, edev, tmp)
261 		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
262 					  EEH_PCI_REGS_LOG_LEN - *plen);
263 
264 	return NULL;
265 }
266 
267 /**
268  * eeh_slot_error_detail - Generate combined log including driver log and error log
269  * @pe: EEH PE
270  * @severity: temporary or permanent error log
271  *
272  * This routine should be called to generate the combined log, which
273  * is comprised of driver log and error log. The driver log is figured
274  * out from the config space of the corresponding PCI device, while
275  * the error log is fetched through platform dependent function call.
276  */
277 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
278 {
279 	size_t loglen = 0;
280 
281 	/*
282 	 * When the PHB is fenced or dead, it's pointless to collect
283 	 * the data from PCI config space because it should return
284 	 * 0xFF's. For ER, we still retrieve the data from the PCI
285 	 * config space.
286 	 *
287 	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
288 	 * 0xFF's is always returned from PCI config space.
289 	 */
290 	if (!(pe->type & EEH_PE_PHB)) {
291 		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG))
292 			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
293 		eeh_ops->configure_bridge(pe);
294 		eeh_pe_restore_bars(pe);
295 
296 		pci_regs_buf[0] = 0;
297 		eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
298 	}
299 
300 	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
301 }
302 
303 /**
304  * eeh_token_to_phys - Convert EEH address token to phys address
305  * @token: I/O token, should be address in the form 0xA....
306  *
307  * This routine should be called to convert virtual I/O address
308  * to physical one.
309  */
310 static inline unsigned long eeh_token_to_phys(unsigned long token)
311 {
312 	pte_t *ptep;
313 	unsigned long pa;
314 	int hugepage_shift;
315 
316 	/*
317 	 * We won't find hugepages here, iomem
318 	 */
319 	ptep = find_linux_pte_or_hugepte(init_mm.pgd, token, &hugepage_shift);
320 	if (!ptep)
321 		return token;
322 	WARN_ON(hugepage_shift);
323 	pa = pte_pfn(*ptep) << PAGE_SHIFT;
324 
325 	return pa | (token & (PAGE_SIZE-1));
326 }
327 
328 /*
329  * On PowerNV platform, we might already have fenced PHB there.
330  * For that case, it's meaningless to recover frozen PE. Intead,
331  * We have to handle fenced PHB firstly.
332  */
333 static int eeh_phb_check_failure(struct eeh_pe *pe)
334 {
335 	struct eeh_pe *phb_pe;
336 	unsigned long flags;
337 	int ret;
338 
339 	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
340 		return -EPERM;
341 
342 	/* Find the PHB PE */
343 	phb_pe = eeh_phb_pe_get(pe->phb);
344 	if (!phb_pe) {
345 		pr_warn("%s Can't find PE for PHB#%d\n",
346 			__func__, pe->phb->global_number);
347 		return -EEXIST;
348 	}
349 
350 	/* If the PHB has been in problematic state */
351 	eeh_serialize_lock(&flags);
352 	if (phb_pe->state & EEH_PE_ISOLATED) {
353 		ret = 0;
354 		goto out;
355 	}
356 
357 	/* Check PHB state */
358 	ret = eeh_ops->get_state(phb_pe, NULL);
359 	if ((ret < 0) ||
360 	    (ret == EEH_STATE_NOT_SUPPORT) ||
361 	    (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
362 	    (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
363 		ret = 0;
364 		goto out;
365 	}
366 
367 	/* Isolate the PHB and send event */
368 	eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
369 	eeh_serialize_unlock(flags);
370 
371 	pr_err("EEH: PHB#%x failure detected, location: %s\n",
372 		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
373 	dump_stack();
374 	eeh_send_failure_event(phb_pe);
375 
376 	return 1;
377 out:
378 	eeh_serialize_unlock(flags);
379 	return ret;
380 }
381 
382 /**
383  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
384  * @edev: eeh device
385  *
386  * Check for an EEH failure for the given device node.  Call this
387  * routine if the result of a read was all 0xff's and you want to
388  * find out if this is due to an EEH slot freeze.  This routine
389  * will query firmware for the EEH status.
390  *
391  * Returns 0 if there has not been an EEH error; otherwise returns
392  * a non-zero value and queues up a slot isolation event notification.
393  *
394  * It is safe to call this routine in an interrupt context.
395  */
396 int eeh_dev_check_failure(struct eeh_dev *edev)
397 {
398 	int ret;
399 	int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
400 	unsigned long flags;
401 	struct device_node *dn;
402 	struct pci_dev *dev;
403 	struct eeh_pe *pe, *parent_pe, *phb_pe;
404 	int rc = 0;
405 	const char *location;
406 
407 	eeh_stats.total_mmio_ffs++;
408 
409 	if (!eeh_enabled())
410 		return 0;
411 
412 	if (!edev) {
413 		eeh_stats.no_dn++;
414 		return 0;
415 	}
416 	dn = eeh_dev_to_of_node(edev);
417 	dev = eeh_dev_to_pci_dev(edev);
418 	pe = eeh_dev_to_pe(edev);
419 
420 	/* Access to IO BARs might get this far and still not want checking. */
421 	if (!pe) {
422 		eeh_stats.ignored_check++;
423 		pr_debug("EEH: Ignored check for %s %s\n",
424 			eeh_pci_name(dev), dn->full_name);
425 		return 0;
426 	}
427 
428 	if (!pe->addr && !pe->config_addr) {
429 		eeh_stats.no_cfg_addr++;
430 		return 0;
431 	}
432 
433 	/*
434 	 * On PowerNV platform, we might already have fenced PHB
435 	 * there and we need take care of that firstly.
436 	 */
437 	ret = eeh_phb_check_failure(pe);
438 	if (ret > 0)
439 		return ret;
440 
441 	/*
442 	 * If the PE isn't owned by us, we shouldn't check the
443 	 * state. Instead, let the owner handle it if the PE has
444 	 * been frozen.
445 	 */
446 	if (eeh_pe_passed(pe))
447 		return 0;
448 
449 	/* If we already have a pending isolation event for this
450 	 * slot, we know it's bad already, we don't need to check.
451 	 * Do this checking under a lock; as multiple PCI devices
452 	 * in one slot might report errors simultaneously, and we
453 	 * only want one error recovery routine running.
454 	 */
455 	eeh_serialize_lock(&flags);
456 	rc = 1;
457 	if (pe->state & EEH_PE_ISOLATED) {
458 		pe->check_count++;
459 		if (pe->check_count % EEH_MAX_FAILS == 0) {
460 			location = of_get_property(dn, "ibm,loc-code", NULL);
461 			printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
462 				"location=%s driver=%s pci addr=%s\n",
463 				pe->check_count, location,
464 				eeh_driver_name(dev), eeh_pci_name(dev));
465 			printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
466 				eeh_driver_name(dev));
467 			dump_stack();
468 		}
469 		goto dn_unlock;
470 	}
471 
472 	/*
473 	 * Now test for an EEH failure.  This is VERY expensive.
474 	 * Note that the eeh_config_addr may be a parent device
475 	 * in the case of a device behind a bridge, or it may be
476 	 * function zero of a multi-function device.
477 	 * In any case they must share a common PHB.
478 	 */
479 	ret = eeh_ops->get_state(pe, NULL);
480 
481 	/* Note that config-io to empty slots may fail;
482 	 * they are empty when they don't have children.
483 	 * We will punt with the following conditions: Failure to get
484 	 * PE's state, EEH not support and Permanently unavailable
485 	 * state, PE is in good state.
486 	 */
487 	if ((ret < 0) ||
488 	    (ret == EEH_STATE_NOT_SUPPORT) ||
489 	    ((ret & active_flags) == active_flags)) {
490 		eeh_stats.false_positives++;
491 		pe->false_positives++;
492 		rc = 0;
493 		goto dn_unlock;
494 	}
495 
496 	/*
497 	 * It should be corner case that the parent PE has been
498 	 * put into frozen state as well. We should take care
499 	 * that at first.
500 	 */
501 	parent_pe = pe->parent;
502 	while (parent_pe) {
503 		/* Hit the ceiling ? */
504 		if (parent_pe->type & EEH_PE_PHB)
505 			break;
506 
507 		/* Frozen parent PE ? */
508 		ret = eeh_ops->get_state(parent_pe, NULL);
509 		if (ret > 0 &&
510 		    (ret & active_flags) != active_flags)
511 			pe = parent_pe;
512 
513 		/* Next parent level */
514 		parent_pe = parent_pe->parent;
515 	}
516 
517 	eeh_stats.slot_resets++;
518 
519 	/* Avoid repeated reports of this failure, including problems
520 	 * with other functions on this device, and functions under
521 	 * bridges.
522 	 */
523 	eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
524 	eeh_serialize_unlock(flags);
525 
526 	/* Most EEH events are due to device driver bugs.  Having
527 	 * a stack trace will help the device-driver authors figure
528 	 * out what happened.  So print that out.
529 	 */
530 	phb_pe = eeh_phb_pe_get(pe->phb);
531 	pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
532 	       pe->phb->global_number, pe->addr);
533 	pr_err("EEH: PE location: %s, PHB location: %s\n",
534 	       eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
535 	dump_stack();
536 
537 	eeh_send_failure_event(pe);
538 
539 	return 1;
540 
541 dn_unlock:
542 	eeh_serialize_unlock(flags);
543 	return rc;
544 }
545 
546 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
547 
548 /**
549  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
550  * @token: I/O address
551  *
552  * Check for an EEH failure at the given I/O address. Call this
553  * routine if the result of a read was all 0xff's and you want to
554  * find out if this is due to an EEH slot freeze event. This routine
555  * will query firmware for the EEH status.
556  *
557  * Note this routine is safe to call in an interrupt context.
558  */
559 int eeh_check_failure(const volatile void __iomem *token)
560 {
561 	unsigned long addr;
562 	struct eeh_dev *edev;
563 
564 	/* Finding the phys addr + pci device; this is pretty quick. */
565 	addr = eeh_token_to_phys((unsigned long __force) token);
566 	edev = eeh_addr_cache_get_dev(addr);
567 	if (!edev) {
568 		eeh_stats.no_device++;
569 		return 0;
570 	}
571 
572 	return eeh_dev_check_failure(edev);
573 }
574 EXPORT_SYMBOL(eeh_check_failure);
575 
576 
577 /**
578  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
579  * @pe: EEH PE
580  *
581  * This routine should be called to reenable frozen MMIO or DMA
582  * so that it would work correctly again. It's useful while doing
583  * recovery or log collection on the indicated device.
584  */
585 int eeh_pci_enable(struct eeh_pe *pe, int function)
586 {
587 	int active_flag, rc;
588 
589 	/*
590 	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
591 	 * Also, it's pointless to enable them on unfrozen PE. So
592 	 * we have to check before enabling IO or DMA.
593 	 */
594 	switch (function) {
595 	case EEH_OPT_THAW_MMIO:
596 		active_flag = EEH_STATE_MMIO_ACTIVE;
597 		break;
598 	case EEH_OPT_THAW_DMA:
599 		active_flag = EEH_STATE_DMA_ACTIVE;
600 		break;
601 	case EEH_OPT_DISABLE:
602 	case EEH_OPT_ENABLE:
603 	case EEH_OPT_FREEZE_PE:
604 		active_flag = 0;
605 		break;
606 	default:
607 		pr_warn("%s: Invalid function %d\n",
608 			__func__, function);
609 		return -EINVAL;
610 	}
611 
612 	/*
613 	 * Check if IO or DMA has been enabled before
614 	 * enabling them.
615 	 */
616 	if (active_flag) {
617 		rc = eeh_ops->get_state(pe, NULL);
618 		if (rc < 0)
619 			return rc;
620 
621 		/* Needn't enable it at all */
622 		if (rc == EEH_STATE_NOT_SUPPORT)
623 			return 0;
624 
625 		/* It's already enabled */
626 		if (rc & active_flag)
627 			return 0;
628 	}
629 
630 
631 	/* Issue the request */
632 	rc = eeh_ops->set_option(pe, function);
633 	if (rc)
634 		pr_warn("%s: Unexpected state change %d on "
635 			"PHB#%d-PE#%x, err=%d\n",
636 			__func__, function, pe->phb->global_number,
637 			pe->addr, rc);
638 
639 	/* Check if the request is finished successfully */
640 	if (active_flag) {
641 		rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
642 		if (rc <= 0)
643 			return rc;
644 
645 		if (rc & active_flag)
646 			return 0;
647 
648 		return -EIO;
649 	}
650 
651 	return rc;
652 }
653 
654 /**
655  * pcibios_set_pcie_slot_reset - Set PCI-E reset state
656  * @dev: pci device struct
657  * @state: reset state to enter
658  *
659  * Return value:
660  * 	0 if success
661  */
662 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
663 {
664 	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
665 	struct eeh_pe *pe = eeh_dev_to_pe(edev);
666 
667 	if (!pe) {
668 		pr_err("%s: No PE found on PCI device %s\n",
669 			__func__, pci_name(dev));
670 		return -EINVAL;
671 	}
672 
673 	switch (state) {
674 	case pcie_deassert_reset:
675 		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
676 		eeh_pe_state_clear(pe, EEH_PE_RESET);
677 		break;
678 	case pcie_hot_reset:
679 		eeh_pe_state_mark(pe, EEH_PE_RESET);
680 		eeh_ops->reset(pe, EEH_RESET_HOT);
681 		break;
682 	case pcie_warm_reset:
683 		eeh_pe_state_mark(pe, EEH_PE_RESET);
684 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
685 		break;
686 	default:
687 		eeh_pe_state_clear(pe, EEH_PE_RESET);
688 		return -EINVAL;
689 	};
690 
691 	return 0;
692 }
693 
694 /**
695  * eeh_set_pe_freset - Check the required reset for the indicated device
696  * @data: EEH device
697  * @flag: return value
698  *
699  * Each device might have its preferred reset type: fundamental or
700  * hot reset. The routine is used to collected the information for
701  * the indicated device and its children so that the bunch of the
702  * devices could be reset properly.
703  */
704 static void *eeh_set_dev_freset(void *data, void *flag)
705 {
706 	struct pci_dev *dev;
707 	unsigned int *freset = (unsigned int *)flag;
708 	struct eeh_dev *edev = (struct eeh_dev *)data;
709 
710 	dev = eeh_dev_to_pci_dev(edev);
711 	if (dev)
712 		*freset |= dev->needs_freset;
713 
714 	return NULL;
715 }
716 
717 /**
718  * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
719  * @pe: EEH PE
720  *
721  * Assert the PCI #RST line for 1/4 second.
722  */
723 static void eeh_reset_pe_once(struct eeh_pe *pe)
724 {
725 	unsigned int freset = 0;
726 
727 	/* Determine type of EEH reset required for
728 	 * Partitionable Endpoint, a hot-reset (1)
729 	 * or a fundamental reset (3).
730 	 * A fundamental reset required by any device under
731 	 * Partitionable Endpoint trumps hot-reset.
732 	 */
733 	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
734 
735 	if (freset)
736 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
737 	else
738 		eeh_ops->reset(pe, EEH_RESET_HOT);
739 
740 	eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
741 }
742 
743 /**
744  * eeh_reset_pe - Reset the indicated PE
745  * @pe: EEH PE
746  *
747  * This routine should be called to reset indicated device, including
748  * PE. A PE might include multiple PCI devices and sometimes PCI bridges
749  * might be involved as well.
750  */
751 int eeh_reset_pe(struct eeh_pe *pe)
752 {
753 	int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
754 	int i, rc;
755 
756 	/* Take three shots at resetting the bus */
757 	for (i=0; i<3; i++) {
758 		eeh_reset_pe_once(pe);
759 
760 		/*
761 		 * EEH_PE_ISOLATED is expected to be removed after
762 		 * BAR restore.
763 		 */
764 		rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
765 		if ((rc & flags) == flags)
766 			return 0;
767 
768 		if (rc < 0) {
769 			pr_err("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
770 				__func__, pe->phb->global_number, pe->addr);
771 			return -1;
772 		}
773 		pr_err("EEH: bus reset %d failed on PHB#%d-PE#%x, rc=%d\n",
774 			i+1, pe->phb->global_number, pe->addr, rc);
775 	}
776 
777 	return -1;
778 }
779 
780 /**
781  * eeh_save_bars - Save device bars
782  * @edev: PCI device associated EEH device
783  *
784  * Save the values of the device bars. Unlike the restore
785  * routine, this routine is *not* recursive. This is because
786  * PCI devices are added individually; but, for the restore,
787  * an entire slot is reset at a time.
788  */
789 void eeh_save_bars(struct eeh_dev *edev)
790 {
791 	int i;
792 	struct device_node *dn;
793 
794 	if (!edev)
795 		return;
796 	dn = eeh_dev_to_of_node(edev);
797 
798 	for (i = 0; i < 16; i++)
799 		eeh_ops->read_config(dn, i * 4, 4, &edev->config_space[i]);
800 
801 	/*
802 	 * For PCI bridges including root port, we need enable bus
803 	 * master explicitly. Otherwise, it can't fetch IODA table
804 	 * entries correctly. So we cache the bit in advance so that
805 	 * we can restore it after reset, either PHB range or PE range.
806 	 */
807 	if (edev->mode & EEH_DEV_BRIDGE)
808 		edev->config_space[1] |= PCI_COMMAND_MASTER;
809 }
810 
811 /**
812  * eeh_ops_register - Register platform dependent EEH operations
813  * @ops: platform dependent EEH operations
814  *
815  * Register the platform dependent EEH operation callback
816  * functions. The platform should call this function before
817  * any other EEH operations.
818  */
819 int __init eeh_ops_register(struct eeh_ops *ops)
820 {
821 	if (!ops->name) {
822 		pr_warn("%s: Invalid EEH ops name for %p\n",
823 			__func__, ops);
824 		return -EINVAL;
825 	}
826 
827 	if (eeh_ops && eeh_ops != ops) {
828 		pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
829 			__func__, eeh_ops->name, ops->name);
830 		return -EEXIST;
831 	}
832 
833 	eeh_ops = ops;
834 
835 	return 0;
836 }
837 
838 /**
839  * eeh_ops_unregister - Unreigster platform dependent EEH operations
840  * @name: name of EEH platform operations
841  *
842  * Unregister the platform dependent EEH operation callback
843  * functions.
844  */
845 int __exit eeh_ops_unregister(const char *name)
846 {
847 	if (!name || !strlen(name)) {
848 		pr_warn("%s: Invalid EEH ops name\n",
849 			__func__);
850 		return -EINVAL;
851 	}
852 
853 	if (eeh_ops && !strcmp(eeh_ops->name, name)) {
854 		eeh_ops = NULL;
855 		return 0;
856 	}
857 
858 	return -EEXIST;
859 }
860 
861 static int eeh_reboot_notifier(struct notifier_block *nb,
862 			       unsigned long action, void *unused)
863 {
864 	eeh_clear_flag(EEH_ENABLED);
865 	return NOTIFY_DONE;
866 }
867 
868 static struct notifier_block eeh_reboot_nb = {
869 	.notifier_call = eeh_reboot_notifier,
870 };
871 
872 /**
873  * eeh_init - EEH initialization
874  *
875  * Initialize EEH by trying to enable it for all of the adapters in the system.
876  * As a side effect we can determine here if eeh is supported at all.
877  * Note that we leave EEH on so failed config cycles won't cause a machine
878  * check.  If a user turns off EEH for a particular adapter they are really
879  * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
880  * grant access to a slot if EEH isn't enabled, and so we always enable
881  * EEH for all slots/all devices.
882  *
883  * The eeh-force-off option disables EEH checking globally, for all slots.
884  * Even if force-off is set, the EEH hardware is still enabled, so that
885  * newer systems can boot.
886  */
887 int eeh_init(void)
888 {
889 	struct pci_controller *hose, *tmp;
890 	struct device_node *phb;
891 	static int cnt = 0;
892 	int ret = 0;
893 
894 	/*
895 	 * We have to delay the initialization on PowerNV after
896 	 * the PCI hierarchy tree has been built because the PEs
897 	 * are figured out based on PCI devices instead of device
898 	 * tree nodes
899 	 */
900 	if (machine_is(powernv) && cnt++ <= 0)
901 		return ret;
902 
903 	/* Register reboot notifier */
904 	ret = register_reboot_notifier(&eeh_reboot_nb);
905 	if (ret) {
906 		pr_warn("%s: Failed to register notifier (%d)\n",
907 			__func__, ret);
908 		return ret;
909 	}
910 
911 	/* call platform initialization function */
912 	if (!eeh_ops) {
913 		pr_warn("%s: Platform EEH operation not found\n",
914 			__func__);
915 		return -EEXIST;
916 	} else if ((ret = eeh_ops->init())) {
917 		pr_warn("%s: Failed to call platform init function (%d)\n",
918 			__func__, ret);
919 		return ret;
920 	}
921 
922 	/* Initialize EEH event */
923 	ret = eeh_event_init();
924 	if (ret)
925 		return ret;
926 
927 	/* Enable EEH for all adapters */
928 	if (eeh_has_flag(EEH_PROBE_MODE_DEVTREE)) {
929 		list_for_each_entry_safe(hose, tmp,
930 			&hose_list, list_node) {
931 			phb = hose->dn;
932 			traverse_pci_devices(phb, eeh_ops->of_probe, NULL);
933 		}
934 	} else if (eeh_has_flag(EEH_PROBE_MODE_DEV)) {
935 		list_for_each_entry_safe(hose, tmp,
936 			&hose_list, list_node)
937 			pci_walk_bus(hose->bus, eeh_ops->dev_probe, NULL);
938 	} else {
939 		pr_warn("%s: Invalid probe mode %x",
940 			__func__, eeh_subsystem_flags);
941 		return -EINVAL;
942 	}
943 
944 	/*
945 	 * Call platform post-initialization. Actually, It's good chance
946 	 * to inform platform that EEH is ready to supply service if the
947 	 * I/O cache stuff has been built up.
948 	 */
949 	if (eeh_ops->post_init) {
950 		ret = eeh_ops->post_init();
951 		if (ret)
952 			return ret;
953 	}
954 
955 	if (eeh_enabled())
956 		pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
957 	else
958 		pr_warn("EEH: No capable adapters found\n");
959 
960 	return ret;
961 }
962 
963 core_initcall_sync(eeh_init);
964 
965 /**
966  * eeh_add_device_early - Enable EEH for the indicated device_node
967  * @dn: device node for which to set up EEH
968  *
969  * This routine must be used to perform EEH initialization for PCI
970  * devices that were added after system boot (e.g. hotplug, dlpar).
971  * This routine must be called before any i/o is performed to the
972  * adapter (inluding any config-space i/o).
973  * Whether this actually enables EEH or not for this device depends
974  * on the CEC architecture, type of the device, on earlier boot
975  * command-line arguments & etc.
976  */
977 void eeh_add_device_early(struct device_node *dn)
978 {
979 	struct pci_controller *phb;
980 
981 	/*
982 	 * If we're doing EEH probe based on PCI device, we
983 	 * would delay the probe until late stage because
984 	 * the PCI device isn't available this moment.
985 	 */
986 	if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
987 		return;
988 
989 	if (!of_node_to_eeh_dev(dn))
990 		return;
991 	phb = of_node_to_eeh_dev(dn)->phb;
992 
993 	/* USB Bus children of PCI devices will not have BUID's */
994 	if (NULL == phb || 0 == phb->buid)
995 		return;
996 
997 	eeh_ops->of_probe(dn, NULL);
998 }
999 
1000 /**
1001  * eeh_add_device_tree_early - Enable EEH for the indicated device
1002  * @dn: device node
1003  *
1004  * This routine must be used to perform EEH initialization for the
1005  * indicated PCI device that was added after system boot (e.g.
1006  * hotplug, dlpar).
1007  */
1008 void eeh_add_device_tree_early(struct device_node *dn)
1009 {
1010 	struct device_node *sib;
1011 
1012 	for_each_child_of_node(dn, sib)
1013 		eeh_add_device_tree_early(sib);
1014 	eeh_add_device_early(dn);
1015 }
1016 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1017 
1018 /**
1019  * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1020  * @dev: pci device for which to set up EEH
1021  *
1022  * This routine must be used to complete EEH initialization for PCI
1023  * devices that were added after system boot (e.g. hotplug, dlpar).
1024  */
1025 void eeh_add_device_late(struct pci_dev *dev)
1026 {
1027 	struct device_node *dn;
1028 	struct eeh_dev *edev;
1029 
1030 	if (!dev || !eeh_enabled())
1031 		return;
1032 
1033 	pr_debug("EEH: Adding device %s\n", pci_name(dev));
1034 
1035 	dn = pci_device_to_OF_node(dev);
1036 	edev = of_node_to_eeh_dev(dn);
1037 	if (edev->pdev == dev) {
1038 		pr_debug("EEH: Already referenced !\n");
1039 		return;
1040 	}
1041 
1042 	/*
1043 	 * The EEH cache might not be removed correctly because of
1044 	 * unbalanced kref to the device during unplug time, which
1045 	 * relies on pcibios_release_device(). So we have to remove
1046 	 * that here explicitly.
1047 	 */
1048 	if (edev->pdev) {
1049 		eeh_rmv_from_parent_pe(edev);
1050 		eeh_addr_cache_rmv_dev(edev->pdev);
1051 		eeh_sysfs_remove_device(edev->pdev);
1052 		edev->mode &= ~EEH_DEV_SYSFS;
1053 
1054 		/*
1055 		 * We definitely should have the PCI device removed
1056 		 * though it wasn't correctly. So we needn't call
1057 		 * into error handler afterwards.
1058 		 */
1059 		edev->mode |= EEH_DEV_NO_HANDLER;
1060 
1061 		edev->pdev = NULL;
1062 		dev->dev.archdata.edev = NULL;
1063 	}
1064 
1065 	edev->pdev = dev;
1066 	dev->dev.archdata.edev = edev;
1067 
1068 	/*
1069 	 * We have to do the EEH probe here because the PCI device
1070 	 * hasn't been created yet in the early stage.
1071 	 */
1072 	if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1073 		eeh_ops->dev_probe(dev, NULL);
1074 
1075 	eeh_addr_cache_insert_dev(dev);
1076 }
1077 
1078 /**
1079  * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1080  * @bus: PCI bus
1081  *
1082  * This routine must be used to perform EEH initialization for PCI
1083  * devices which are attached to the indicated PCI bus. The PCI bus
1084  * is added after system boot through hotplug or dlpar.
1085  */
1086 void eeh_add_device_tree_late(struct pci_bus *bus)
1087 {
1088 	struct pci_dev *dev;
1089 
1090 	list_for_each_entry(dev, &bus->devices, bus_list) {
1091 		eeh_add_device_late(dev);
1092 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1093 			struct pci_bus *subbus = dev->subordinate;
1094 			if (subbus)
1095 				eeh_add_device_tree_late(subbus);
1096 		}
1097 	}
1098 }
1099 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1100 
1101 /**
1102  * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1103  * @bus: PCI bus
1104  *
1105  * This routine must be used to add EEH sysfs files for PCI
1106  * devices which are attached to the indicated PCI bus. The PCI bus
1107  * is added after system boot through hotplug or dlpar.
1108  */
1109 void eeh_add_sysfs_files(struct pci_bus *bus)
1110 {
1111 	struct pci_dev *dev;
1112 
1113 	list_for_each_entry(dev, &bus->devices, bus_list) {
1114 		eeh_sysfs_add_device(dev);
1115 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1116 			struct pci_bus *subbus = dev->subordinate;
1117 			if (subbus)
1118 				eeh_add_sysfs_files(subbus);
1119 		}
1120 	}
1121 }
1122 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1123 
1124 /**
1125  * eeh_remove_device - Undo EEH setup for the indicated pci device
1126  * @dev: pci device to be removed
1127  *
1128  * This routine should be called when a device is removed from
1129  * a running system (e.g. by hotplug or dlpar).  It unregisters
1130  * the PCI device from the EEH subsystem.  I/O errors affecting
1131  * this device will no longer be detected after this call; thus,
1132  * i/o errors affecting this slot may leave this device unusable.
1133  */
1134 void eeh_remove_device(struct pci_dev *dev)
1135 {
1136 	struct eeh_dev *edev;
1137 
1138 	if (!dev || !eeh_enabled())
1139 		return;
1140 	edev = pci_dev_to_eeh_dev(dev);
1141 
1142 	/* Unregister the device with the EEH/PCI address search system */
1143 	pr_debug("EEH: Removing device %s\n", pci_name(dev));
1144 
1145 	if (!edev || !edev->pdev || !edev->pe) {
1146 		pr_debug("EEH: Not referenced !\n");
1147 		return;
1148 	}
1149 
1150 	/*
1151 	 * During the hotplug for EEH error recovery, we need the EEH
1152 	 * device attached to the parent PE in order for BAR restore
1153 	 * a bit later. So we keep it for BAR restore and remove it
1154 	 * from the parent PE during the BAR resotre.
1155 	 */
1156 	edev->pdev = NULL;
1157 	dev->dev.archdata.edev = NULL;
1158 	if (!(edev->pe->state & EEH_PE_KEEP))
1159 		eeh_rmv_from_parent_pe(edev);
1160 	else
1161 		edev->mode |= EEH_DEV_DISCONNECTED;
1162 
1163 	/*
1164 	 * We're removing from the PCI subsystem, that means
1165 	 * the PCI device driver can't support EEH or not
1166 	 * well. So we rely on hotplug completely to do recovery
1167 	 * for the specific PCI device.
1168 	 */
1169 	edev->mode |= EEH_DEV_NO_HANDLER;
1170 
1171 	eeh_addr_cache_rmv_dev(dev);
1172 	eeh_sysfs_remove_device(dev);
1173 	edev->mode &= ~EEH_DEV_SYSFS;
1174 }
1175 
1176 int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1177 {
1178 	int ret;
1179 
1180 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1181 	if (ret) {
1182 		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1183 			__func__, ret, pe->phb->global_number, pe->addr);
1184 		return ret;
1185 	}
1186 
1187 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1188 	if (ret) {
1189 		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1190 			__func__, ret, pe->phb->global_number, pe->addr);
1191 		return ret;
1192 	}
1193 
1194 	/* Clear software isolated state */
1195 	if (sw_state && (pe->state & EEH_PE_ISOLATED))
1196 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1197 
1198 	return ret;
1199 }
1200 
1201 
1202 static struct pci_device_id eeh_reset_ids[] = {
1203 	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1204 	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1205 	{ 0 }
1206 };
1207 
1208 static int eeh_pe_change_owner(struct eeh_pe *pe)
1209 {
1210 	struct eeh_dev *edev, *tmp;
1211 	struct pci_dev *pdev;
1212 	struct pci_device_id *id;
1213 	int flags, ret;
1214 
1215 	/* Check PE state */
1216 	flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1217 	ret = eeh_ops->get_state(pe, NULL);
1218 	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1219 		return 0;
1220 
1221 	/* Unfrozen PE, nothing to do */
1222 	if ((ret & flags) == flags)
1223 		return 0;
1224 
1225 	/* Frozen PE, check if it needs PE level reset */
1226 	eeh_pe_for_each_dev(pe, edev, tmp) {
1227 		pdev = eeh_dev_to_pci_dev(edev);
1228 		if (!pdev)
1229 			continue;
1230 
1231 		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1232 			if (id->vendor != PCI_ANY_ID &&
1233 			    id->vendor != pdev->vendor)
1234 				continue;
1235 			if (id->device != PCI_ANY_ID &&
1236 			    id->device != pdev->device)
1237 				continue;
1238 			if (id->subvendor != PCI_ANY_ID &&
1239 			    id->subvendor != pdev->subsystem_vendor)
1240 				continue;
1241 			if (id->subdevice != PCI_ANY_ID &&
1242 			    id->subdevice != pdev->subsystem_device)
1243 				continue;
1244 
1245 			goto reset;
1246 		}
1247 	}
1248 
1249 	return eeh_unfreeze_pe(pe, true);
1250 
1251 reset:
1252 	return eeh_pe_reset_and_recover(pe);
1253 }
1254 
1255 /**
1256  * eeh_dev_open - Increase count of pass through devices for PE
1257  * @pdev: PCI device
1258  *
1259  * Increase count of passed through devices for the indicated
1260  * PE. In the result, the EEH errors detected on the PE won't be
1261  * reported. The PE owner will be responsible for detection
1262  * and recovery.
1263  */
1264 int eeh_dev_open(struct pci_dev *pdev)
1265 {
1266 	struct eeh_dev *edev;
1267 	int ret = -ENODEV;
1268 
1269 	mutex_lock(&eeh_dev_mutex);
1270 
1271 	/* No PCI device ? */
1272 	if (!pdev)
1273 		goto out;
1274 
1275 	/* No EEH device or PE ? */
1276 	edev = pci_dev_to_eeh_dev(pdev);
1277 	if (!edev || !edev->pe)
1278 		goto out;
1279 
1280 	/*
1281 	 * The PE might have been put into frozen state, but we
1282 	 * didn't detect that yet. The passed through PCI devices
1283 	 * in frozen PE won't work properly. Clear the frozen state
1284 	 * in advance.
1285 	 */
1286 	ret = eeh_pe_change_owner(edev->pe);
1287 	if (ret)
1288 		goto out;
1289 
1290 	/* Increase PE's pass through count */
1291 	atomic_inc(&edev->pe->pass_dev_cnt);
1292 	mutex_unlock(&eeh_dev_mutex);
1293 
1294 	return 0;
1295 out:
1296 	mutex_unlock(&eeh_dev_mutex);
1297 	return ret;
1298 }
1299 EXPORT_SYMBOL_GPL(eeh_dev_open);
1300 
1301 /**
1302  * eeh_dev_release - Decrease count of pass through devices for PE
1303  * @pdev: PCI device
1304  *
1305  * Decrease count of pass through devices for the indicated PE. If
1306  * there is no passed through device in PE, the EEH errors detected
1307  * on the PE will be reported and handled as usual.
1308  */
1309 void eeh_dev_release(struct pci_dev *pdev)
1310 {
1311 	struct eeh_dev *edev;
1312 
1313 	mutex_lock(&eeh_dev_mutex);
1314 
1315 	/* No PCI device ? */
1316 	if (!pdev)
1317 		goto out;
1318 
1319 	/* No EEH device ? */
1320 	edev = pci_dev_to_eeh_dev(pdev);
1321 	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1322 		goto out;
1323 
1324 	/* Decrease PE's pass through count */
1325 	atomic_dec(&edev->pe->pass_dev_cnt);
1326 	WARN_ON(atomic_read(&edev->pe->pass_dev_cnt) < 0);
1327 	eeh_pe_change_owner(edev->pe);
1328 out:
1329 	mutex_unlock(&eeh_dev_mutex);
1330 }
1331 EXPORT_SYMBOL(eeh_dev_release);
1332 
1333 #ifdef CONFIG_IOMMU_API
1334 
1335 static int dev_has_iommu_table(struct device *dev, void *data)
1336 {
1337 	struct pci_dev *pdev = to_pci_dev(dev);
1338 	struct pci_dev **ppdev = data;
1339 	struct iommu_table *tbl;
1340 
1341 	if (!dev)
1342 		return 0;
1343 
1344 	tbl = get_iommu_table_base(dev);
1345 	if (tbl && tbl->it_group) {
1346 		*ppdev = pdev;
1347 		return 1;
1348 	}
1349 
1350 	return 0;
1351 }
1352 
1353 /**
1354  * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1355  * @group: IOMMU group
1356  *
1357  * The routine is called to convert IOMMU group to EEH PE.
1358  */
1359 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1360 {
1361 	struct pci_dev *pdev = NULL;
1362 	struct eeh_dev *edev;
1363 	int ret;
1364 
1365 	/* No IOMMU group ? */
1366 	if (!group)
1367 		return NULL;
1368 
1369 	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1370 	if (!ret || !pdev)
1371 		return NULL;
1372 
1373 	/* No EEH device or PE ? */
1374 	edev = pci_dev_to_eeh_dev(pdev);
1375 	if (!edev || !edev->pe)
1376 		return NULL;
1377 
1378 	return edev->pe;
1379 }
1380 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1381 
1382 #endif /* CONFIG_IOMMU_API */
1383 
1384 /**
1385  * eeh_pe_set_option - Set options for the indicated PE
1386  * @pe: EEH PE
1387  * @option: requested option
1388  *
1389  * The routine is called to enable or disable EEH functionality
1390  * on the indicated PE, to enable IO or DMA for the frozen PE.
1391  */
1392 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1393 {
1394 	int ret = 0;
1395 
1396 	/* Invalid PE ? */
1397 	if (!pe)
1398 		return -ENODEV;
1399 
1400 	/*
1401 	 * EEH functionality could possibly be disabled, just
1402 	 * return error for the case. And the EEH functinality
1403 	 * isn't expected to be disabled on one specific PE.
1404 	 */
1405 	switch (option) {
1406 	case EEH_OPT_ENABLE:
1407 		if (eeh_enabled()) {
1408 			ret = eeh_pe_change_owner(pe);
1409 			break;
1410 		}
1411 		ret = -EIO;
1412 		break;
1413 	case EEH_OPT_DISABLE:
1414 		break;
1415 	case EEH_OPT_THAW_MMIO:
1416 	case EEH_OPT_THAW_DMA:
1417 		if (!eeh_ops || !eeh_ops->set_option) {
1418 			ret = -ENOENT;
1419 			break;
1420 		}
1421 
1422 		ret = eeh_pci_enable(pe, option);
1423 		break;
1424 	default:
1425 		pr_debug("%s: Option %d out of range (%d, %d)\n",
1426 			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1427 		ret = -EINVAL;
1428 	}
1429 
1430 	return ret;
1431 }
1432 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1433 
1434 /**
1435  * eeh_pe_get_state - Retrieve PE's state
1436  * @pe: EEH PE
1437  *
1438  * Retrieve the PE's state, which includes 3 aspects: enabled
1439  * DMA, enabled IO and asserted reset.
1440  */
1441 int eeh_pe_get_state(struct eeh_pe *pe)
1442 {
1443 	int result, ret = 0;
1444 	bool rst_active, dma_en, mmio_en;
1445 
1446 	/* Existing PE ? */
1447 	if (!pe)
1448 		return -ENODEV;
1449 
1450 	if (!eeh_ops || !eeh_ops->get_state)
1451 		return -ENOENT;
1452 
1453 	result = eeh_ops->get_state(pe, NULL);
1454 	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1455 	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1456 	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1457 
1458 	if (rst_active)
1459 		ret = EEH_PE_STATE_RESET;
1460 	else if (dma_en && mmio_en)
1461 		ret = EEH_PE_STATE_NORMAL;
1462 	else if (!dma_en && !mmio_en)
1463 		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1464 	else if (!dma_en && mmio_en)
1465 		ret = EEH_PE_STATE_STOPPED_DMA;
1466 	else
1467 		ret = EEH_PE_STATE_UNAVAIL;
1468 
1469 	return ret;
1470 }
1471 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1472 
1473 static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1474 {
1475 	struct eeh_dev *edev, *tmp;
1476 	struct pci_dev *pdev;
1477 	int ret = 0;
1478 
1479 	/* Restore config space */
1480 	eeh_pe_restore_bars(pe);
1481 
1482 	/*
1483 	 * Reenable PCI devices as the devices passed
1484 	 * through are always enabled before the reset.
1485 	 */
1486 	eeh_pe_for_each_dev(pe, edev, tmp) {
1487 		pdev = eeh_dev_to_pci_dev(edev);
1488 		if (!pdev)
1489 			continue;
1490 
1491 		ret = pci_reenable_device(pdev);
1492 		if (ret) {
1493 			pr_warn("%s: Failure %d reenabling %s\n",
1494 				__func__, ret, pci_name(pdev));
1495 			return ret;
1496 		}
1497 	}
1498 
1499 	/* The PE is still in frozen state */
1500 	return eeh_unfreeze_pe(pe, true);
1501 }
1502 
1503 /**
1504  * eeh_pe_reset - Issue PE reset according to specified type
1505  * @pe: EEH PE
1506  * @option: reset type
1507  *
1508  * The routine is called to reset the specified PE with the
1509  * indicated type, either fundamental reset or hot reset.
1510  * PE reset is the most important part for error recovery.
1511  */
1512 int eeh_pe_reset(struct eeh_pe *pe, int option)
1513 {
1514 	int ret = 0;
1515 
1516 	/* Invalid PE ? */
1517 	if (!pe)
1518 		return -ENODEV;
1519 
1520 	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1521 		return -ENOENT;
1522 
1523 	switch (option) {
1524 	case EEH_RESET_DEACTIVATE:
1525 		ret = eeh_ops->reset(pe, option);
1526 		eeh_pe_state_clear(pe, EEH_PE_RESET);
1527 		if (ret)
1528 			break;
1529 
1530 		ret = eeh_pe_reenable_devices(pe);
1531 		break;
1532 	case EEH_RESET_HOT:
1533 	case EEH_RESET_FUNDAMENTAL:
1534 		/*
1535 		 * Proactively freeze the PE to drop all MMIO access
1536 		 * during reset, which should be banned as it's always
1537 		 * cause recursive EEH error.
1538 		 */
1539 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1540 
1541 		eeh_pe_state_mark(pe, EEH_PE_RESET);
1542 		ret = eeh_ops->reset(pe, option);
1543 		break;
1544 	default:
1545 		pr_debug("%s: Unsupported option %d\n",
1546 			__func__, option);
1547 		ret = -EINVAL;
1548 	}
1549 
1550 	return ret;
1551 }
1552 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1553 
1554 /**
1555  * eeh_pe_configure - Configure PCI bridges after PE reset
1556  * @pe: EEH PE
1557  *
1558  * The routine is called to restore the PCI config space for
1559  * those PCI devices, especially PCI bridges affected by PE
1560  * reset issued previously.
1561  */
1562 int eeh_pe_configure(struct eeh_pe *pe)
1563 {
1564 	int ret = 0;
1565 
1566 	/* Invalid PE ? */
1567 	if (!pe)
1568 		return -ENODEV;
1569 
1570 	return ret;
1571 }
1572 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1573 
1574 static int proc_eeh_show(struct seq_file *m, void *v)
1575 {
1576 	if (!eeh_enabled()) {
1577 		seq_printf(m, "EEH Subsystem is globally disabled\n");
1578 		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1579 	} else {
1580 		seq_printf(m, "EEH Subsystem is enabled\n");
1581 		seq_printf(m,
1582 				"no device=%llu\n"
1583 				"no device node=%llu\n"
1584 				"no config address=%llu\n"
1585 				"check not wanted=%llu\n"
1586 				"eeh_total_mmio_ffs=%llu\n"
1587 				"eeh_false_positives=%llu\n"
1588 				"eeh_slot_resets=%llu\n",
1589 				eeh_stats.no_device,
1590 				eeh_stats.no_dn,
1591 				eeh_stats.no_cfg_addr,
1592 				eeh_stats.ignored_check,
1593 				eeh_stats.total_mmio_ffs,
1594 				eeh_stats.false_positives,
1595 				eeh_stats.slot_resets);
1596 	}
1597 
1598 	return 0;
1599 }
1600 
1601 static int proc_eeh_open(struct inode *inode, struct file *file)
1602 {
1603 	return single_open(file, proc_eeh_show, NULL);
1604 }
1605 
1606 static const struct file_operations proc_eeh_operations = {
1607 	.open      = proc_eeh_open,
1608 	.read      = seq_read,
1609 	.llseek    = seq_lseek,
1610 	.release   = single_release,
1611 };
1612 
1613 #ifdef CONFIG_DEBUG_FS
1614 static int eeh_enable_dbgfs_set(void *data, u64 val)
1615 {
1616 	if (val)
1617 		eeh_clear_flag(EEH_FORCE_DISABLED);
1618 	else
1619 		eeh_add_flag(EEH_FORCE_DISABLED);
1620 
1621 	/* Notify the backend */
1622 	if (eeh_ops->post_init)
1623 		eeh_ops->post_init();
1624 
1625 	return 0;
1626 }
1627 
1628 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1629 {
1630 	if (eeh_enabled())
1631 		*val = 0x1ul;
1632 	else
1633 		*val = 0x0ul;
1634 	return 0;
1635 }
1636 
1637 DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1638 			eeh_enable_dbgfs_set, "0x%llx\n");
1639 #endif
1640 
1641 static int __init eeh_init_proc(void)
1642 {
1643 	if (machine_is(pseries) || machine_is(powernv)) {
1644 		proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1645 #ifdef CONFIG_DEBUG_FS
1646 		debugfs_create_file("eeh_enable", 0600,
1647                                     powerpc_debugfs_root, NULL,
1648                                     &eeh_enable_dbgfs_ops);
1649 #endif
1650 	}
1651 
1652 	return 0;
1653 }
1654 __initcall(eeh_init_proc);
1655