1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright IBM Corporation 2001, 2005, 2006 4 * Copyright Dave Engebretsen & Todd Inglett 2001 5 * Copyright Linas Vepstas 2005, 2006 6 * Copyright 2001-2012 IBM Corporation. 7 * 8 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com> 9 */ 10 11 #include <linux/delay.h> 12 #include <linux/sched.h> 13 #include <linux/init.h> 14 #include <linux/list.h> 15 #include <linux/pci.h> 16 #include <linux/iommu.h> 17 #include <linux/proc_fs.h> 18 #include <linux/rbtree.h> 19 #include <linux/reboot.h> 20 #include <linux/seq_file.h> 21 #include <linux/spinlock.h> 22 #include <linux/export.h> 23 #include <linux/of.h> 24 25 #include <linux/atomic.h> 26 #include <asm/debugfs.h> 27 #include <asm/eeh.h> 28 #include <asm/eeh_event.h> 29 #include <asm/io.h> 30 #include <asm/iommu.h> 31 #include <asm/machdep.h> 32 #include <asm/ppc-pci.h> 33 #include <asm/rtas.h> 34 #include <asm/pte-walk.h> 35 36 37 /** Overview: 38 * EEH, or "Enhanced Error Handling" is a PCI bridge technology for 39 * dealing with PCI bus errors that can't be dealt with within the 40 * usual PCI framework, except by check-stopping the CPU. Systems 41 * that are designed for high-availability/reliability cannot afford 42 * to crash due to a "mere" PCI error, thus the need for EEH. 43 * An EEH-capable bridge operates by converting a detected error 44 * into a "slot freeze", taking the PCI adapter off-line, making 45 * the slot behave, from the OS'es point of view, as if the slot 46 * were "empty": all reads return 0xff's and all writes are silently 47 * ignored. EEH slot isolation events can be triggered by parity 48 * errors on the address or data busses (e.g. during posted writes), 49 * which in turn might be caused by low voltage on the bus, dust, 50 * vibration, humidity, radioactivity or plain-old failed hardware. 51 * 52 * Note, however, that one of the leading causes of EEH slot 53 * freeze events are buggy device drivers, buggy device microcode, 54 * or buggy device hardware. This is because any attempt by the 55 * device to bus-master data to a memory address that is not 56 * assigned to the device will trigger a slot freeze. (The idea 57 * is to prevent devices-gone-wild from corrupting system memory). 58 * Buggy hardware/drivers will have a miserable time co-existing 59 * with EEH. 60 * 61 * Ideally, a PCI device driver, when suspecting that an isolation 62 * event has occurred (e.g. by reading 0xff's), will then ask EEH 63 * whether this is the case, and then take appropriate steps to 64 * reset the PCI slot, the PCI device, and then resume operations. 65 * However, until that day, the checking is done here, with the 66 * eeh_check_failure() routine embedded in the MMIO macros. If 67 * the slot is found to be isolated, an "EEH Event" is synthesized 68 * and sent out for processing. 69 */ 70 71 /* If a device driver keeps reading an MMIO register in an interrupt 72 * handler after a slot isolation event, it might be broken. 73 * This sets the threshold for how many read attempts we allow 74 * before printing an error message. 75 */ 76 #define EEH_MAX_FAILS 2100000 77 78 /* Time to wait for a PCI slot to report status, in milliseconds */ 79 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000) 80 81 /* 82 * EEH probe mode support, which is part of the flags, 83 * is to support multiple platforms for EEH. Some platforms 84 * like pSeries do PCI emunation based on device tree. 85 * However, other platforms like powernv probe PCI devices 86 * from hardware. The flag is used to distinguish that. 87 * In addition, struct eeh_ops::probe would be invoked for 88 * particular OF node or PCI device so that the corresponding 89 * PE would be created there. 90 */ 91 int eeh_subsystem_flags; 92 EXPORT_SYMBOL(eeh_subsystem_flags); 93 94 /* 95 * EEH allowed maximal frozen times. If one particular PE's 96 * frozen count in last hour exceeds this limit, the PE will 97 * be forced to be offline permanently. 98 */ 99 u32 eeh_max_freezes = 5; 100 101 /* 102 * Controls whether a recovery event should be scheduled when an 103 * isolated device is discovered. This is only really useful for 104 * debugging problems with the EEH core. 105 */ 106 bool eeh_debugfs_no_recover; 107 108 /* Platform dependent EEH operations */ 109 struct eeh_ops *eeh_ops = NULL; 110 111 /* Lock to avoid races due to multiple reports of an error */ 112 DEFINE_RAW_SPINLOCK(confirm_error_lock); 113 EXPORT_SYMBOL_GPL(confirm_error_lock); 114 115 /* Lock to protect passed flags */ 116 static DEFINE_MUTEX(eeh_dev_mutex); 117 118 /* Buffer for reporting pci register dumps. Its here in BSS, and 119 * not dynamically alloced, so that it ends up in RMO where RTAS 120 * can access it. 121 */ 122 #define EEH_PCI_REGS_LOG_LEN 8192 123 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN]; 124 125 /* 126 * The struct is used to maintain the EEH global statistic 127 * information. Besides, the EEH global statistics will be 128 * exported to user space through procfs 129 */ 130 struct eeh_stats { 131 u64 no_device; /* PCI device not found */ 132 u64 no_dn; /* OF node not found */ 133 u64 no_cfg_addr; /* Config address not found */ 134 u64 ignored_check; /* EEH check skipped */ 135 u64 total_mmio_ffs; /* Total EEH checks */ 136 u64 false_positives; /* Unnecessary EEH checks */ 137 u64 slot_resets; /* PE reset */ 138 }; 139 140 static struct eeh_stats eeh_stats; 141 142 static int __init eeh_setup(char *str) 143 { 144 if (!strcmp(str, "off")) 145 eeh_add_flag(EEH_FORCE_DISABLED); 146 else if (!strcmp(str, "early_log")) 147 eeh_add_flag(EEH_EARLY_DUMP_LOG); 148 149 return 1; 150 } 151 __setup("eeh=", eeh_setup); 152 153 void eeh_show_enabled(void) 154 { 155 if (eeh_has_flag(EEH_FORCE_DISABLED)) 156 pr_info("EEH: Recovery disabled by kernel parameter.\n"); 157 else if (eeh_has_flag(EEH_ENABLED)) 158 pr_info("EEH: Capable adapter found: recovery enabled.\n"); 159 else 160 pr_info("EEH: No capable adapters found: recovery disabled.\n"); 161 } 162 163 /* 164 * This routine captures assorted PCI configuration space data 165 * for the indicated PCI device, and puts them into a buffer 166 * for RTAS error logging. 167 */ 168 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len) 169 { 170 struct pci_dn *pdn = eeh_dev_to_pdn(edev); 171 u32 cfg; 172 int cap, i; 173 int n = 0, l = 0; 174 char buffer[128]; 175 176 if (!pdn) { 177 pr_warn("EEH: Note: No error log for absent device.\n"); 178 return 0; 179 } 180 181 n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n", 182 pdn->phb->global_number, pdn->busno, 183 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn)); 184 pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n", 185 pdn->phb->global_number, pdn->busno, 186 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn)); 187 188 eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg); 189 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg); 190 pr_warn("EEH: PCI device/vendor: %08x\n", cfg); 191 192 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg); 193 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg); 194 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg); 195 196 /* Gather bridge-specific registers */ 197 if (edev->mode & EEH_DEV_BRIDGE) { 198 eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg); 199 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg); 200 pr_warn("EEH: Bridge secondary status: %04x\n", cfg); 201 202 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg); 203 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg); 204 pr_warn("EEH: Bridge control: %04x\n", cfg); 205 } 206 207 /* Dump out the PCI-X command and status regs */ 208 cap = edev->pcix_cap; 209 if (cap) { 210 eeh_ops->read_config(pdn, cap, 4, &cfg); 211 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg); 212 pr_warn("EEH: PCI-X cmd: %08x\n", cfg); 213 214 eeh_ops->read_config(pdn, cap+4, 4, &cfg); 215 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg); 216 pr_warn("EEH: PCI-X status: %08x\n", cfg); 217 } 218 219 /* If PCI-E capable, dump PCI-E cap 10 */ 220 cap = edev->pcie_cap; 221 if (cap) { 222 n += scnprintf(buf+n, len-n, "pci-e cap10:\n"); 223 pr_warn("EEH: PCI-E capabilities and status follow:\n"); 224 225 for (i=0; i<=8; i++) { 226 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg); 227 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg); 228 229 if ((i % 4) == 0) { 230 if (i != 0) 231 pr_warn("%s\n", buffer); 232 233 l = scnprintf(buffer, sizeof(buffer), 234 "EEH: PCI-E %02x: %08x ", 235 4*i, cfg); 236 } else { 237 l += scnprintf(buffer+l, sizeof(buffer)-l, 238 "%08x ", cfg); 239 } 240 241 } 242 243 pr_warn("%s\n", buffer); 244 } 245 246 /* If AER capable, dump it */ 247 cap = edev->aer_cap; 248 if (cap) { 249 n += scnprintf(buf+n, len-n, "pci-e AER:\n"); 250 pr_warn("EEH: PCI-E AER capability register set follows:\n"); 251 252 for (i=0; i<=13; i++) { 253 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg); 254 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg); 255 256 if ((i % 4) == 0) { 257 if (i != 0) 258 pr_warn("%s\n", buffer); 259 260 l = scnprintf(buffer, sizeof(buffer), 261 "EEH: PCI-E AER %02x: %08x ", 262 4*i, cfg); 263 } else { 264 l += scnprintf(buffer+l, sizeof(buffer)-l, 265 "%08x ", cfg); 266 } 267 } 268 269 pr_warn("%s\n", buffer); 270 } 271 272 return n; 273 } 274 275 static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag) 276 { 277 struct eeh_dev *edev, *tmp; 278 size_t *plen = flag; 279 280 eeh_pe_for_each_dev(pe, edev, tmp) 281 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen, 282 EEH_PCI_REGS_LOG_LEN - *plen); 283 284 return NULL; 285 } 286 287 /** 288 * eeh_slot_error_detail - Generate combined log including driver log and error log 289 * @pe: EEH PE 290 * @severity: temporary or permanent error log 291 * 292 * This routine should be called to generate the combined log, which 293 * is comprised of driver log and error log. The driver log is figured 294 * out from the config space of the corresponding PCI device, while 295 * the error log is fetched through platform dependent function call. 296 */ 297 void eeh_slot_error_detail(struct eeh_pe *pe, int severity) 298 { 299 size_t loglen = 0; 300 301 /* 302 * When the PHB is fenced or dead, it's pointless to collect 303 * the data from PCI config space because it should return 304 * 0xFF's. For ER, we still retrieve the data from the PCI 305 * config space. 306 * 307 * For pHyp, we have to enable IO for log retrieval. Otherwise, 308 * 0xFF's is always returned from PCI config space. 309 * 310 * When the @severity is EEH_LOG_PERM, the PE is going to be 311 * removed. Prior to that, the drivers for devices included in 312 * the PE will be closed. The drivers rely on working IO path 313 * to bring the devices to quiet state. Otherwise, PCI traffic 314 * from those devices after they are removed is like to cause 315 * another unexpected EEH error. 316 */ 317 if (!(pe->type & EEH_PE_PHB)) { 318 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) || 319 severity == EEH_LOG_PERM) 320 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO); 321 322 /* 323 * The config space of some PCI devices can't be accessed 324 * when their PEs are in frozen state. Otherwise, fenced 325 * PHB might be seen. Those PEs are identified with flag 326 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED 327 * is set automatically when the PE is put to EEH_PE_ISOLATED. 328 * 329 * Restoring BARs possibly triggers PCI config access in 330 * (OPAL) firmware and then causes fenced PHB. If the 331 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's 332 * pointless to restore BARs and dump config space. 333 */ 334 eeh_ops->configure_bridge(pe); 335 if (!(pe->state & EEH_PE_CFG_BLOCKED)) { 336 eeh_pe_restore_bars(pe); 337 338 pci_regs_buf[0] = 0; 339 eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen); 340 } 341 } 342 343 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen); 344 } 345 346 /** 347 * eeh_token_to_phys - Convert EEH address token to phys address 348 * @token: I/O token, should be address in the form 0xA.... 349 * 350 * This routine should be called to convert virtual I/O address 351 * to physical one. 352 */ 353 static inline unsigned long eeh_token_to_phys(unsigned long token) 354 { 355 pte_t *ptep; 356 unsigned long pa; 357 int hugepage_shift; 358 359 /* 360 * We won't find hugepages here(this is iomem). Hence we are not 361 * worried about _PAGE_SPLITTING/collapse. Also we will not hit 362 * page table free, because of init_mm. 363 */ 364 ptep = find_init_mm_pte(token, &hugepage_shift); 365 if (!ptep) 366 return token; 367 368 pa = pte_pfn(*ptep); 369 370 /* On radix we can do hugepage mappings for io, so handle that */ 371 if (hugepage_shift) { 372 pa <<= hugepage_shift; 373 pa |= token & ((1ul << hugepage_shift) - 1); 374 } else { 375 pa <<= PAGE_SHIFT; 376 pa |= token & (PAGE_SIZE - 1); 377 } 378 379 return pa; 380 } 381 382 /* 383 * On PowerNV platform, we might already have fenced PHB there. 384 * For that case, it's meaningless to recover frozen PE. Intead, 385 * We have to handle fenced PHB firstly. 386 */ 387 static int eeh_phb_check_failure(struct eeh_pe *pe) 388 { 389 struct eeh_pe *phb_pe; 390 unsigned long flags; 391 int ret; 392 393 if (!eeh_has_flag(EEH_PROBE_MODE_DEV)) 394 return -EPERM; 395 396 /* Find the PHB PE */ 397 phb_pe = eeh_phb_pe_get(pe->phb); 398 if (!phb_pe) { 399 pr_warn("%s Can't find PE for PHB#%x\n", 400 __func__, pe->phb->global_number); 401 return -EEXIST; 402 } 403 404 /* If the PHB has been in problematic state */ 405 eeh_serialize_lock(&flags); 406 if (phb_pe->state & EEH_PE_ISOLATED) { 407 ret = 0; 408 goto out; 409 } 410 411 /* Check PHB state */ 412 ret = eeh_ops->get_state(phb_pe, NULL); 413 if ((ret < 0) || 414 (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) { 415 ret = 0; 416 goto out; 417 } 418 419 /* Isolate the PHB and send event */ 420 eeh_pe_mark_isolated(phb_pe); 421 eeh_serialize_unlock(flags); 422 423 pr_debug("EEH: PHB#%x failure detected, location: %s\n", 424 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe)); 425 eeh_send_failure_event(phb_pe); 426 return 1; 427 out: 428 eeh_serialize_unlock(flags); 429 return ret; 430 } 431 432 /** 433 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze 434 * @edev: eeh device 435 * 436 * Check for an EEH failure for the given device node. Call this 437 * routine if the result of a read was all 0xff's and you want to 438 * find out if this is due to an EEH slot freeze. This routine 439 * will query firmware for the EEH status. 440 * 441 * Returns 0 if there has not been an EEH error; otherwise returns 442 * a non-zero value and queues up a slot isolation event notification. 443 * 444 * It is safe to call this routine in an interrupt context. 445 */ 446 int eeh_dev_check_failure(struct eeh_dev *edev) 447 { 448 int ret; 449 unsigned long flags; 450 struct device_node *dn; 451 struct pci_dev *dev; 452 struct eeh_pe *pe, *parent_pe; 453 int rc = 0; 454 const char *location = NULL; 455 456 eeh_stats.total_mmio_ffs++; 457 458 if (!eeh_enabled()) 459 return 0; 460 461 if (!edev) { 462 eeh_stats.no_dn++; 463 return 0; 464 } 465 dev = eeh_dev_to_pci_dev(edev); 466 pe = eeh_dev_to_pe(edev); 467 468 /* Access to IO BARs might get this far and still not want checking. */ 469 if (!pe) { 470 eeh_stats.ignored_check++; 471 eeh_edev_dbg(edev, "Ignored check\n"); 472 return 0; 473 } 474 475 if (!pe->addr && !pe->config_addr) { 476 eeh_stats.no_cfg_addr++; 477 return 0; 478 } 479 480 /* 481 * On PowerNV platform, we might already have fenced PHB 482 * there and we need take care of that firstly. 483 */ 484 ret = eeh_phb_check_failure(pe); 485 if (ret > 0) 486 return ret; 487 488 /* 489 * If the PE isn't owned by us, we shouldn't check the 490 * state. Instead, let the owner handle it if the PE has 491 * been frozen. 492 */ 493 if (eeh_pe_passed(pe)) 494 return 0; 495 496 /* If we already have a pending isolation event for this 497 * slot, we know it's bad already, we don't need to check. 498 * Do this checking under a lock; as multiple PCI devices 499 * in one slot might report errors simultaneously, and we 500 * only want one error recovery routine running. 501 */ 502 eeh_serialize_lock(&flags); 503 rc = 1; 504 if (pe->state & EEH_PE_ISOLATED) { 505 pe->check_count++; 506 if (pe->check_count == EEH_MAX_FAILS) { 507 dn = pci_device_to_OF_node(dev); 508 if (dn) 509 location = of_get_property(dn, "ibm,loc-code", 510 NULL); 511 eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n", 512 pe->check_count, 513 location ? location : "unknown", 514 eeh_driver_name(dev)); 515 eeh_edev_err(edev, "Might be infinite loop in %s driver\n", 516 eeh_driver_name(dev)); 517 dump_stack(); 518 } 519 goto dn_unlock; 520 } 521 522 /* 523 * Now test for an EEH failure. This is VERY expensive. 524 * Note that the eeh_config_addr may be a parent device 525 * in the case of a device behind a bridge, or it may be 526 * function zero of a multi-function device. 527 * In any case they must share a common PHB. 528 */ 529 ret = eeh_ops->get_state(pe, NULL); 530 531 /* Note that config-io to empty slots may fail; 532 * they are empty when they don't have children. 533 * We will punt with the following conditions: Failure to get 534 * PE's state, EEH not support and Permanently unavailable 535 * state, PE is in good state. 536 */ 537 if ((ret < 0) || 538 (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) { 539 eeh_stats.false_positives++; 540 pe->false_positives++; 541 rc = 0; 542 goto dn_unlock; 543 } 544 545 /* 546 * It should be corner case that the parent PE has been 547 * put into frozen state as well. We should take care 548 * that at first. 549 */ 550 parent_pe = pe->parent; 551 while (parent_pe) { 552 /* Hit the ceiling ? */ 553 if (parent_pe->type & EEH_PE_PHB) 554 break; 555 556 /* Frozen parent PE ? */ 557 ret = eeh_ops->get_state(parent_pe, NULL); 558 if (ret > 0 && !eeh_state_active(ret)) { 559 pe = parent_pe; 560 pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n", 561 pe->phb->global_number, pe->addr, 562 pe->phb->global_number, parent_pe->addr); 563 } 564 565 /* Next parent level */ 566 parent_pe = parent_pe->parent; 567 } 568 569 eeh_stats.slot_resets++; 570 571 /* Avoid repeated reports of this failure, including problems 572 * with other functions on this device, and functions under 573 * bridges. 574 */ 575 eeh_pe_mark_isolated(pe); 576 eeh_serialize_unlock(flags); 577 578 /* Most EEH events are due to device driver bugs. Having 579 * a stack trace will help the device-driver authors figure 580 * out what happened. So print that out. 581 */ 582 pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n", 583 __func__, pe->phb->global_number, pe->addr); 584 eeh_send_failure_event(pe); 585 586 return 1; 587 588 dn_unlock: 589 eeh_serialize_unlock(flags); 590 return rc; 591 } 592 593 EXPORT_SYMBOL_GPL(eeh_dev_check_failure); 594 595 /** 596 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze 597 * @token: I/O address 598 * 599 * Check for an EEH failure at the given I/O address. Call this 600 * routine if the result of a read was all 0xff's and you want to 601 * find out if this is due to an EEH slot freeze event. This routine 602 * will query firmware for the EEH status. 603 * 604 * Note this routine is safe to call in an interrupt context. 605 */ 606 int eeh_check_failure(const volatile void __iomem *token) 607 { 608 unsigned long addr; 609 struct eeh_dev *edev; 610 611 /* Finding the phys addr + pci device; this is pretty quick. */ 612 addr = eeh_token_to_phys((unsigned long __force) token); 613 edev = eeh_addr_cache_get_dev(addr); 614 if (!edev) { 615 eeh_stats.no_device++; 616 return 0; 617 } 618 619 return eeh_dev_check_failure(edev); 620 } 621 EXPORT_SYMBOL(eeh_check_failure); 622 623 624 /** 625 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot 626 * @pe: EEH PE 627 * 628 * This routine should be called to reenable frozen MMIO or DMA 629 * so that it would work correctly again. It's useful while doing 630 * recovery or log collection on the indicated device. 631 */ 632 int eeh_pci_enable(struct eeh_pe *pe, int function) 633 { 634 int active_flag, rc; 635 636 /* 637 * pHyp doesn't allow to enable IO or DMA on unfrozen PE. 638 * Also, it's pointless to enable them on unfrozen PE. So 639 * we have to check before enabling IO or DMA. 640 */ 641 switch (function) { 642 case EEH_OPT_THAW_MMIO: 643 active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED; 644 break; 645 case EEH_OPT_THAW_DMA: 646 active_flag = EEH_STATE_DMA_ACTIVE; 647 break; 648 case EEH_OPT_DISABLE: 649 case EEH_OPT_ENABLE: 650 case EEH_OPT_FREEZE_PE: 651 active_flag = 0; 652 break; 653 default: 654 pr_warn("%s: Invalid function %d\n", 655 __func__, function); 656 return -EINVAL; 657 } 658 659 /* 660 * Check if IO or DMA has been enabled before 661 * enabling them. 662 */ 663 if (active_flag) { 664 rc = eeh_ops->get_state(pe, NULL); 665 if (rc < 0) 666 return rc; 667 668 /* Needn't enable it at all */ 669 if (rc == EEH_STATE_NOT_SUPPORT) 670 return 0; 671 672 /* It's already enabled */ 673 if (rc & active_flag) 674 return 0; 675 } 676 677 678 /* Issue the request */ 679 rc = eeh_ops->set_option(pe, function); 680 if (rc) 681 pr_warn("%s: Unexpected state change %d on " 682 "PHB#%x-PE#%x, err=%d\n", 683 __func__, function, pe->phb->global_number, 684 pe->addr, rc); 685 686 /* Check if the request is finished successfully */ 687 if (active_flag) { 688 rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC); 689 if (rc < 0) 690 return rc; 691 692 if (rc & active_flag) 693 return 0; 694 695 return -EIO; 696 } 697 698 return rc; 699 } 700 701 static void eeh_disable_and_save_dev_state(struct eeh_dev *edev, 702 void *userdata) 703 { 704 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev); 705 struct pci_dev *dev = userdata; 706 707 /* 708 * The caller should have disabled and saved the 709 * state for the specified device 710 */ 711 if (!pdev || pdev == dev) 712 return; 713 714 /* Ensure we have D0 power state */ 715 pci_set_power_state(pdev, PCI_D0); 716 717 /* Save device state */ 718 pci_save_state(pdev); 719 720 /* 721 * Disable device to avoid any DMA traffic and 722 * interrupt from the device 723 */ 724 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 725 } 726 727 static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata) 728 { 729 struct pci_dn *pdn = eeh_dev_to_pdn(edev); 730 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev); 731 struct pci_dev *dev = userdata; 732 733 if (!pdev) 734 return; 735 736 /* Apply customization from firmware */ 737 if (pdn && eeh_ops->restore_config) 738 eeh_ops->restore_config(pdn); 739 740 /* The caller should restore state for the specified device */ 741 if (pdev != dev) 742 pci_restore_state(pdev); 743 } 744 745 int eeh_restore_vf_config(struct pci_dn *pdn) 746 { 747 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 748 u32 devctl, cmd, cap2, aer_capctl; 749 int old_mps; 750 751 if (edev->pcie_cap) { 752 /* Restore MPS */ 753 old_mps = (ffs(pdn->mps) - 8) << 5; 754 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, 755 2, &devctl); 756 devctl &= ~PCI_EXP_DEVCTL_PAYLOAD; 757 devctl |= old_mps; 758 eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, 759 2, devctl); 760 761 /* Disable Completion Timeout if possible */ 762 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2, 763 4, &cap2); 764 if (cap2 & PCI_EXP_DEVCAP2_COMP_TMOUT_DIS) { 765 eeh_ops->read_config(pdn, 766 edev->pcie_cap + PCI_EXP_DEVCTL2, 767 4, &cap2); 768 cap2 |= PCI_EXP_DEVCTL2_COMP_TMOUT_DIS; 769 eeh_ops->write_config(pdn, 770 edev->pcie_cap + PCI_EXP_DEVCTL2, 771 4, cap2); 772 } 773 } 774 775 /* Enable SERR and parity checking */ 776 eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd); 777 cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR); 778 eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd); 779 780 /* Enable report various errors */ 781 if (edev->pcie_cap) { 782 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, 783 2, &devctl); 784 devctl &= ~PCI_EXP_DEVCTL_CERE; 785 devctl |= (PCI_EXP_DEVCTL_NFERE | 786 PCI_EXP_DEVCTL_FERE | 787 PCI_EXP_DEVCTL_URRE); 788 eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, 789 2, devctl); 790 } 791 792 /* Enable ECRC generation and check */ 793 if (edev->pcie_cap && edev->aer_cap) { 794 eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP, 795 4, &aer_capctl); 796 aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE); 797 eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP, 798 4, aer_capctl); 799 } 800 801 return 0; 802 } 803 804 /** 805 * pcibios_set_pcie_reset_state - Set PCI-E reset state 806 * @dev: pci device struct 807 * @state: reset state to enter 808 * 809 * Return value: 810 * 0 if success 811 */ 812 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 813 { 814 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev); 815 struct eeh_pe *pe = eeh_dev_to_pe(edev); 816 817 if (!pe) { 818 pr_err("%s: No PE found on PCI device %s\n", 819 __func__, pci_name(dev)); 820 return -EINVAL; 821 } 822 823 switch (state) { 824 case pcie_deassert_reset: 825 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE); 826 eeh_unfreeze_pe(pe); 827 if (!(pe->type & EEH_PE_VF)) 828 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true); 829 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev); 830 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true); 831 break; 832 case pcie_hot_reset: 833 eeh_pe_mark_isolated(pe); 834 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true); 835 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE); 836 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev); 837 if (!(pe->type & EEH_PE_VF)) 838 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED); 839 eeh_ops->reset(pe, EEH_RESET_HOT); 840 break; 841 case pcie_warm_reset: 842 eeh_pe_mark_isolated(pe); 843 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true); 844 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE); 845 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev); 846 if (!(pe->type & EEH_PE_VF)) 847 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED); 848 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL); 849 break; 850 default: 851 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true); 852 return -EINVAL; 853 }; 854 855 return 0; 856 } 857 858 /** 859 * eeh_set_pe_freset - Check the required reset for the indicated device 860 * @data: EEH device 861 * @flag: return value 862 * 863 * Each device might have its preferred reset type: fundamental or 864 * hot reset. The routine is used to collected the information for 865 * the indicated device and its children so that the bunch of the 866 * devices could be reset properly. 867 */ 868 static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag) 869 { 870 struct pci_dev *dev; 871 unsigned int *freset = (unsigned int *)flag; 872 873 dev = eeh_dev_to_pci_dev(edev); 874 if (dev) 875 *freset |= dev->needs_freset; 876 } 877 878 static void eeh_pe_refreeze_passed(struct eeh_pe *root) 879 { 880 struct eeh_pe *pe; 881 int state; 882 883 eeh_for_each_pe(root, pe) { 884 if (eeh_pe_passed(pe)) { 885 state = eeh_ops->get_state(pe, NULL); 886 if (state & 887 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) { 888 pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n", 889 pe->phb->global_number, pe->addr); 890 eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE); 891 } 892 } 893 } 894 } 895 896 /** 897 * eeh_pe_reset_full - Complete a full reset process on the indicated PE 898 * @pe: EEH PE 899 * 900 * This function executes a full reset procedure on a PE, including setting 901 * the appropriate flags, performing a fundamental or hot reset, and then 902 * deactivating the reset status. It is designed to be used within the EEH 903 * subsystem, as opposed to eeh_pe_reset which is exported to drivers and 904 * only performs a single operation at a time. 905 * 906 * This function will attempt to reset a PE three times before failing. 907 */ 908 int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed) 909 { 910 int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED); 911 int type = EEH_RESET_HOT; 912 unsigned int freset = 0; 913 int i, state = 0, ret; 914 915 /* 916 * Determine the type of reset to perform - hot or fundamental. 917 * Hot reset is the default operation, unless any device under the 918 * PE requires a fundamental reset. 919 */ 920 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset); 921 922 if (freset) 923 type = EEH_RESET_FUNDAMENTAL; 924 925 /* Mark the PE as in reset state and block config space accesses */ 926 eeh_pe_state_mark(pe, reset_state); 927 928 /* Make three attempts at resetting the bus */ 929 for (i = 0; i < 3; i++) { 930 ret = eeh_pe_reset(pe, type, include_passed); 931 if (!ret) 932 ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE, 933 include_passed); 934 if (ret) { 935 ret = -EIO; 936 pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n", 937 state, pe->phb->global_number, pe->addr, i + 1); 938 continue; 939 } 940 if (i) 941 pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n", 942 pe->phb->global_number, pe->addr, i + 1); 943 944 /* Wait until the PE is in a functioning state */ 945 state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC); 946 if (state < 0) { 947 pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x", 948 pe->phb->global_number, pe->addr); 949 ret = -ENOTRECOVERABLE; 950 break; 951 } 952 if (eeh_state_active(state)) 953 break; 954 else 955 pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n", 956 pe->phb->global_number, pe->addr, state, i + 1); 957 } 958 959 /* Resetting the PE may have unfrozen child PEs. If those PEs have been 960 * (potentially) passed through to a guest, re-freeze them: 961 */ 962 if (!include_passed) 963 eeh_pe_refreeze_passed(pe); 964 965 eeh_pe_state_clear(pe, reset_state, true); 966 return ret; 967 } 968 969 /** 970 * eeh_save_bars - Save device bars 971 * @edev: PCI device associated EEH device 972 * 973 * Save the values of the device bars. Unlike the restore 974 * routine, this routine is *not* recursive. This is because 975 * PCI devices are added individually; but, for the restore, 976 * an entire slot is reset at a time. 977 */ 978 void eeh_save_bars(struct eeh_dev *edev) 979 { 980 struct pci_dn *pdn; 981 int i; 982 983 pdn = eeh_dev_to_pdn(edev); 984 if (!pdn) 985 return; 986 987 for (i = 0; i < 16; i++) 988 eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]); 989 990 /* 991 * For PCI bridges including root port, we need enable bus 992 * master explicitly. Otherwise, it can't fetch IODA table 993 * entries correctly. So we cache the bit in advance so that 994 * we can restore it after reset, either PHB range or PE range. 995 */ 996 if (edev->mode & EEH_DEV_BRIDGE) 997 edev->config_space[1] |= PCI_COMMAND_MASTER; 998 } 999 1000 /** 1001 * eeh_ops_register - Register platform dependent EEH operations 1002 * @ops: platform dependent EEH operations 1003 * 1004 * Register the platform dependent EEH operation callback 1005 * functions. The platform should call this function before 1006 * any other EEH operations. 1007 */ 1008 int __init eeh_ops_register(struct eeh_ops *ops) 1009 { 1010 if (!ops->name) { 1011 pr_warn("%s: Invalid EEH ops name for %p\n", 1012 __func__, ops); 1013 return -EINVAL; 1014 } 1015 1016 if (eeh_ops && eeh_ops != ops) { 1017 pr_warn("%s: EEH ops of platform %s already existing (%s)\n", 1018 __func__, eeh_ops->name, ops->name); 1019 return -EEXIST; 1020 } 1021 1022 eeh_ops = ops; 1023 1024 return 0; 1025 } 1026 1027 /** 1028 * eeh_ops_unregister - Unreigster platform dependent EEH operations 1029 * @name: name of EEH platform operations 1030 * 1031 * Unregister the platform dependent EEH operation callback 1032 * functions. 1033 */ 1034 int __exit eeh_ops_unregister(const char *name) 1035 { 1036 if (!name || !strlen(name)) { 1037 pr_warn("%s: Invalid EEH ops name\n", 1038 __func__); 1039 return -EINVAL; 1040 } 1041 1042 if (eeh_ops && !strcmp(eeh_ops->name, name)) { 1043 eeh_ops = NULL; 1044 return 0; 1045 } 1046 1047 return -EEXIST; 1048 } 1049 1050 static int eeh_reboot_notifier(struct notifier_block *nb, 1051 unsigned long action, void *unused) 1052 { 1053 eeh_clear_flag(EEH_ENABLED); 1054 return NOTIFY_DONE; 1055 } 1056 1057 static struct notifier_block eeh_reboot_nb = { 1058 .notifier_call = eeh_reboot_notifier, 1059 }; 1060 1061 /** 1062 * eeh_init - EEH initialization 1063 * 1064 * Initialize EEH by trying to enable it for all of the adapters in the system. 1065 * As a side effect we can determine here if eeh is supported at all. 1066 * Note that we leave EEH on so failed config cycles won't cause a machine 1067 * check. If a user turns off EEH for a particular adapter they are really 1068 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't 1069 * grant access to a slot if EEH isn't enabled, and so we always enable 1070 * EEH for all slots/all devices. 1071 * 1072 * The eeh-force-off option disables EEH checking globally, for all slots. 1073 * Even if force-off is set, the EEH hardware is still enabled, so that 1074 * newer systems can boot. 1075 */ 1076 static int eeh_init(void) 1077 { 1078 struct pci_controller *hose, *tmp; 1079 int ret = 0; 1080 1081 /* Register reboot notifier */ 1082 ret = register_reboot_notifier(&eeh_reboot_nb); 1083 if (ret) { 1084 pr_warn("%s: Failed to register notifier (%d)\n", 1085 __func__, ret); 1086 return ret; 1087 } 1088 1089 /* call platform initialization function */ 1090 if (!eeh_ops) { 1091 pr_warn("%s: Platform EEH operation not found\n", 1092 __func__); 1093 return -EEXIST; 1094 } else if ((ret = eeh_ops->init())) 1095 return ret; 1096 1097 /* Initialize PHB PEs */ 1098 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) 1099 eeh_dev_phb_init_dynamic(hose); 1100 1101 eeh_addr_cache_init(); 1102 1103 /* Initialize EEH event */ 1104 return eeh_event_init(); 1105 } 1106 1107 core_initcall_sync(eeh_init); 1108 1109 static int eeh_device_notifier(struct notifier_block *nb, 1110 unsigned long action, void *data) 1111 { 1112 struct device *dev = data; 1113 1114 switch (action) { 1115 /* 1116 * Note: It's not possible to perform EEH device addition (i.e. 1117 * {pseries,pnv}_pcibios_bus_add_device()) here because it depends on 1118 * the device's resources, which have not yet been set up. 1119 */ 1120 case BUS_NOTIFY_DEL_DEVICE: 1121 eeh_remove_device(to_pci_dev(dev)); 1122 break; 1123 default: 1124 break; 1125 } 1126 return NOTIFY_DONE; 1127 } 1128 1129 static struct notifier_block eeh_device_nb = { 1130 .notifier_call = eeh_device_notifier, 1131 }; 1132 1133 static __init int eeh_set_bus_notifier(void) 1134 { 1135 bus_register_notifier(&pci_bus_type, &eeh_device_nb); 1136 return 0; 1137 } 1138 arch_initcall(eeh_set_bus_notifier); 1139 1140 /** 1141 * eeh_probe_device() - Perform EEH initialization for the indicated pci device 1142 * @dev: pci device for which to set up EEH 1143 * 1144 * This routine must be used to complete EEH initialization for PCI 1145 * devices that were added after system boot (e.g. hotplug, dlpar). 1146 */ 1147 void eeh_probe_device(struct pci_dev *dev) 1148 { 1149 struct eeh_dev *edev; 1150 1151 pr_debug("EEH: Adding device %s\n", pci_name(dev)); 1152 1153 /* 1154 * pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was 1155 * already called for this device. 1156 */ 1157 if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev))) { 1158 pci_dbg(dev, "Already bound to an eeh_dev!\n"); 1159 return; 1160 } 1161 1162 edev = eeh_ops->probe(dev); 1163 if (!edev) { 1164 pr_debug("EEH: Adding device failed\n"); 1165 return; 1166 } 1167 1168 /* 1169 * FIXME: We rely on pcibios_release_device() to remove the 1170 * existing EEH state. The release function is only called if 1171 * the pci_dev's refcount drops to zero so if something is 1172 * keeping a ref to a device (e.g. a filesystem) we need to 1173 * remove the old EEH state. 1174 * 1175 * FIXME: HEY MA, LOOK AT ME, NO LOCKING! 1176 */ 1177 if (edev->pdev && edev->pdev != dev) { 1178 eeh_rmv_from_parent_pe(edev); 1179 eeh_addr_cache_rmv_dev(edev->pdev); 1180 eeh_sysfs_remove_device(edev->pdev); 1181 1182 /* 1183 * We definitely should have the PCI device removed 1184 * though it wasn't correctly. So we needn't call 1185 * into error handler afterwards. 1186 */ 1187 edev->mode |= EEH_DEV_NO_HANDLER; 1188 } 1189 1190 /* bind the pdev and the edev together */ 1191 edev->pdev = dev; 1192 dev->dev.archdata.edev = edev; 1193 eeh_addr_cache_insert_dev(dev); 1194 eeh_sysfs_add_device(dev); 1195 } 1196 1197 /** 1198 * eeh_remove_device - Undo EEH setup for the indicated pci device 1199 * @dev: pci device to be removed 1200 * 1201 * This routine should be called when a device is removed from 1202 * a running system (e.g. by hotplug or dlpar). It unregisters 1203 * the PCI device from the EEH subsystem. I/O errors affecting 1204 * this device will no longer be detected after this call; thus, 1205 * i/o errors affecting this slot may leave this device unusable. 1206 */ 1207 void eeh_remove_device(struct pci_dev *dev) 1208 { 1209 struct eeh_dev *edev; 1210 1211 if (!dev || !eeh_enabled()) 1212 return; 1213 edev = pci_dev_to_eeh_dev(dev); 1214 1215 /* Unregister the device with the EEH/PCI address search system */ 1216 dev_dbg(&dev->dev, "EEH: Removing device\n"); 1217 1218 if (!edev || !edev->pdev || !edev->pe) { 1219 dev_dbg(&dev->dev, "EEH: Device not referenced!\n"); 1220 return; 1221 } 1222 1223 /* 1224 * During the hotplug for EEH error recovery, we need the EEH 1225 * device attached to the parent PE in order for BAR restore 1226 * a bit later. So we keep it for BAR restore and remove it 1227 * from the parent PE during the BAR resotre. 1228 */ 1229 edev->pdev = NULL; 1230 1231 /* 1232 * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to 1233 * remove the sysfs files before clearing dev.archdata.edev 1234 */ 1235 if (edev->mode & EEH_DEV_SYSFS) 1236 eeh_sysfs_remove_device(dev); 1237 1238 /* 1239 * We're removing from the PCI subsystem, that means 1240 * the PCI device driver can't support EEH or not 1241 * well. So we rely on hotplug completely to do recovery 1242 * for the specific PCI device. 1243 */ 1244 edev->mode |= EEH_DEV_NO_HANDLER; 1245 1246 eeh_addr_cache_rmv_dev(dev); 1247 1248 /* 1249 * The flag "in_error" is used to trace EEH devices for VFs 1250 * in error state or not. It's set in eeh_report_error(). If 1251 * it's not set, eeh_report_{reset,resume}() won't be called 1252 * for the VF EEH device. 1253 */ 1254 edev->in_error = false; 1255 dev->dev.archdata.edev = NULL; 1256 if (!(edev->pe->state & EEH_PE_KEEP)) 1257 eeh_rmv_from_parent_pe(edev); 1258 else 1259 edev->mode |= EEH_DEV_DISCONNECTED; 1260 } 1261 1262 int eeh_unfreeze_pe(struct eeh_pe *pe) 1263 { 1264 int ret; 1265 1266 ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO); 1267 if (ret) { 1268 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n", 1269 __func__, ret, pe->phb->global_number, pe->addr); 1270 return ret; 1271 } 1272 1273 ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA); 1274 if (ret) { 1275 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n", 1276 __func__, ret, pe->phb->global_number, pe->addr); 1277 return ret; 1278 } 1279 1280 return ret; 1281 } 1282 1283 1284 static struct pci_device_id eeh_reset_ids[] = { 1285 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */ 1286 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */ 1287 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */ 1288 { 0 } 1289 }; 1290 1291 static int eeh_pe_change_owner(struct eeh_pe *pe) 1292 { 1293 struct eeh_dev *edev, *tmp; 1294 struct pci_dev *pdev; 1295 struct pci_device_id *id; 1296 int ret; 1297 1298 /* Check PE state */ 1299 ret = eeh_ops->get_state(pe, NULL); 1300 if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT) 1301 return 0; 1302 1303 /* Unfrozen PE, nothing to do */ 1304 if (eeh_state_active(ret)) 1305 return 0; 1306 1307 /* Frozen PE, check if it needs PE level reset */ 1308 eeh_pe_for_each_dev(pe, edev, tmp) { 1309 pdev = eeh_dev_to_pci_dev(edev); 1310 if (!pdev) 1311 continue; 1312 1313 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) { 1314 if (id->vendor != PCI_ANY_ID && 1315 id->vendor != pdev->vendor) 1316 continue; 1317 if (id->device != PCI_ANY_ID && 1318 id->device != pdev->device) 1319 continue; 1320 if (id->subvendor != PCI_ANY_ID && 1321 id->subvendor != pdev->subsystem_vendor) 1322 continue; 1323 if (id->subdevice != PCI_ANY_ID && 1324 id->subdevice != pdev->subsystem_device) 1325 continue; 1326 1327 return eeh_pe_reset_and_recover(pe); 1328 } 1329 } 1330 1331 ret = eeh_unfreeze_pe(pe); 1332 if (!ret) 1333 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true); 1334 return ret; 1335 } 1336 1337 /** 1338 * eeh_dev_open - Increase count of pass through devices for PE 1339 * @pdev: PCI device 1340 * 1341 * Increase count of passed through devices for the indicated 1342 * PE. In the result, the EEH errors detected on the PE won't be 1343 * reported. The PE owner will be responsible for detection 1344 * and recovery. 1345 */ 1346 int eeh_dev_open(struct pci_dev *pdev) 1347 { 1348 struct eeh_dev *edev; 1349 int ret = -ENODEV; 1350 1351 mutex_lock(&eeh_dev_mutex); 1352 1353 /* No PCI device ? */ 1354 if (!pdev) 1355 goto out; 1356 1357 /* No EEH device or PE ? */ 1358 edev = pci_dev_to_eeh_dev(pdev); 1359 if (!edev || !edev->pe) 1360 goto out; 1361 1362 /* 1363 * The PE might have been put into frozen state, but we 1364 * didn't detect that yet. The passed through PCI devices 1365 * in frozen PE won't work properly. Clear the frozen state 1366 * in advance. 1367 */ 1368 ret = eeh_pe_change_owner(edev->pe); 1369 if (ret) 1370 goto out; 1371 1372 /* Increase PE's pass through count */ 1373 atomic_inc(&edev->pe->pass_dev_cnt); 1374 mutex_unlock(&eeh_dev_mutex); 1375 1376 return 0; 1377 out: 1378 mutex_unlock(&eeh_dev_mutex); 1379 return ret; 1380 } 1381 EXPORT_SYMBOL_GPL(eeh_dev_open); 1382 1383 /** 1384 * eeh_dev_release - Decrease count of pass through devices for PE 1385 * @pdev: PCI device 1386 * 1387 * Decrease count of pass through devices for the indicated PE. If 1388 * there is no passed through device in PE, the EEH errors detected 1389 * on the PE will be reported and handled as usual. 1390 */ 1391 void eeh_dev_release(struct pci_dev *pdev) 1392 { 1393 struct eeh_dev *edev; 1394 1395 mutex_lock(&eeh_dev_mutex); 1396 1397 /* No PCI device ? */ 1398 if (!pdev) 1399 goto out; 1400 1401 /* No EEH device ? */ 1402 edev = pci_dev_to_eeh_dev(pdev); 1403 if (!edev || !edev->pe || !eeh_pe_passed(edev->pe)) 1404 goto out; 1405 1406 /* Decrease PE's pass through count */ 1407 WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0); 1408 eeh_pe_change_owner(edev->pe); 1409 out: 1410 mutex_unlock(&eeh_dev_mutex); 1411 } 1412 EXPORT_SYMBOL(eeh_dev_release); 1413 1414 #ifdef CONFIG_IOMMU_API 1415 1416 static int dev_has_iommu_table(struct device *dev, void *data) 1417 { 1418 struct pci_dev *pdev = to_pci_dev(dev); 1419 struct pci_dev **ppdev = data; 1420 1421 if (!dev) 1422 return 0; 1423 1424 if (device_iommu_mapped(dev)) { 1425 *ppdev = pdev; 1426 return 1; 1427 } 1428 1429 return 0; 1430 } 1431 1432 /** 1433 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE 1434 * @group: IOMMU group 1435 * 1436 * The routine is called to convert IOMMU group to EEH PE. 1437 */ 1438 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group) 1439 { 1440 struct pci_dev *pdev = NULL; 1441 struct eeh_dev *edev; 1442 int ret; 1443 1444 /* No IOMMU group ? */ 1445 if (!group) 1446 return NULL; 1447 1448 ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table); 1449 if (!ret || !pdev) 1450 return NULL; 1451 1452 /* No EEH device or PE ? */ 1453 edev = pci_dev_to_eeh_dev(pdev); 1454 if (!edev || !edev->pe) 1455 return NULL; 1456 1457 return edev->pe; 1458 } 1459 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe); 1460 1461 #endif /* CONFIG_IOMMU_API */ 1462 1463 /** 1464 * eeh_pe_set_option - Set options for the indicated PE 1465 * @pe: EEH PE 1466 * @option: requested option 1467 * 1468 * The routine is called to enable or disable EEH functionality 1469 * on the indicated PE, to enable IO or DMA for the frozen PE. 1470 */ 1471 int eeh_pe_set_option(struct eeh_pe *pe, int option) 1472 { 1473 int ret = 0; 1474 1475 /* Invalid PE ? */ 1476 if (!pe) 1477 return -ENODEV; 1478 1479 /* 1480 * EEH functionality could possibly be disabled, just 1481 * return error for the case. And the EEH functinality 1482 * isn't expected to be disabled on one specific PE. 1483 */ 1484 switch (option) { 1485 case EEH_OPT_ENABLE: 1486 if (eeh_enabled()) { 1487 ret = eeh_pe_change_owner(pe); 1488 break; 1489 } 1490 ret = -EIO; 1491 break; 1492 case EEH_OPT_DISABLE: 1493 break; 1494 case EEH_OPT_THAW_MMIO: 1495 case EEH_OPT_THAW_DMA: 1496 case EEH_OPT_FREEZE_PE: 1497 if (!eeh_ops || !eeh_ops->set_option) { 1498 ret = -ENOENT; 1499 break; 1500 } 1501 1502 ret = eeh_pci_enable(pe, option); 1503 break; 1504 default: 1505 pr_debug("%s: Option %d out of range (%d, %d)\n", 1506 __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA); 1507 ret = -EINVAL; 1508 } 1509 1510 return ret; 1511 } 1512 EXPORT_SYMBOL_GPL(eeh_pe_set_option); 1513 1514 /** 1515 * eeh_pe_get_state - Retrieve PE's state 1516 * @pe: EEH PE 1517 * 1518 * Retrieve the PE's state, which includes 3 aspects: enabled 1519 * DMA, enabled IO and asserted reset. 1520 */ 1521 int eeh_pe_get_state(struct eeh_pe *pe) 1522 { 1523 int result, ret = 0; 1524 bool rst_active, dma_en, mmio_en; 1525 1526 /* Existing PE ? */ 1527 if (!pe) 1528 return -ENODEV; 1529 1530 if (!eeh_ops || !eeh_ops->get_state) 1531 return -ENOENT; 1532 1533 /* 1534 * If the parent PE is owned by the host kernel and is undergoing 1535 * error recovery, we should return the PE state as temporarily 1536 * unavailable so that the error recovery on the guest is suspended 1537 * until the recovery completes on the host. 1538 */ 1539 if (pe->parent && 1540 !(pe->state & EEH_PE_REMOVED) && 1541 (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING))) 1542 return EEH_PE_STATE_UNAVAIL; 1543 1544 result = eeh_ops->get_state(pe, NULL); 1545 rst_active = !!(result & EEH_STATE_RESET_ACTIVE); 1546 dma_en = !!(result & EEH_STATE_DMA_ENABLED); 1547 mmio_en = !!(result & EEH_STATE_MMIO_ENABLED); 1548 1549 if (rst_active) 1550 ret = EEH_PE_STATE_RESET; 1551 else if (dma_en && mmio_en) 1552 ret = EEH_PE_STATE_NORMAL; 1553 else if (!dma_en && !mmio_en) 1554 ret = EEH_PE_STATE_STOPPED_IO_DMA; 1555 else if (!dma_en && mmio_en) 1556 ret = EEH_PE_STATE_STOPPED_DMA; 1557 else 1558 ret = EEH_PE_STATE_UNAVAIL; 1559 1560 return ret; 1561 } 1562 EXPORT_SYMBOL_GPL(eeh_pe_get_state); 1563 1564 static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed) 1565 { 1566 struct eeh_dev *edev, *tmp; 1567 struct pci_dev *pdev; 1568 int ret = 0; 1569 1570 eeh_pe_restore_bars(pe); 1571 1572 /* 1573 * Reenable PCI devices as the devices passed 1574 * through are always enabled before the reset. 1575 */ 1576 eeh_pe_for_each_dev(pe, edev, tmp) { 1577 pdev = eeh_dev_to_pci_dev(edev); 1578 if (!pdev) 1579 continue; 1580 1581 ret = pci_reenable_device(pdev); 1582 if (ret) { 1583 pr_warn("%s: Failure %d reenabling %s\n", 1584 __func__, ret, pci_name(pdev)); 1585 return ret; 1586 } 1587 } 1588 1589 /* The PE is still in frozen state */ 1590 if (include_passed || !eeh_pe_passed(pe)) { 1591 ret = eeh_unfreeze_pe(pe); 1592 } else 1593 pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n", 1594 pe->phb->global_number, pe->addr); 1595 if (!ret) 1596 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed); 1597 return ret; 1598 } 1599 1600 1601 /** 1602 * eeh_pe_reset - Issue PE reset according to specified type 1603 * @pe: EEH PE 1604 * @option: reset type 1605 * 1606 * The routine is called to reset the specified PE with the 1607 * indicated type, either fundamental reset or hot reset. 1608 * PE reset is the most important part for error recovery. 1609 */ 1610 int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed) 1611 { 1612 int ret = 0; 1613 1614 /* Invalid PE ? */ 1615 if (!pe) 1616 return -ENODEV; 1617 1618 if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset) 1619 return -ENOENT; 1620 1621 switch (option) { 1622 case EEH_RESET_DEACTIVATE: 1623 ret = eeh_ops->reset(pe, option); 1624 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed); 1625 if (ret) 1626 break; 1627 1628 ret = eeh_pe_reenable_devices(pe, include_passed); 1629 break; 1630 case EEH_RESET_HOT: 1631 case EEH_RESET_FUNDAMENTAL: 1632 /* 1633 * Proactively freeze the PE to drop all MMIO access 1634 * during reset, which should be banned as it's always 1635 * cause recursive EEH error. 1636 */ 1637 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE); 1638 1639 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED); 1640 ret = eeh_ops->reset(pe, option); 1641 break; 1642 default: 1643 pr_debug("%s: Unsupported option %d\n", 1644 __func__, option); 1645 ret = -EINVAL; 1646 } 1647 1648 return ret; 1649 } 1650 EXPORT_SYMBOL_GPL(eeh_pe_reset); 1651 1652 /** 1653 * eeh_pe_configure - Configure PCI bridges after PE reset 1654 * @pe: EEH PE 1655 * 1656 * The routine is called to restore the PCI config space for 1657 * those PCI devices, especially PCI bridges affected by PE 1658 * reset issued previously. 1659 */ 1660 int eeh_pe_configure(struct eeh_pe *pe) 1661 { 1662 int ret = 0; 1663 1664 /* Invalid PE ? */ 1665 if (!pe) 1666 return -ENODEV; 1667 1668 return ret; 1669 } 1670 EXPORT_SYMBOL_GPL(eeh_pe_configure); 1671 1672 /** 1673 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE 1674 * @pe: the indicated PE 1675 * @type: error type 1676 * @function: error function 1677 * @addr: address 1678 * @mask: address mask 1679 * 1680 * The routine is called to inject the specified PCI error, which 1681 * is determined by @type and @function, to the indicated PE for 1682 * testing purpose. 1683 */ 1684 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func, 1685 unsigned long addr, unsigned long mask) 1686 { 1687 /* Invalid PE ? */ 1688 if (!pe) 1689 return -ENODEV; 1690 1691 /* Unsupported operation ? */ 1692 if (!eeh_ops || !eeh_ops->err_inject) 1693 return -ENOENT; 1694 1695 /* Check on PCI error type */ 1696 if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64) 1697 return -EINVAL; 1698 1699 /* Check on PCI error function */ 1700 if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX) 1701 return -EINVAL; 1702 1703 return eeh_ops->err_inject(pe, type, func, addr, mask); 1704 } 1705 EXPORT_SYMBOL_GPL(eeh_pe_inject_err); 1706 1707 static int proc_eeh_show(struct seq_file *m, void *v) 1708 { 1709 if (!eeh_enabled()) { 1710 seq_printf(m, "EEH Subsystem is globally disabled\n"); 1711 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs); 1712 } else { 1713 seq_printf(m, "EEH Subsystem is enabled\n"); 1714 seq_printf(m, 1715 "no device=%llu\n" 1716 "no device node=%llu\n" 1717 "no config address=%llu\n" 1718 "check not wanted=%llu\n" 1719 "eeh_total_mmio_ffs=%llu\n" 1720 "eeh_false_positives=%llu\n" 1721 "eeh_slot_resets=%llu\n", 1722 eeh_stats.no_device, 1723 eeh_stats.no_dn, 1724 eeh_stats.no_cfg_addr, 1725 eeh_stats.ignored_check, 1726 eeh_stats.total_mmio_ffs, 1727 eeh_stats.false_positives, 1728 eeh_stats.slot_resets); 1729 } 1730 1731 return 0; 1732 } 1733 1734 #ifdef CONFIG_DEBUG_FS 1735 static int eeh_enable_dbgfs_set(void *data, u64 val) 1736 { 1737 if (val) 1738 eeh_clear_flag(EEH_FORCE_DISABLED); 1739 else 1740 eeh_add_flag(EEH_FORCE_DISABLED); 1741 1742 return 0; 1743 } 1744 1745 static int eeh_enable_dbgfs_get(void *data, u64 *val) 1746 { 1747 if (eeh_enabled()) 1748 *val = 0x1ul; 1749 else 1750 *val = 0x0ul; 1751 return 0; 1752 } 1753 1754 DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get, 1755 eeh_enable_dbgfs_set, "0x%llx\n"); 1756 1757 static ssize_t eeh_force_recover_write(struct file *filp, 1758 const char __user *user_buf, 1759 size_t count, loff_t *ppos) 1760 { 1761 struct pci_controller *hose; 1762 uint32_t phbid, pe_no; 1763 struct eeh_pe *pe; 1764 char buf[20]; 1765 int ret; 1766 1767 ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count); 1768 if (!ret) 1769 return -EFAULT; 1770 1771 /* 1772 * When PE is NULL the event is a "special" event. Rather than 1773 * recovering a specific PE it forces the EEH core to scan for failed 1774 * PHBs and recovers each. This needs to be done before any device 1775 * recoveries can occur. 1776 */ 1777 if (!strncmp(buf, "hwcheck", 7)) { 1778 __eeh_send_failure_event(NULL); 1779 return count; 1780 } 1781 1782 ret = sscanf(buf, "%x:%x", &phbid, &pe_no); 1783 if (ret != 2) 1784 return -EINVAL; 1785 1786 hose = pci_find_controller_for_domain(phbid); 1787 if (!hose) 1788 return -ENODEV; 1789 1790 /* Retrieve PE */ 1791 pe = eeh_pe_get(hose, pe_no, 0); 1792 if (!pe) 1793 return -ENODEV; 1794 1795 /* 1796 * We don't do any state checking here since the detection 1797 * process is async to the recovery process. The recovery 1798 * thread *should* not break even if we schedule a recovery 1799 * from an odd state (e.g. PE removed, or recovery of a 1800 * non-isolated PE) 1801 */ 1802 __eeh_send_failure_event(pe); 1803 1804 return ret < 0 ? ret : count; 1805 } 1806 1807 static const struct file_operations eeh_force_recover_fops = { 1808 .open = simple_open, 1809 .llseek = no_llseek, 1810 .write = eeh_force_recover_write, 1811 }; 1812 1813 static ssize_t eeh_debugfs_dev_usage(struct file *filp, 1814 char __user *user_buf, 1815 size_t count, loff_t *ppos) 1816 { 1817 static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n"; 1818 1819 return simple_read_from_buffer(user_buf, count, ppos, 1820 usage, sizeof(usage) - 1); 1821 } 1822 1823 static ssize_t eeh_dev_check_write(struct file *filp, 1824 const char __user *user_buf, 1825 size_t count, loff_t *ppos) 1826 { 1827 uint32_t domain, bus, dev, fn; 1828 struct pci_dev *pdev; 1829 struct eeh_dev *edev; 1830 char buf[20]; 1831 int ret; 1832 1833 memset(buf, 0, sizeof(buf)); 1834 ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count); 1835 if (!ret) 1836 return -EFAULT; 1837 1838 ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn); 1839 if (ret != 4) { 1840 pr_err("%s: expected 4 args, got %d\n", __func__, ret); 1841 return -EINVAL; 1842 } 1843 1844 pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn); 1845 if (!pdev) 1846 return -ENODEV; 1847 1848 edev = pci_dev_to_eeh_dev(pdev); 1849 if (!edev) { 1850 pci_err(pdev, "No eeh_dev for this device!\n"); 1851 pci_dev_put(pdev); 1852 return -ENODEV; 1853 } 1854 1855 ret = eeh_dev_check_failure(edev); 1856 pci_info(pdev, "eeh_dev_check_failure(%04x:%02x:%02x.%01x) = %d\n", 1857 domain, bus, dev, fn, ret); 1858 1859 pci_dev_put(pdev); 1860 1861 return count; 1862 } 1863 1864 static const struct file_operations eeh_dev_check_fops = { 1865 .open = simple_open, 1866 .llseek = no_llseek, 1867 .write = eeh_dev_check_write, 1868 .read = eeh_debugfs_dev_usage, 1869 }; 1870 1871 static int eeh_debugfs_break_device(struct pci_dev *pdev) 1872 { 1873 struct resource *bar = NULL; 1874 void __iomem *mapped; 1875 u16 old, bit; 1876 int i, pos; 1877 1878 /* Do we have an MMIO BAR to disable? */ 1879 for (i = 0; i <= PCI_STD_RESOURCE_END; i++) { 1880 struct resource *r = &pdev->resource[i]; 1881 1882 if (!r->flags || !r->start) 1883 continue; 1884 if (r->flags & IORESOURCE_IO) 1885 continue; 1886 if (r->flags & IORESOURCE_UNSET) 1887 continue; 1888 1889 bar = r; 1890 break; 1891 } 1892 1893 if (!bar) { 1894 pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n"); 1895 return -ENXIO; 1896 } 1897 1898 pci_err(pdev, "Going to break: %pR\n", bar); 1899 1900 if (pdev->is_virtfn) { 1901 #ifndef CONFIG_PCI_IOV 1902 return -ENXIO; 1903 #else 1904 /* 1905 * VFs don't have a per-function COMMAND register, so the best 1906 * we can do is clear the Memory Space Enable bit in the PF's 1907 * SRIOV control reg. 1908 * 1909 * Unfortunately, this requires that we have a PF (i.e doesn't 1910 * work for a passed-through VF) and it has the potential side 1911 * effect of also causing an EEH on every other VF under the 1912 * PF. Oh well. 1913 */ 1914 pdev = pdev->physfn; 1915 if (!pdev) 1916 return -ENXIO; /* passed through VFs have no PF */ 1917 1918 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 1919 pos += PCI_SRIOV_CTRL; 1920 bit = PCI_SRIOV_CTRL_MSE; 1921 #endif /* !CONFIG_PCI_IOV */ 1922 } else { 1923 bit = PCI_COMMAND_MEMORY; 1924 pos = PCI_COMMAND; 1925 } 1926 1927 /* 1928 * Process here is: 1929 * 1930 * 1. Disable Memory space. 1931 * 1932 * 2. Perform an MMIO to the device. This should result in an error 1933 * (CA / UR) being raised by the device which results in an EEH 1934 * PE freeze. Using the in_8() accessor skips the eeh detection hook 1935 * so the freeze hook so the EEH Detection machinery won't be 1936 * triggered here. This is to match the usual behaviour of EEH 1937 * where the HW will asyncronously freeze a PE and it's up to 1938 * the kernel to notice and deal with it. 1939 * 1940 * 3. Turn Memory space back on. This is more important for VFs 1941 * since recovery will probably fail if we don't. For normal 1942 * the COMMAND register is reset as a part of re-initialising 1943 * the device. 1944 * 1945 * Breaking stuff is the point so who cares if it's racy ;) 1946 */ 1947 pci_read_config_word(pdev, pos, &old); 1948 1949 mapped = ioremap(bar->start, PAGE_SIZE); 1950 if (!mapped) { 1951 pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar); 1952 return -ENXIO; 1953 } 1954 1955 pci_write_config_word(pdev, pos, old & ~bit); 1956 in_8(mapped); 1957 pci_write_config_word(pdev, pos, old); 1958 1959 iounmap(mapped); 1960 1961 return 0; 1962 } 1963 1964 static ssize_t eeh_dev_break_write(struct file *filp, 1965 const char __user *user_buf, 1966 size_t count, loff_t *ppos) 1967 { 1968 uint32_t domain, bus, dev, fn; 1969 struct pci_dev *pdev; 1970 char buf[20]; 1971 int ret; 1972 1973 memset(buf, 0, sizeof(buf)); 1974 ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count); 1975 if (!ret) 1976 return -EFAULT; 1977 1978 ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn); 1979 if (ret != 4) { 1980 pr_err("%s: expected 4 args, got %d\n", __func__, ret); 1981 return -EINVAL; 1982 } 1983 1984 pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn); 1985 if (!pdev) 1986 return -ENODEV; 1987 1988 ret = eeh_debugfs_break_device(pdev); 1989 pci_dev_put(pdev); 1990 1991 if (ret < 0) 1992 return ret; 1993 1994 return count; 1995 } 1996 1997 static const struct file_operations eeh_dev_break_fops = { 1998 .open = simple_open, 1999 .llseek = no_llseek, 2000 .write = eeh_dev_break_write, 2001 .read = eeh_debugfs_dev_usage, 2002 }; 2003 2004 #endif 2005 2006 static int __init eeh_init_proc(void) 2007 { 2008 if (machine_is(pseries) || machine_is(powernv)) { 2009 proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show); 2010 #ifdef CONFIG_DEBUG_FS 2011 debugfs_create_file_unsafe("eeh_enable", 0600, 2012 powerpc_debugfs_root, NULL, 2013 &eeh_enable_dbgfs_ops); 2014 debugfs_create_u32("eeh_max_freezes", 0600, 2015 powerpc_debugfs_root, &eeh_max_freezes); 2016 debugfs_create_bool("eeh_disable_recovery", 0600, 2017 powerpc_debugfs_root, 2018 &eeh_debugfs_no_recover); 2019 debugfs_create_file_unsafe("eeh_dev_check", 0600, 2020 powerpc_debugfs_root, NULL, 2021 &eeh_dev_check_fops); 2022 debugfs_create_file_unsafe("eeh_dev_break", 0600, 2023 powerpc_debugfs_root, NULL, 2024 &eeh_dev_break_fops); 2025 debugfs_create_file_unsafe("eeh_force_recover", 0600, 2026 powerpc_debugfs_root, NULL, 2027 &eeh_force_recover_fops); 2028 eeh_cache_debugfs_init(); 2029 #endif 2030 } 2031 2032 return 0; 2033 } 2034 __initcall(eeh_init_proc); 2035