xref: /openbmc/linux/arch/powerpc/kernel/eeh.c (revision 275876e2)
1 /*
2  * Copyright IBM Corporation 2001, 2005, 2006
3  * Copyright Dave Engebretsen & Todd Inglett 2001
4  * Copyright Linas Vepstas 2005, 2006
5  * Copyright 2001-2012 IBM Corporation.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/debugfs.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/pci.h>
30 #include <linux/iommu.h>
31 #include <linux/proc_fs.h>
32 #include <linux/rbtree.h>
33 #include <linux/reboot.h>
34 #include <linux/seq_file.h>
35 #include <linux/spinlock.h>
36 #include <linux/export.h>
37 #include <linux/of.h>
38 
39 #include <linux/atomic.h>
40 #include <asm/debug.h>
41 #include <asm/eeh.h>
42 #include <asm/eeh_event.h>
43 #include <asm/io.h>
44 #include <asm/iommu.h>
45 #include <asm/machdep.h>
46 #include <asm/ppc-pci.h>
47 #include <asm/rtas.h>
48 
49 
50 /** Overview:
51  *  EEH, or "Extended Error Handling" is a PCI bridge technology for
52  *  dealing with PCI bus errors that can't be dealt with within the
53  *  usual PCI framework, except by check-stopping the CPU.  Systems
54  *  that are designed for high-availability/reliability cannot afford
55  *  to crash due to a "mere" PCI error, thus the need for EEH.
56  *  An EEH-capable bridge operates by converting a detected error
57  *  into a "slot freeze", taking the PCI adapter off-line, making
58  *  the slot behave, from the OS'es point of view, as if the slot
59  *  were "empty": all reads return 0xff's and all writes are silently
60  *  ignored.  EEH slot isolation events can be triggered by parity
61  *  errors on the address or data busses (e.g. during posted writes),
62  *  which in turn might be caused by low voltage on the bus, dust,
63  *  vibration, humidity, radioactivity or plain-old failed hardware.
64  *
65  *  Note, however, that one of the leading causes of EEH slot
66  *  freeze events are buggy device drivers, buggy device microcode,
67  *  or buggy device hardware.  This is because any attempt by the
68  *  device to bus-master data to a memory address that is not
69  *  assigned to the device will trigger a slot freeze.   (The idea
70  *  is to prevent devices-gone-wild from corrupting system memory).
71  *  Buggy hardware/drivers will have a miserable time co-existing
72  *  with EEH.
73  *
74  *  Ideally, a PCI device driver, when suspecting that an isolation
75  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
76  *  whether this is the case, and then take appropriate steps to
77  *  reset the PCI slot, the PCI device, and then resume operations.
78  *  However, until that day,  the checking is done here, with the
79  *  eeh_check_failure() routine embedded in the MMIO macros.  If
80  *  the slot is found to be isolated, an "EEH Event" is synthesized
81  *  and sent out for processing.
82  */
83 
84 /* If a device driver keeps reading an MMIO register in an interrupt
85  * handler after a slot isolation event, it might be broken.
86  * This sets the threshold for how many read attempts we allow
87  * before printing an error message.
88  */
89 #define EEH_MAX_FAILS	2100000
90 
91 /* Time to wait for a PCI slot to report status, in milliseconds */
92 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
93 
94 /*
95  * EEH probe mode support, which is part of the flags,
96  * is to support multiple platforms for EEH. Some platforms
97  * like pSeries do PCI emunation based on device tree.
98  * However, other platforms like powernv probe PCI devices
99  * from hardware. The flag is used to distinguish that.
100  * In addition, struct eeh_ops::probe would be invoked for
101  * particular OF node or PCI device so that the corresponding
102  * PE would be created there.
103  */
104 int eeh_subsystem_flags;
105 EXPORT_SYMBOL(eeh_subsystem_flags);
106 
107 /* Platform dependent EEH operations */
108 struct eeh_ops *eeh_ops = NULL;
109 
110 /* Lock to avoid races due to multiple reports of an error */
111 DEFINE_RAW_SPINLOCK(confirm_error_lock);
112 
113 /* Lock to protect passed flags */
114 static DEFINE_MUTEX(eeh_dev_mutex);
115 
116 /* Buffer for reporting pci register dumps. Its here in BSS, and
117  * not dynamically alloced, so that it ends up in RMO where RTAS
118  * can access it.
119  */
120 #define EEH_PCI_REGS_LOG_LEN 4096
121 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
122 
123 /*
124  * The struct is used to maintain the EEH global statistic
125  * information. Besides, the EEH global statistics will be
126  * exported to user space through procfs
127  */
128 struct eeh_stats {
129 	u64 no_device;		/* PCI device not found		*/
130 	u64 no_dn;		/* OF node not found		*/
131 	u64 no_cfg_addr;	/* Config address not found	*/
132 	u64 ignored_check;	/* EEH check skipped		*/
133 	u64 total_mmio_ffs;	/* Total EEH checks		*/
134 	u64 false_positives;	/* Unnecessary EEH checks	*/
135 	u64 slot_resets;	/* PE reset			*/
136 };
137 
138 static struct eeh_stats eeh_stats;
139 
140 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
141 
142 static int __init eeh_setup(char *str)
143 {
144 	if (!strcmp(str, "off"))
145 		eeh_add_flag(EEH_FORCE_DISABLED);
146 
147 	return 1;
148 }
149 __setup("eeh=", eeh_setup);
150 
151 /**
152  * eeh_gather_pci_data - Copy assorted PCI config space registers to buff
153  * @edev: device to report data for
154  * @buf: point to buffer in which to log
155  * @len: amount of room in buffer
156  *
157  * This routine captures assorted PCI configuration space data,
158  * and puts them into a buffer for RTAS error logging.
159  */
160 static size_t eeh_gather_pci_data(struct eeh_dev *edev, char *buf, size_t len)
161 {
162 	struct device_node *dn = eeh_dev_to_of_node(edev);
163 	u32 cfg;
164 	int cap, i;
165 	int n = 0, l = 0;
166 	char buffer[128];
167 
168 	n += scnprintf(buf+n, len-n, "%s\n", dn->full_name);
169 	pr_warn("EEH: of node=%s\n", dn->full_name);
170 
171 	eeh_ops->read_config(dn, PCI_VENDOR_ID, 4, &cfg);
172 	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
173 	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
174 
175 	eeh_ops->read_config(dn, PCI_COMMAND, 4, &cfg);
176 	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
177 	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
178 
179 	/* Gather bridge-specific registers */
180 	if (edev->mode & EEH_DEV_BRIDGE) {
181 		eeh_ops->read_config(dn, PCI_SEC_STATUS, 2, &cfg);
182 		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
183 		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
184 
185 		eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &cfg);
186 		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
187 		pr_warn("EEH: Bridge control: %04x\n", cfg);
188 	}
189 
190 	/* Dump out the PCI-X command and status regs */
191 	cap = edev->pcix_cap;
192 	if (cap) {
193 		eeh_ops->read_config(dn, cap, 4, &cfg);
194 		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
195 		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
196 
197 		eeh_ops->read_config(dn, cap+4, 4, &cfg);
198 		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
199 		pr_warn("EEH: PCI-X status: %08x\n", cfg);
200 	}
201 
202 	/* If PCI-E capable, dump PCI-E cap 10 */
203 	cap = edev->pcie_cap;
204 	if (cap) {
205 		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
206 		pr_warn("EEH: PCI-E capabilities and status follow:\n");
207 
208 		for (i=0; i<=8; i++) {
209 			eeh_ops->read_config(dn, cap+4*i, 4, &cfg);
210 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
211 
212 			if ((i % 4) == 0) {
213 				if (i != 0)
214 					pr_warn("%s\n", buffer);
215 
216 				l = scnprintf(buffer, sizeof(buffer),
217 					      "EEH: PCI-E %02x: %08x ",
218 					      4*i, cfg);
219 			} else {
220 				l += scnprintf(buffer+l, sizeof(buffer)-l,
221 					       "%08x ", cfg);
222 			}
223 
224 		}
225 
226 		pr_warn("%s\n", buffer);
227 	}
228 
229 	/* If AER capable, dump it */
230 	cap = edev->aer_cap;
231 	if (cap) {
232 		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
233 		pr_warn("EEH: PCI-E AER capability register set follows:\n");
234 
235 		for (i=0; i<=13; i++) {
236 			eeh_ops->read_config(dn, cap+4*i, 4, &cfg);
237 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
238 
239 			if ((i % 4) == 0) {
240 				if (i != 0)
241 					pr_warn("%s\n", buffer);
242 
243 				l = scnprintf(buffer, sizeof(buffer),
244 					      "EEH: PCI-E AER %02x: %08x ",
245 					      4*i, cfg);
246 			} else {
247 				l += scnprintf(buffer+l, sizeof(buffer)-l,
248 					       "%08x ", cfg);
249 			}
250 		}
251 
252 		pr_warn("%s\n", buffer);
253 	}
254 
255 	return n;
256 }
257 
258 /**
259  * eeh_slot_error_detail - Generate combined log including driver log and error log
260  * @pe: EEH PE
261  * @severity: temporary or permanent error log
262  *
263  * This routine should be called to generate the combined log, which
264  * is comprised of driver log and error log. The driver log is figured
265  * out from the config space of the corresponding PCI device, while
266  * the error log is fetched through platform dependent function call.
267  */
268 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
269 {
270 	size_t loglen = 0;
271 	struct eeh_dev *edev, *tmp;
272 
273 	/*
274 	 * When the PHB is fenced or dead, it's pointless to collect
275 	 * the data from PCI config space because it should return
276 	 * 0xFF's. For ER, we still retrieve the data from the PCI
277 	 * config space.
278 	 *
279 	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
280 	 * 0xFF's is always returned from PCI config space.
281 	 */
282 	if (!(pe->type & EEH_PE_PHB)) {
283 		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG))
284 			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
285 		eeh_ops->configure_bridge(pe);
286 		eeh_pe_restore_bars(pe);
287 
288 		pci_regs_buf[0] = 0;
289 		eeh_pe_for_each_dev(pe, edev, tmp) {
290 			loglen += eeh_gather_pci_data(edev, pci_regs_buf + loglen,
291 						      EEH_PCI_REGS_LOG_LEN - loglen);
292 		}
293 	}
294 
295 	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
296 }
297 
298 /**
299  * eeh_token_to_phys - Convert EEH address token to phys address
300  * @token: I/O token, should be address in the form 0xA....
301  *
302  * This routine should be called to convert virtual I/O address
303  * to physical one.
304  */
305 static inline unsigned long eeh_token_to_phys(unsigned long token)
306 {
307 	pte_t *ptep;
308 	unsigned long pa;
309 	int hugepage_shift;
310 
311 	/*
312 	 * We won't find hugepages here, iomem
313 	 */
314 	ptep = find_linux_pte_or_hugepte(init_mm.pgd, token, &hugepage_shift);
315 	if (!ptep)
316 		return token;
317 	WARN_ON(hugepage_shift);
318 	pa = pte_pfn(*ptep) << PAGE_SHIFT;
319 
320 	return pa | (token & (PAGE_SIZE-1));
321 }
322 
323 /*
324  * On PowerNV platform, we might already have fenced PHB there.
325  * For that case, it's meaningless to recover frozen PE. Intead,
326  * We have to handle fenced PHB firstly.
327  */
328 static int eeh_phb_check_failure(struct eeh_pe *pe)
329 {
330 	struct eeh_pe *phb_pe;
331 	unsigned long flags;
332 	int ret;
333 
334 	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
335 		return -EPERM;
336 
337 	/* Find the PHB PE */
338 	phb_pe = eeh_phb_pe_get(pe->phb);
339 	if (!phb_pe) {
340 		pr_warn("%s Can't find PE for PHB#%d\n",
341 			__func__, pe->phb->global_number);
342 		return -EEXIST;
343 	}
344 
345 	/* If the PHB has been in problematic state */
346 	eeh_serialize_lock(&flags);
347 	if (phb_pe->state & EEH_PE_ISOLATED) {
348 		ret = 0;
349 		goto out;
350 	}
351 
352 	/* Check PHB state */
353 	ret = eeh_ops->get_state(phb_pe, NULL);
354 	if ((ret < 0) ||
355 	    (ret == EEH_STATE_NOT_SUPPORT) ||
356 	    (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
357 	    (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
358 		ret = 0;
359 		goto out;
360 	}
361 
362 	/* Isolate the PHB and send event */
363 	eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
364 	eeh_serialize_unlock(flags);
365 
366 	pr_err("EEH: PHB#%x failure detected, location: %s\n",
367 		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
368 	dump_stack();
369 	eeh_send_failure_event(phb_pe);
370 
371 	return 1;
372 out:
373 	eeh_serialize_unlock(flags);
374 	return ret;
375 }
376 
377 /**
378  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
379  * @edev: eeh device
380  *
381  * Check for an EEH failure for the given device node.  Call this
382  * routine if the result of a read was all 0xff's and you want to
383  * find out if this is due to an EEH slot freeze.  This routine
384  * will query firmware for the EEH status.
385  *
386  * Returns 0 if there has not been an EEH error; otherwise returns
387  * a non-zero value and queues up a slot isolation event notification.
388  *
389  * It is safe to call this routine in an interrupt context.
390  */
391 int eeh_dev_check_failure(struct eeh_dev *edev)
392 {
393 	int ret;
394 	int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
395 	unsigned long flags;
396 	struct device_node *dn;
397 	struct pci_dev *dev;
398 	struct eeh_pe *pe, *parent_pe, *phb_pe;
399 	int rc = 0;
400 	const char *location;
401 
402 	eeh_stats.total_mmio_ffs++;
403 
404 	if (!eeh_enabled())
405 		return 0;
406 
407 	if (!edev) {
408 		eeh_stats.no_dn++;
409 		return 0;
410 	}
411 	dn = eeh_dev_to_of_node(edev);
412 	dev = eeh_dev_to_pci_dev(edev);
413 	pe = edev->pe;
414 
415 	/* Access to IO BARs might get this far and still not want checking. */
416 	if (!pe) {
417 		eeh_stats.ignored_check++;
418 		pr_debug("EEH: Ignored check for %s %s\n",
419 			eeh_pci_name(dev), dn->full_name);
420 		return 0;
421 	}
422 
423 	if (!pe->addr && !pe->config_addr) {
424 		eeh_stats.no_cfg_addr++;
425 		return 0;
426 	}
427 
428 	/*
429 	 * On PowerNV platform, we might already have fenced PHB
430 	 * there and we need take care of that firstly.
431 	 */
432 	ret = eeh_phb_check_failure(pe);
433 	if (ret > 0)
434 		return ret;
435 
436 	/*
437 	 * If the PE isn't owned by us, we shouldn't check the
438 	 * state. Instead, let the owner handle it if the PE has
439 	 * been frozen.
440 	 */
441 	if (eeh_pe_passed(pe))
442 		return 0;
443 
444 	/* If we already have a pending isolation event for this
445 	 * slot, we know it's bad already, we don't need to check.
446 	 * Do this checking under a lock; as multiple PCI devices
447 	 * in one slot might report errors simultaneously, and we
448 	 * only want one error recovery routine running.
449 	 */
450 	eeh_serialize_lock(&flags);
451 	rc = 1;
452 	if (pe->state & EEH_PE_ISOLATED) {
453 		pe->check_count++;
454 		if (pe->check_count % EEH_MAX_FAILS == 0) {
455 			location = of_get_property(dn, "ibm,loc-code", NULL);
456 			printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
457 				"location=%s driver=%s pci addr=%s\n",
458 				pe->check_count, location,
459 				eeh_driver_name(dev), eeh_pci_name(dev));
460 			printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
461 				eeh_driver_name(dev));
462 			dump_stack();
463 		}
464 		goto dn_unlock;
465 	}
466 
467 	/*
468 	 * Now test for an EEH failure.  This is VERY expensive.
469 	 * Note that the eeh_config_addr may be a parent device
470 	 * in the case of a device behind a bridge, or it may be
471 	 * function zero of a multi-function device.
472 	 * In any case they must share a common PHB.
473 	 */
474 	ret = eeh_ops->get_state(pe, NULL);
475 
476 	/* Note that config-io to empty slots may fail;
477 	 * they are empty when they don't have children.
478 	 * We will punt with the following conditions: Failure to get
479 	 * PE's state, EEH not support and Permanently unavailable
480 	 * state, PE is in good state.
481 	 */
482 	if ((ret < 0) ||
483 	    (ret == EEH_STATE_NOT_SUPPORT) ||
484 	    ((ret & active_flags) == active_flags)) {
485 		eeh_stats.false_positives++;
486 		pe->false_positives++;
487 		rc = 0;
488 		goto dn_unlock;
489 	}
490 
491 	/*
492 	 * It should be corner case that the parent PE has been
493 	 * put into frozen state as well. We should take care
494 	 * that at first.
495 	 */
496 	parent_pe = pe->parent;
497 	while (parent_pe) {
498 		/* Hit the ceiling ? */
499 		if (parent_pe->type & EEH_PE_PHB)
500 			break;
501 
502 		/* Frozen parent PE ? */
503 		ret = eeh_ops->get_state(parent_pe, NULL);
504 		if (ret > 0 &&
505 		    (ret & active_flags) != active_flags)
506 			pe = parent_pe;
507 
508 		/* Next parent level */
509 		parent_pe = parent_pe->parent;
510 	}
511 
512 	eeh_stats.slot_resets++;
513 
514 	/* Avoid repeated reports of this failure, including problems
515 	 * with other functions on this device, and functions under
516 	 * bridges.
517 	 */
518 	eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
519 	eeh_serialize_unlock(flags);
520 
521 	/* Most EEH events are due to device driver bugs.  Having
522 	 * a stack trace will help the device-driver authors figure
523 	 * out what happened.  So print that out.
524 	 */
525 	phb_pe = eeh_phb_pe_get(pe->phb);
526 	pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
527 	       pe->phb->global_number, pe->addr);
528 	pr_err("EEH: PE location: %s, PHB location: %s\n",
529 	       eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
530 	dump_stack();
531 
532 	eeh_send_failure_event(pe);
533 
534 	return 1;
535 
536 dn_unlock:
537 	eeh_serialize_unlock(flags);
538 	return rc;
539 }
540 
541 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
542 
543 /**
544  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
545  * @token: I/O token, should be address in the form 0xA....
546  * @val: value, should be all 1's (XXX why do we need this arg??)
547  *
548  * Check for an EEH failure at the given token address.  Call this
549  * routine if the result of a read was all 0xff's and you want to
550  * find out if this is due to an EEH slot freeze event.  This routine
551  * will query firmware for the EEH status.
552  *
553  * Note this routine is safe to call in an interrupt context.
554  */
555 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
556 {
557 	unsigned long addr;
558 	struct eeh_dev *edev;
559 
560 	/* Finding the phys addr + pci device; this is pretty quick. */
561 	addr = eeh_token_to_phys((unsigned long __force) token);
562 	edev = eeh_addr_cache_get_dev(addr);
563 	if (!edev) {
564 		eeh_stats.no_device++;
565 		return val;
566 	}
567 
568 	eeh_dev_check_failure(edev);
569 	return val;
570 }
571 
572 EXPORT_SYMBOL(eeh_check_failure);
573 
574 
575 /**
576  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
577  * @pe: EEH PE
578  *
579  * This routine should be called to reenable frozen MMIO or DMA
580  * so that it would work correctly again. It's useful while doing
581  * recovery or log collection on the indicated device.
582  */
583 int eeh_pci_enable(struct eeh_pe *pe, int function)
584 {
585 	int rc, flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
586 
587 	/*
588 	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
589 	 * Also, it's pointless to enable them on unfrozen PE. So
590 	 * we have the check here.
591 	 */
592 	if (function == EEH_OPT_THAW_MMIO ||
593 	    function == EEH_OPT_THAW_DMA) {
594 		rc = eeh_ops->get_state(pe, NULL);
595 		if (rc < 0)
596 			return rc;
597 
598 		/* Needn't to enable or already enabled */
599 		if ((rc == EEH_STATE_NOT_SUPPORT) ||
600 		    ((rc & flags) == flags))
601 			return 0;
602 	}
603 
604 	rc = eeh_ops->set_option(pe, function);
605 	if (rc)
606 		pr_warn("%s: Unexpected state change %d on "
607 			"PHB#%d-PE#%x, err=%d\n",
608 			__func__, function, pe->phb->global_number,
609 			pe->addr, rc);
610 
611 	rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
612 	if (rc <= 0)
613 		return rc;
614 
615 	if ((function == EEH_OPT_THAW_MMIO) &&
616 	    (rc & EEH_STATE_MMIO_ENABLED))
617 		return 0;
618 
619 	if ((function == EEH_OPT_THAW_DMA) &&
620 	    (rc & EEH_STATE_DMA_ENABLED))
621 		return 0;
622 
623 	return rc;
624 }
625 
626 /**
627  * pcibios_set_pcie_slot_reset - Set PCI-E reset state
628  * @dev: pci device struct
629  * @state: reset state to enter
630  *
631  * Return value:
632  * 	0 if success
633  */
634 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
635 {
636 	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
637 	struct eeh_pe *pe = edev->pe;
638 
639 	if (!pe) {
640 		pr_err("%s: No PE found on PCI device %s\n",
641 			__func__, pci_name(dev));
642 		return -EINVAL;
643 	}
644 
645 	switch (state) {
646 	case pcie_deassert_reset:
647 		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
648 		break;
649 	case pcie_hot_reset:
650 		eeh_ops->reset(pe, EEH_RESET_HOT);
651 		break;
652 	case pcie_warm_reset:
653 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
654 		break;
655 	default:
656 		return -EINVAL;
657 	};
658 
659 	return 0;
660 }
661 
662 /**
663  * eeh_set_pe_freset - Check the required reset for the indicated device
664  * @data: EEH device
665  * @flag: return value
666  *
667  * Each device might have its preferred reset type: fundamental or
668  * hot reset. The routine is used to collected the information for
669  * the indicated device and its children so that the bunch of the
670  * devices could be reset properly.
671  */
672 static void *eeh_set_dev_freset(void *data, void *flag)
673 {
674 	struct pci_dev *dev;
675 	unsigned int *freset = (unsigned int *)flag;
676 	struct eeh_dev *edev = (struct eeh_dev *)data;
677 
678 	dev = eeh_dev_to_pci_dev(edev);
679 	if (dev)
680 		*freset |= dev->needs_freset;
681 
682 	return NULL;
683 }
684 
685 /**
686  * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
687  * @pe: EEH PE
688  *
689  * Assert the PCI #RST line for 1/4 second.
690  */
691 static void eeh_reset_pe_once(struct eeh_pe *pe)
692 {
693 	unsigned int freset = 0;
694 
695 	/* Determine type of EEH reset required for
696 	 * Partitionable Endpoint, a hot-reset (1)
697 	 * or a fundamental reset (3).
698 	 * A fundamental reset required by any device under
699 	 * Partitionable Endpoint trumps hot-reset.
700 	 */
701 	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
702 
703 	if (freset)
704 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
705 	else
706 		eeh_ops->reset(pe, EEH_RESET_HOT);
707 
708 	eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
709 }
710 
711 /**
712  * eeh_reset_pe - Reset the indicated PE
713  * @pe: EEH PE
714  *
715  * This routine should be called to reset indicated device, including
716  * PE. A PE might include multiple PCI devices and sometimes PCI bridges
717  * might be involved as well.
718  */
719 int eeh_reset_pe(struct eeh_pe *pe)
720 {
721 	int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
722 	int i, rc;
723 
724 	/* Take three shots at resetting the bus */
725 	for (i=0; i<3; i++) {
726 		eeh_reset_pe_once(pe);
727 
728 		/*
729 		 * EEH_PE_ISOLATED is expected to be removed after
730 		 * BAR restore.
731 		 */
732 		rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
733 		if ((rc & flags) == flags)
734 			return 0;
735 
736 		if (rc < 0) {
737 			pr_err("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
738 				__func__, pe->phb->global_number, pe->addr);
739 			return -1;
740 		}
741 		pr_err("EEH: bus reset %d failed on PHB#%d-PE#%x, rc=%d\n",
742 			i+1, pe->phb->global_number, pe->addr, rc);
743 	}
744 
745 	return -1;
746 }
747 
748 /**
749  * eeh_save_bars - Save device bars
750  * @edev: PCI device associated EEH device
751  *
752  * Save the values of the device bars. Unlike the restore
753  * routine, this routine is *not* recursive. This is because
754  * PCI devices are added individually; but, for the restore,
755  * an entire slot is reset at a time.
756  */
757 void eeh_save_bars(struct eeh_dev *edev)
758 {
759 	int i;
760 	struct device_node *dn;
761 
762 	if (!edev)
763 		return;
764 	dn = eeh_dev_to_of_node(edev);
765 
766 	for (i = 0; i < 16; i++)
767 		eeh_ops->read_config(dn, i * 4, 4, &edev->config_space[i]);
768 
769 	/*
770 	 * For PCI bridges including root port, we need enable bus
771 	 * master explicitly. Otherwise, it can't fetch IODA table
772 	 * entries correctly. So we cache the bit in advance so that
773 	 * we can restore it after reset, either PHB range or PE range.
774 	 */
775 	if (edev->mode & EEH_DEV_BRIDGE)
776 		edev->config_space[1] |= PCI_COMMAND_MASTER;
777 }
778 
779 /**
780  * eeh_ops_register - Register platform dependent EEH operations
781  * @ops: platform dependent EEH operations
782  *
783  * Register the platform dependent EEH operation callback
784  * functions. The platform should call this function before
785  * any other EEH operations.
786  */
787 int __init eeh_ops_register(struct eeh_ops *ops)
788 {
789 	if (!ops->name) {
790 		pr_warn("%s: Invalid EEH ops name for %p\n",
791 			__func__, ops);
792 		return -EINVAL;
793 	}
794 
795 	if (eeh_ops && eeh_ops != ops) {
796 		pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
797 			__func__, eeh_ops->name, ops->name);
798 		return -EEXIST;
799 	}
800 
801 	eeh_ops = ops;
802 
803 	return 0;
804 }
805 
806 /**
807  * eeh_ops_unregister - Unreigster platform dependent EEH operations
808  * @name: name of EEH platform operations
809  *
810  * Unregister the platform dependent EEH operation callback
811  * functions.
812  */
813 int __exit eeh_ops_unregister(const char *name)
814 {
815 	if (!name || !strlen(name)) {
816 		pr_warn("%s: Invalid EEH ops name\n",
817 			__func__);
818 		return -EINVAL;
819 	}
820 
821 	if (eeh_ops && !strcmp(eeh_ops->name, name)) {
822 		eeh_ops = NULL;
823 		return 0;
824 	}
825 
826 	return -EEXIST;
827 }
828 
829 static int eeh_reboot_notifier(struct notifier_block *nb,
830 			       unsigned long action, void *unused)
831 {
832 	eeh_clear_flag(EEH_ENABLED);
833 	return NOTIFY_DONE;
834 }
835 
836 static struct notifier_block eeh_reboot_nb = {
837 	.notifier_call = eeh_reboot_notifier,
838 };
839 
840 /**
841  * eeh_init - EEH initialization
842  *
843  * Initialize EEH by trying to enable it for all of the adapters in the system.
844  * As a side effect we can determine here if eeh is supported at all.
845  * Note that we leave EEH on so failed config cycles won't cause a machine
846  * check.  If a user turns off EEH for a particular adapter they are really
847  * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
848  * grant access to a slot if EEH isn't enabled, and so we always enable
849  * EEH for all slots/all devices.
850  *
851  * The eeh-force-off option disables EEH checking globally, for all slots.
852  * Even if force-off is set, the EEH hardware is still enabled, so that
853  * newer systems can boot.
854  */
855 int eeh_init(void)
856 {
857 	struct pci_controller *hose, *tmp;
858 	struct device_node *phb;
859 	static int cnt = 0;
860 	int ret = 0;
861 
862 	/*
863 	 * We have to delay the initialization on PowerNV after
864 	 * the PCI hierarchy tree has been built because the PEs
865 	 * are figured out based on PCI devices instead of device
866 	 * tree nodes
867 	 */
868 	if (machine_is(powernv) && cnt++ <= 0)
869 		return ret;
870 
871 	/* Register reboot notifier */
872 	ret = register_reboot_notifier(&eeh_reboot_nb);
873 	if (ret) {
874 		pr_warn("%s: Failed to register notifier (%d)\n",
875 			__func__, ret);
876 		return ret;
877 	}
878 
879 	/* call platform initialization function */
880 	if (!eeh_ops) {
881 		pr_warn("%s: Platform EEH operation not found\n",
882 			__func__);
883 		return -EEXIST;
884 	} else if ((ret = eeh_ops->init())) {
885 		pr_warn("%s: Failed to call platform init function (%d)\n",
886 			__func__, ret);
887 		return ret;
888 	}
889 
890 	/* Initialize EEH event */
891 	ret = eeh_event_init();
892 	if (ret)
893 		return ret;
894 
895 	/* Enable EEH for all adapters */
896 	if (eeh_has_flag(EEH_PROBE_MODE_DEVTREE)) {
897 		list_for_each_entry_safe(hose, tmp,
898 			&hose_list, list_node) {
899 			phb = hose->dn;
900 			traverse_pci_devices(phb, eeh_ops->of_probe, NULL);
901 		}
902 	} else if (eeh_has_flag(EEH_PROBE_MODE_DEV)) {
903 		list_for_each_entry_safe(hose, tmp,
904 			&hose_list, list_node)
905 			pci_walk_bus(hose->bus, eeh_ops->dev_probe, NULL);
906 	} else {
907 		pr_warn("%s: Invalid probe mode %x",
908 			__func__, eeh_subsystem_flags);
909 		return -EINVAL;
910 	}
911 
912 	/*
913 	 * Call platform post-initialization. Actually, It's good chance
914 	 * to inform platform that EEH is ready to supply service if the
915 	 * I/O cache stuff has been built up.
916 	 */
917 	if (eeh_ops->post_init) {
918 		ret = eeh_ops->post_init();
919 		if (ret)
920 			return ret;
921 	}
922 
923 	if (eeh_enabled())
924 		pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
925 	else
926 		pr_warn("EEH: No capable adapters found\n");
927 
928 	return ret;
929 }
930 
931 core_initcall_sync(eeh_init);
932 
933 /**
934  * eeh_add_device_early - Enable EEH for the indicated device_node
935  * @dn: device node for which to set up EEH
936  *
937  * This routine must be used to perform EEH initialization for PCI
938  * devices that were added after system boot (e.g. hotplug, dlpar).
939  * This routine must be called before any i/o is performed to the
940  * adapter (inluding any config-space i/o).
941  * Whether this actually enables EEH or not for this device depends
942  * on the CEC architecture, type of the device, on earlier boot
943  * command-line arguments & etc.
944  */
945 void eeh_add_device_early(struct device_node *dn)
946 {
947 	struct pci_controller *phb;
948 
949 	/*
950 	 * If we're doing EEH probe based on PCI device, we
951 	 * would delay the probe until late stage because
952 	 * the PCI device isn't available this moment.
953 	 */
954 	if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
955 		return;
956 
957 	if (!of_node_to_eeh_dev(dn))
958 		return;
959 	phb = of_node_to_eeh_dev(dn)->phb;
960 
961 	/* USB Bus children of PCI devices will not have BUID's */
962 	if (NULL == phb || 0 == phb->buid)
963 		return;
964 
965 	eeh_ops->of_probe(dn, NULL);
966 }
967 
968 /**
969  * eeh_add_device_tree_early - Enable EEH for the indicated device
970  * @dn: device node
971  *
972  * This routine must be used to perform EEH initialization for the
973  * indicated PCI device that was added after system boot (e.g.
974  * hotplug, dlpar).
975  */
976 void eeh_add_device_tree_early(struct device_node *dn)
977 {
978 	struct device_node *sib;
979 
980 	for_each_child_of_node(dn, sib)
981 		eeh_add_device_tree_early(sib);
982 	eeh_add_device_early(dn);
983 }
984 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
985 
986 /**
987  * eeh_add_device_late - Perform EEH initialization for the indicated pci device
988  * @dev: pci device for which to set up EEH
989  *
990  * This routine must be used to complete EEH initialization for PCI
991  * devices that were added after system boot (e.g. hotplug, dlpar).
992  */
993 void eeh_add_device_late(struct pci_dev *dev)
994 {
995 	struct device_node *dn;
996 	struct eeh_dev *edev;
997 
998 	if (!dev || !eeh_enabled())
999 		return;
1000 
1001 	pr_debug("EEH: Adding device %s\n", pci_name(dev));
1002 
1003 	dn = pci_device_to_OF_node(dev);
1004 	edev = of_node_to_eeh_dev(dn);
1005 	if (edev->pdev == dev) {
1006 		pr_debug("EEH: Already referenced !\n");
1007 		return;
1008 	}
1009 
1010 	/*
1011 	 * The EEH cache might not be removed correctly because of
1012 	 * unbalanced kref to the device during unplug time, which
1013 	 * relies on pcibios_release_device(). So we have to remove
1014 	 * that here explicitly.
1015 	 */
1016 	if (edev->pdev) {
1017 		eeh_rmv_from_parent_pe(edev);
1018 		eeh_addr_cache_rmv_dev(edev->pdev);
1019 		eeh_sysfs_remove_device(edev->pdev);
1020 		edev->mode &= ~EEH_DEV_SYSFS;
1021 
1022 		/*
1023 		 * We definitely should have the PCI device removed
1024 		 * though it wasn't correctly. So we needn't call
1025 		 * into error handler afterwards.
1026 		 */
1027 		edev->mode |= EEH_DEV_NO_HANDLER;
1028 
1029 		edev->pdev = NULL;
1030 		dev->dev.archdata.edev = NULL;
1031 	}
1032 
1033 	edev->pdev = dev;
1034 	dev->dev.archdata.edev = edev;
1035 
1036 	/*
1037 	 * We have to do the EEH probe here because the PCI device
1038 	 * hasn't been created yet in the early stage.
1039 	 */
1040 	if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1041 		eeh_ops->dev_probe(dev, NULL);
1042 
1043 	eeh_addr_cache_insert_dev(dev);
1044 }
1045 
1046 /**
1047  * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1048  * @bus: PCI bus
1049  *
1050  * This routine must be used to perform EEH initialization for PCI
1051  * devices which are attached to the indicated PCI bus. The PCI bus
1052  * is added after system boot through hotplug or dlpar.
1053  */
1054 void eeh_add_device_tree_late(struct pci_bus *bus)
1055 {
1056 	struct pci_dev *dev;
1057 
1058 	list_for_each_entry(dev, &bus->devices, bus_list) {
1059 		eeh_add_device_late(dev);
1060 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1061 			struct pci_bus *subbus = dev->subordinate;
1062 			if (subbus)
1063 				eeh_add_device_tree_late(subbus);
1064 		}
1065 	}
1066 }
1067 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1068 
1069 /**
1070  * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1071  * @bus: PCI bus
1072  *
1073  * This routine must be used to add EEH sysfs files for PCI
1074  * devices which are attached to the indicated PCI bus. The PCI bus
1075  * is added after system boot through hotplug or dlpar.
1076  */
1077 void eeh_add_sysfs_files(struct pci_bus *bus)
1078 {
1079 	struct pci_dev *dev;
1080 
1081 	list_for_each_entry(dev, &bus->devices, bus_list) {
1082 		eeh_sysfs_add_device(dev);
1083 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1084 			struct pci_bus *subbus = dev->subordinate;
1085 			if (subbus)
1086 				eeh_add_sysfs_files(subbus);
1087 		}
1088 	}
1089 }
1090 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1091 
1092 /**
1093  * eeh_remove_device - Undo EEH setup for the indicated pci device
1094  * @dev: pci device to be removed
1095  *
1096  * This routine should be called when a device is removed from
1097  * a running system (e.g. by hotplug or dlpar).  It unregisters
1098  * the PCI device from the EEH subsystem.  I/O errors affecting
1099  * this device will no longer be detected after this call; thus,
1100  * i/o errors affecting this slot may leave this device unusable.
1101  */
1102 void eeh_remove_device(struct pci_dev *dev)
1103 {
1104 	struct eeh_dev *edev;
1105 
1106 	if (!dev || !eeh_enabled())
1107 		return;
1108 	edev = pci_dev_to_eeh_dev(dev);
1109 
1110 	/* Unregister the device with the EEH/PCI address search system */
1111 	pr_debug("EEH: Removing device %s\n", pci_name(dev));
1112 
1113 	if (!edev || !edev->pdev || !edev->pe) {
1114 		pr_debug("EEH: Not referenced !\n");
1115 		return;
1116 	}
1117 
1118 	/*
1119 	 * During the hotplug for EEH error recovery, we need the EEH
1120 	 * device attached to the parent PE in order for BAR restore
1121 	 * a bit later. So we keep it for BAR restore and remove it
1122 	 * from the parent PE during the BAR resotre.
1123 	 */
1124 	edev->pdev = NULL;
1125 	dev->dev.archdata.edev = NULL;
1126 	if (!(edev->pe->state & EEH_PE_KEEP))
1127 		eeh_rmv_from_parent_pe(edev);
1128 	else
1129 		edev->mode |= EEH_DEV_DISCONNECTED;
1130 
1131 	/*
1132 	 * We're removing from the PCI subsystem, that means
1133 	 * the PCI device driver can't support EEH or not
1134 	 * well. So we rely on hotplug completely to do recovery
1135 	 * for the specific PCI device.
1136 	 */
1137 	edev->mode |= EEH_DEV_NO_HANDLER;
1138 
1139 	eeh_addr_cache_rmv_dev(dev);
1140 	eeh_sysfs_remove_device(dev);
1141 	edev->mode &= ~EEH_DEV_SYSFS;
1142 }
1143 
1144 /**
1145  * eeh_dev_open - Increase count of pass through devices for PE
1146  * @pdev: PCI device
1147  *
1148  * Increase count of passed through devices for the indicated
1149  * PE. In the result, the EEH errors detected on the PE won't be
1150  * reported. The PE owner will be responsible for detection
1151  * and recovery.
1152  */
1153 int eeh_dev_open(struct pci_dev *pdev)
1154 {
1155 	struct eeh_dev *edev;
1156 
1157 	mutex_lock(&eeh_dev_mutex);
1158 
1159 	/* No PCI device ? */
1160 	if (!pdev)
1161 		goto out;
1162 
1163 	/* No EEH device or PE ? */
1164 	edev = pci_dev_to_eeh_dev(pdev);
1165 	if (!edev || !edev->pe)
1166 		goto out;
1167 
1168 	/* Increase PE's pass through count */
1169 	atomic_inc(&edev->pe->pass_dev_cnt);
1170 	mutex_unlock(&eeh_dev_mutex);
1171 
1172 	return 0;
1173 out:
1174 	mutex_unlock(&eeh_dev_mutex);
1175 	return -ENODEV;
1176 }
1177 EXPORT_SYMBOL_GPL(eeh_dev_open);
1178 
1179 /**
1180  * eeh_dev_release - Decrease count of pass through devices for PE
1181  * @pdev: PCI device
1182  *
1183  * Decrease count of pass through devices for the indicated PE. If
1184  * there is no passed through device in PE, the EEH errors detected
1185  * on the PE will be reported and handled as usual.
1186  */
1187 void eeh_dev_release(struct pci_dev *pdev)
1188 {
1189 	struct eeh_dev *edev;
1190 
1191 	mutex_lock(&eeh_dev_mutex);
1192 
1193 	/* No PCI device ? */
1194 	if (!pdev)
1195 		goto out;
1196 
1197 	/* No EEH device ? */
1198 	edev = pci_dev_to_eeh_dev(pdev);
1199 	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1200 		goto out;
1201 
1202 	/* Decrease PE's pass through count */
1203 	atomic_dec(&edev->pe->pass_dev_cnt);
1204 	WARN_ON(atomic_read(&edev->pe->pass_dev_cnt) < 0);
1205 out:
1206 	mutex_unlock(&eeh_dev_mutex);
1207 }
1208 EXPORT_SYMBOL(eeh_dev_release);
1209 
1210 #ifdef CONFIG_IOMMU_API
1211 
1212 static int dev_has_iommu_table(struct device *dev, void *data)
1213 {
1214 	struct pci_dev *pdev = to_pci_dev(dev);
1215 	struct pci_dev **ppdev = data;
1216 	struct iommu_table *tbl;
1217 
1218 	if (!dev)
1219 		return 0;
1220 
1221 	tbl = get_iommu_table_base(dev);
1222 	if (tbl && tbl->it_group) {
1223 		*ppdev = pdev;
1224 		return 1;
1225 	}
1226 
1227 	return 0;
1228 }
1229 
1230 /**
1231  * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1232  * @group: IOMMU group
1233  *
1234  * The routine is called to convert IOMMU group to EEH PE.
1235  */
1236 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1237 {
1238 	struct pci_dev *pdev = NULL;
1239 	struct eeh_dev *edev;
1240 	int ret;
1241 
1242 	/* No IOMMU group ? */
1243 	if (!group)
1244 		return NULL;
1245 
1246 	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1247 	if (!ret || !pdev)
1248 		return NULL;
1249 
1250 	/* No EEH device or PE ? */
1251 	edev = pci_dev_to_eeh_dev(pdev);
1252 	if (!edev || !edev->pe)
1253 		return NULL;
1254 
1255 	return edev->pe;
1256 }
1257 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1258 
1259 #endif /* CONFIG_IOMMU_API */
1260 
1261 /**
1262  * eeh_pe_set_option - Set options for the indicated PE
1263  * @pe: EEH PE
1264  * @option: requested option
1265  *
1266  * The routine is called to enable or disable EEH functionality
1267  * on the indicated PE, to enable IO or DMA for the frozen PE.
1268  */
1269 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1270 {
1271 	int ret = 0;
1272 
1273 	/* Invalid PE ? */
1274 	if (!pe)
1275 		return -ENODEV;
1276 
1277 	/*
1278 	 * EEH functionality could possibly be disabled, just
1279 	 * return error for the case. And the EEH functinality
1280 	 * isn't expected to be disabled on one specific PE.
1281 	 */
1282 	switch (option) {
1283 	case EEH_OPT_ENABLE:
1284 		if (eeh_enabled())
1285 			break;
1286 		ret = -EIO;
1287 		break;
1288 	case EEH_OPT_DISABLE:
1289 		break;
1290 	case EEH_OPT_THAW_MMIO:
1291 	case EEH_OPT_THAW_DMA:
1292 		if (!eeh_ops || !eeh_ops->set_option) {
1293 			ret = -ENOENT;
1294 			break;
1295 		}
1296 
1297 		ret = eeh_ops->set_option(pe, option);
1298 		break;
1299 	default:
1300 		pr_debug("%s: Option %d out of range (%d, %d)\n",
1301 			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1302 		ret = -EINVAL;
1303 	}
1304 
1305 	return ret;
1306 }
1307 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1308 
1309 /**
1310  * eeh_pe_get_state - Retrieve PE's state
1311  * @pe: EEH PE
1312  *
1313  * Retrieve the PE's state, which includes 3 aspects: enabled
1314  * DMA, enabled IO and asserted reset.
1315  */
1316 int eeh_pe_get_state(struct eeh_pe *pe)
1317 {
1318 	int result, ret = 0;
1319 	bool rst_active, dma_en, mmio_en;
1320 
1321 	/* Existing PE ? */
1322 	if (!pe)
1323 		return -ENODEV;
1324 
1325 	if (!eeh_ops || !eeh_ops->get_state)
1326 		return -ENOENT;
1327 
1328 	result = eeh_ops->get_state(pe, NULL);
1329 	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1330 	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1331 	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1332 
1333 	if (rst_active)
1334 		ret = EEH_PE_STATE_RESET;
1335 	else if (dma_en && mmio_en)
1336 		ret = EEH_PE_STATE_NORMAL;
1337 	else if (!dma_en && !mmio_en)
1338 		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1339 	else if (!dma_en && mmio_en)
1340 		ret = EEH_PE_STATE_STOPPED_DMA;
1341 	else
1342 		ret = EEH_PE_STATE_UNAVAIL;
1343 
1344 	return ret;
1345 }
1346 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1347 
1348 /**
1349  * eeh_pe_reset - Issue PE reset according to specified type
1350  * @pe: EEH PE
1351  * @option: reset type
1352  *
1353  * The routine is called to reset the specified PE with the
1354  * indicated type, either fundamental reset or hot reset.
1355  * PE reset is the most important part for error recovery.
1356  */
1357 int eeh_pe_reset(struct eeh_pe *pe, int option)
1358 {
1359 	int ret = 0;
1360 
1361 	/* Invalid PE ? */
1362 	if (!pe)
1363 		return -ENODEV;
1364 
1365 	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1366 		return -ENOENT;
1367 
1368 	switch (option) {
1369 	case EEH_RESET_DEACTIVATE:
1370 		ret = eeh_ops->reset(pe, option);
1371 		if (ret)
1372 			break;
1373 
1374 		/*
1375 		 * The PE is still in frozen state and we need to clear
1376 		 * that. It's good to clear frozen state after deassert
1377 		 * to avoid messy IO access during reset, which might
1378 		 * cause recursive frozen PE.
1379 		 */
1380 		ret = eeh_ops->set_option(pe, EEH_OPT_THAW_MMIO);
1381 		if (!ret)
1382 			ret = eeh_ops->set_option(pe, EEH_OPT_THAW_DMA);
1383 		if (!ret)
1384 			eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1385 		break;
1386 	case EEH_RESET_HOT:
1387 	case EEH_RESET_FUNDAMENTAL:
1388 		ret = eeh_ops->reset(pe, option);
1389 		break;
1390 	default:
1391 		pr_debug("%s: Unsupported option %d\n",
1392 			__func__, option);
1393 		ret = -EINVAL;
1394 	}
1395 
1396 	return ret;
1397 }
1398 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1399 
1400 /**
1401  * eeh_pe_configure - Configure PCI bridges after PE reset
1402  * @pe: EEH PE
1403  *
1404  * The routine is called to restore the PCI config space for
1405  * those PCI devices, especially PCI bridges affected by PE
1406  * reset issued previously.
1407  */
1408 int eeh_pe_configure(struct eeh_pe *pe)
1409 {
1410 	int ret = 0;
1411 
1412 	/* Invalid PE ? */
1413 	if (!pe)
1414 		return -ENODEV;
1415 
1416 	/* Restore config space for the affected devices */
1417 	eeh_pe_restore_bars(pe);
1418 
1419 	return ret;
1420 }
1421 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1422 
1423 static int proc_eeh_show(struct seq_file *m, void *v)
1424 {
1425 	if (!eeh_enabled()) {
1426 		seq_printf(m, "EEH Subsystem is globally disabled\n");
1427 		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1428 	} else {
1429 		seq_printf(m, "EEH Subsystem is enabled\n");
1430 		seq_printf(m,
1431 				"no device=%llu\n"
1432 				"no device node=%llu\n"
1433 				"no config address=%llu\n"
1434 				"check not wanted=%llu\n"
1435 				"eeh_total_mmio_ffs=%llu\n"
1436 				"eeh_false_positives=%llu\n"
1437 				"eeh_slot_resets=%llu\n",
1438 				eeh_stats.no_device,
1439 				eeh_stats.no_dn,
1440 				eeh_stats.no_cfg_addr,
1441 				eeh_stats.ignored_check,
1442 				eeh_stats.total_mmio_ffs,
1443 				eeh_stats.false_positives,
1444 				eeh_stats.slot_resets);
1445 	}
1446 
1447 	return 0;
1448 }
1449 
1450 static int proc_eeh_open(struct inode *inode, struct file *file)
1451 {
1452 	return single_open(file, proc_eeh_show, NULL);
1453 }
1454 
1455 static const struct file_operations proc_eeh_operations = {
1456 	.open      = proc_eeh_open,
1457 	.read      = seq_read,
1458 	.llseek    = seq_lseek,
1459 	.release   = single_release,
1460 };
1461 
1462 #ifdef CONFIG_DEBUG_FS
1463 static int eeh_enable_dbgfs_set(void *data, u64 val)
1464 {
1465 	if (val)
1466 		eeh_clear_flag(EEH_FORCE_DISABLED);
1467 	else
1468 		eeh_add_flag(EEH_FORCE_DISABLED);
1469 
1470 	/* Notify the backend */
1471 	if (eeh_ops->post_init)
1472 		eeh_ops->post_init();
1473 
1474 	return 0;
1475 }
1476 
1477 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1478 {
1479 	if (eeh_enabled())
1480 		*val = 0x1ul;
1481 	else
1482 		*val = 0x0ul;
1483 	return 0;
1484 }
1485 
1486 DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1487 			eeh_enable_dbgfs_set, "0x%llx\n");
1488 #endif
1489 
1490 static int __init eeh_init_proc(void)
1491 {
1492 	if (machine_is(pseries) || machine_is(powernv)) {
1493 		proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1494 #ifdef CONFIG_DEBUG_FS
1495 		debugfs_create_file("eeh_enable", 0600,
1496                                     powerpc_debugfs_root, NULL,
1497                                     &eeh_enable_dbgfs_ops);
1498 #endif
1499 	}
1500 
1501 	return 0;
1502 }
1503 __initcall(eeh_init_proc);
1504