1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright IBM Corporation 2001, 2005, 2006
4 * Copyright Dave Engebretsen & Todd Inglett 2001
5 * Copyright Linas Vepstas 2005, 2006
6 * Copyright 2001-2012 IBM Corporation.
7 *
8 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
9 */
10
11 #include <linux/delay.h>
12 #include <linux/sched.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/pci.h>
16 #include <linux/iommu.h>
17 #include <linux/proc_fs.h>
18 #include <linux/rbtree.h>
19 #include <linux/reboot.h>
20 #include <linux/seq_file.h>
21 #include <linux/spinlock.h>
22 #include <linux/export.h>
23 #include <linux/of.h>
24 #include <linux/debugfs.h>
25
26 #include <linux/atomic.h>
27 #include <asm/eeh.h>
28 #include <asm/eeh_event.h>
29 #include <asm/io.h>
30 #include <asm/iommu.h>
31 #include <asm/machdep.h>
32 #include <asm/ppc-pci.h>
33 #include <asm/rtas.h>
34 #include <asm/pte-walk.h>
35
36
37 /** Overview:
38 * EEH, or "Enhanced Error Handling" is a PCI bridge technology for
39 * dealing with PCI bus errors that can't be dealt with within the
40 * usual PCI framework, except by check-stopping the CPU. Systems
41 * that are designed for high-availability/reliability cannot afford
42 * to crash due to a "mere" PCI error, thus the need for EEH.
43 * An EEH-capable bridge operates by converting a detected error
44 * into a "slot freeze", taking the PCI adapter off-line, making
45 * the slot behave, from the OS'es point of view, as if the slot
46 * were "empty": all reads return 0xff's and all writes are silently
47 * ignored. EEH slot isolation events can be triggered by parity
48 * errors on the address or data busses (e.g. during posted writes),
49 * which in turn might be caused by low voltage on the bus, dust,
50 * vibration, humidity, radioactivity or plain-old failed hardware.
51 *
52 * Note, however, that one of the leading causes of EEH slot
53 * freeze events are buggy device drivers, buggy device microcode,
54 * or buggy device hardware. This is because any attempt by the
55 * device to bus-master data to a memory address that is not
56 * assigned to the device will trigger a slot freeze. (The idea
57 * is to prevent devices-gone-wild from corrupting system memory).
58 * Buggy hardware/drivers will have a miserable time co-existing
59 * with EEH.
60 *
61 * Ideally, a PCI device driver, when suspecting that an isolation
62 * event has occurred (e.g. by reading 0xff's), will then ask EEH
63 * whether this is the case, and then take appropriate steps to
64 * reset the PCI slot, the PCI device, and then resume operations.
65 * However, until that day, the checking is done here, with the
66 * eeh_check_failure() routine embedded in the MMIO macros. If
67 * the slot is found to be isolated, an "EEH Event" is synthesized
68 * and sent out for processing.
69 */
70
71 /* If a device driver keeps reading an MMIO register in an interrupt
72 * handler after a slot isolation event, it might be broken.
73 * This sets the threshold for how many read attempts we allow
74 * before printing an error message.
75 */
76 #define EEH_MAX_FAILS 2100000
77
78 /* Time to wait for a PCI slot to report status, in milliseconds */
79 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
80
81 /*
82 * EEH probe mode support, which is part of the flags,
83 * is to support multiple platforms for EEH. Some platforms
84 * like pSeries do PCI emunation based on device tree.
85 * However, other platforms like powernv probe PCI devices
86 * from hardware. The flag is used to distinguish that.
87 * In addition, struct eeh_ops::probe would be invoked for
88 * particular OF node or PCI device so that the corresponding
89 * PE would be created there.
90 */
91 int eeh_subsystem_flags;
92 EXPORT_SYMBOL(eeh_subsystem_flags);
93
94 /*
95 * EEH allowed maximal frozen times. If one particular PE's
96 * frozen count in last hour exceeds this limit, the PE will
97 * be forced to be offline permanently.
98 */
99 u32 eeh_max_freezes = 5;
100
101 /*
102 * Controls whether a recovery event should be scheduled when an
103 * isolated device is discovered. This is only really useful for
104 * debugging problems with the EEH core.
105 */
106 bool eeh_debugfs_no_recover;
107
108 /* Platform dependent EEH operations */
109 struct eeh_ops *eeh_ops = NULL;
110
111 /* Lock to avoid races due to multiple reports of an error */
112 DEFINE_RAW_SPINLOCK(confirm_error_lock);
113 EXPORT_SYMBOL_GPL(confirm_error_lock);
114
115 /* Lock to protect passed flags */
116 static DEFINE_MUTEX(eeh_dev_mutex);
117
118 /* Buffer for reporting pci register dumps. Its here in BSS, and
119 * not dynamically alloced, so that it ends up in RMO where RTAS
120 * can access it.
121 */
122 #define EEH_PCI_REGS_LOG_LEN 8192
123 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
124
125 /*
126 * The struct is used to maintain the EEH global statistic
127 * information. Besides, the EEH global statistics will be
128 * exported to user space through procfs
129 */
130 struct eeh_stats {
131 u64 no_device; /* PCI device not found */
132 u64 no_dn; /* OF node not found */
133 u64 no_cfg_addr; /* Config address not found */
134 u64 ignored_check; /* EEH check skipped */
135 u64 total_mmio_ffs; /* Total EEH checks */
136 u64 false_positives; /* Unnecessary EEH checks */
137 u64 slot_resets; /* PE reset */
138 };
139
140 static struct eeh_stats eeh_stats;
141
eeh_setup(char * str)142 static int __init eeh_setup(char *str)
143 {
144 if (!strcmp(str, "off"))
145 eeh_add_flag(EEH_FORCE_DISABLED);
146 else if (!strcmp(str, "early_log"))
147 eeh_add_flag(EEH_EARLY_DUMP_LOG);
148
149 return 1;
150 }
151 __setup("eeh=", eeh_setup);
152
eeh_show_enabled(void)153 void eeh_show_enabled(void)
154 {
155 if (eeh_has_flag(EEH_FORCE_DISABLED))
156 pr_info("EEH: Recovery disabled by kernel parameter.\n");
157 else if (eeh_has_flag(EEH_ENABLED))
158 pr_info("EEH: Capable adapter found: recovery enabled.\n");
159 else
160 pr_info("EEH: No capable adapters found: recovery disabled.\n");
161 }
162
163 /*
164 * This routine captures assorted PCI configuration space data
165 * for the indicated PCI device, and puts them into a buffer
166 * for RTAS error logging.
167 */
eeh_dump_dev_log(struct eeh_dev * edev,char * buf,size_t len)168 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
169 {
170 u32 cfg;
171 int cap, i;
172 int n = 0, l = 0;
173 char buffer[128];
174
175 n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
176 edev->pe->phb->global_number, edev->bdfn >> 8,
177 PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
178 pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
179 edev->pe->phb->global_number, edev->bdfn >> 8,
180 PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
181
182 eeh_ops->read_config(edev, PCI_VENDOR_ID, 4, &cfg);
183 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
184 pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
185
186 eeh_ops->read_config(edev, PCI_COMMAND, 4, &cfg);
187 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
188 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
189
190 /* Gather bridge-specific registers */
191 if (edev->mode & EEH_DEV_BRIDGE) {
192 eeh_ops->read_config(edev, PCI_SEC_STATUS, 2, &cfg);
193 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
194 pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
195
196 eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &cfg);
197 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
198 pr_warn("EEH: Bridge control: %04x\n", cfg);
199 }
200
201 /* Dump out the PCI-X command and status regs */
202 cap = edev->pcix_cap;
203 if (cap) {
204 eeh_ops->read_config(edev, cap, 4, &cfg);
205 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
206 pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
207
208 eeh_ops->read_config(edev, cap+4, 4, &cfg);
209 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
210 pr_warn("EEH: PCI-X status: %08x\n", cfg);
211 }
212
213 /* If PCI-E capable, dump PCI-E cap 10 */
214 cap = edev->pcie_cap;
215 if (cap) {
216 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
217 pr_warn("EEH: PCI-E capabilities and status follow:\n");
218
219 for (i=0; i<=8; i++) {
220 eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
221 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
222
223 if ((i % 4) == 0) {
224 if (i != 0)
225 pr_warn("%s\n", buffer);
226
227 l = scnprintf(buffer, sizeof(buffer),
228 "EEH: PCI-E %02x: %08x ",
229 4*i, cfg);
230 } else {
231 l += scnprintf(buffer+l, sizeof(buffer)-l,
232 "%08x ", cfg);
233 }
234
235 }
236
237 pr_warn("%s\n", buffer);
238 }
239
240 /* If AER capable, dump it */
241 cap = edev->aer_cap;
242 if (cap) {
243 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
244 pr_warn("EEH: PCI-E AER capability register set follows:\n");
245
246 for (i=0; i<=13; i++) {
247 eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
248 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
249
250 if ((i % 4) == 0) {
251 if (i != 0)
252 pr_warn("%s\n", buffer);
253
254 l = scnprintf(buffer, sizeof(buffer),
255 "EEH: PCI-E AER %02x: %08x ",
256 4*i, cfg);
257 } else {
258 l += scnprintf(buffer+l, sizeof(buffer)-l,
259 "%08x ", cfg);
260 }
261 }
262
263 pr_warn("%s\n", buffer);
264 }
265
266 return n;
267 }
268
eeh_dump_pe_log(struct eeh_pe * pe,void * flag)269 static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
270 {
271 struct eeh_dev *edev, *tmp;
272 size_t *plen = flag;
273
274 eeh_pe_for_each_dev(pe, edev, tmp)
275 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
276 EEH_PCI_REGS_LOG_LEN - *plen);
277
278 return NULL;
279 }
280
281 /**
282 * eeh_slot_error_detail - Generate combined log including driver log and error log
283 * @pe: EEH PE
284 * @severity: temporary or permanent error log
285 *
286 * This routine should be called to generate the combined log, which
287 * is comprised of driver log and error log. The driver log is figured
288 * out from the config space of the corresponding PCI device, while
289 * the error log is fetched through platform dependent function call.
290 */
eeh_slot_error_detail(struct eeh_pe * pe,int severity)291 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
292 {
293 size_t loglen = 0;
294
295 /*
296 * When the PHB is fenced or dead, it's pointless to collect
297 * the data from PCI config space because it should return
298 * 0xFF's. For ER, we still retrieve the data from the PCI
299 * config space.
300 *
301 * For pHyp, we have to enable IO for log retrieval. Otherwise,
302 * 0xFF's is always returned from PCI config space.
303 *
304 * When the @severity is EEH_LOG_PERM, the PE is going to be
305 * removed. Prior to that, the drivers for devices included in
306 * the PE will be closed. The drivers rely on working IO path
307 * to bring the devices to quiet state. Otherwise, PCI traffic
308 * from those devices after they are removed is like to cause
309 * another unexpected EEH error.
310 */
311 if (!(pe->type & EEH_PE_PHB)) {
312 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
313 severity == EEH_LOG_PERM)
314 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
315
316 /*
317 * The config space of some PCI devices can't be accessed
318 * when their PEs are in frozen state. Otherwise, fenced
319 * PHB might be seen. Those PEs are identified with flag
320 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
321 * is set automatically when the PE is put to EEH_PE_ISOLATED.
322 *
323 * Restoring BARs possibly triggers PCI config access in
324 * (OPAL) firmware and then causes fenced PHB. If the
325 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
326 * pointless to restore BARs and dump config space.
327 */
328 eeh_ops->configure_bridge(pe);
329 if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
330 eeh_pe_restore_bars(pe);
331
332 pci_regs_buf[0] = 0;
333 eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
334 }
335 }
336
337 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
338 }
339
340 /**
341 * eeh_token_to_phys - Convert EEH address token to phys address
342 * @token: I/O token, should be address in the form 0xA....
343 *
344 * This routine should be called to convert virtual I/O address
345 * to physical one.
346 */
eeh_token_to_phys(unsigned long token)347 static inline unsigned long eeh_token_to_phys(unsigned long token)
348 {
349 return ppc_find_vmap_phys(token);
350 }
351
352 /*
353 * On PowerNV platform, we might already have fenced PHB there.
354 * For that case, it's meaningless to recover frozen PE. Intead,
355 * We have to handle fenced PHB firstly.
356 */
eeh_phb_check_failure(struct eeh_pe * pe)357 static int eeh_phb_check_failure(struct eeh_pe *pe)
358 {
359 struct eeh_pe *phb_pe;
360 unsigned long flags;
361 int ret;
362
363 if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
364 return -EPERM;
365
366 /* Find the PHB PE */
367 phb_pe = eeh_phb_pe_get(pe->phb);
368 if (!phb_pe) {
369 pr_warn("%s Can't find PE for PHB#%x\n",
370 __func__, pe->phb->global_number);
371 return -EEXIST;
372 }
373
374 /* If the PHB has been in problematic state */
375 eeh_serialize_lock(&flags);
376 if (phb_pe->state & EEH_PE_ISOLATED) {
377 ret = 0;
378 goto out;
379 }
380
381 /* Check PHB state */
382 ret = eeh_ops->get_state(phb_pe, NULL);
383 if ((ret < 0) ||
384 (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
385 ret = 0;
386 goto out;
387 }
388
389 /* Isolate the PHB and send event */
390 eeh_pe_mark_isolated(phb_pe);
391 eeh_serialize_unlock(flags);
392
393 pr_debug("EEH: PHB#%x failure detected, location: %s\n",
394 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
395 eeh_send_failure_event(phb_pe);
396 return 1;
397 out:
398 eeh_serialize_unlock(flags);
399 return ret;
400 }
401
eeh_driver_name(struct pci_dev * pdev)402 static inline const char *eeh_driver_name(struct pci_dev *pdev)
403 {
404 if (pdev)
405 return dev_driver_string(&pdev->dev);
406
407 return "<null>";
408 }
409
410 /**
411 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
412 * @edev: eeh device
413 *
414 * Check for an EEH failure for the given device node. Call this
415 * routine if the result of a read was all 0xff's and you want to
416 * find out if this is due to an EEH slot freeze. This routine
417 * will query firmware for the EEH status.
418 *
419 * Returns 0 if there has not been an EEH error; otherwise returns
420 * a non-zero value and queues up a slot isolation event notification.
421 *
422 * It is safe to call this routine in an interrupt context.
423 */
eeh_dev_check_failure(struct eeh_dev * edev)424 int eeh_dev_check_failure(struct eeh_dev *edev)
425 {
426 int ret;
427 unsigned long flags;
428 struct device_node *dn;
429 struct pci_dev *dev;
430 struct eeh_pe *pe, *parent_pe;
431 int rc = 0;
432 const char *location = NULL;
433
434 eeh_stats.total_mmio_ffs++;
435
436 if (!eeh_enabled())
437 return 0;
438
439 if (!edev) {
440 eeh_stats.no_dn++;
441 return 0;
442 }
443 dev = eeh_dev_to_pci_dev(edev);
444 pe = eeh_dev_to_pe(edev);
445
446 /* Access to IO BARs might get this far and still not want checking. */
447 if (!pe) {
448 eeh_stats.ignored_check++;
449 eeh_edev_dbg(edev, "Ignored check\n");
450 return 0;
451 }
452
453 /*
454 * On PowerNV platform, we might already have fenced PHB
455 * there and we need take care of that firstly.
456 */
457 ret = eeh_phb_check_failure(pe);
458 if (ret > 0)
459 return ret;
460
461 /*
462 * If the PE isn't owned by us, we shouldn't check the
463 * state. Instead, let the owner handle it if the PE has
464 * been frozen.
465 */
466 if (eeh_pe_passed(pe))
467 return 0;
468
469 /* If we already have a pending isolation event for this
470 * slot, we know it's bad already, we don't need to check.
471 * Do this checking under a lock; as multiple PCI devices
472 * in one slot might report errors simultaneously, and we
473 * only want one error recovery routine running.
474 */
475 eeh_serialize_lock(&flags);
476 rc = 1;
477 if (pe->state & EEH_PE_ISOLATED) {
478 pe->check_count++;
479 if (pe->check_count == EEH_MAX_FAILS) {
480 dn = pci_device_to_OF_node(dev);
481 if (dn)
482 location = of_get_property(dn, "ibm,loc-code",
483 NULL);
484 eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n",
485 pe->check_count,
486 location ? location : "unknown",
487 eeh_driver_name(dev));
488 eeh_edev_err(edev, "Might be infinite loop in %s driver\n",
489 eeh_driver_name(dev));
490 dump_stack();
491 }
492 goto dn_unlock;
493 }
494
495 /*
496 * Now test for an EEH failure. This is VERY expensive.
497 * Note that the eeh_config_addr may be a parent device
498 * in the case of a device behind a bridge, or it may be
499 * function zero of a multi-function device.
500 * In any case they must share a common PHB.
501 */
502 ret = eeh_ops->get_state(pe, NULL);
503
504 /* Note that config-io to empty slots may fail;
505 * they are empty when they don't have children.
506 * We will punt with the following conditions: Failure to get
507 * PE's state, EEH not support and Permanently unavailable
508 * state, PE is in good state.
509 */
510 if ((ret < 0) ||
511 (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
512 eeh_stats.false_positives++;
513 pe->false_positives++;
514 rc = 0;
515 goto dn_unlock;
516 }
517
518 /*
519 * It should be corner case that the parent PE has been
520 * put into frozen state as well. We should take care
521 * that at first.
522 */
523 parent_pe = pe->parent;
524 while (parent_pe) {
525 /* Hit the ceiling ? */
526 if (parent_pe->type & EEH_PE_PHB)
527 break;
528
529 /* Frozen parent PE ? */
530 ret = eeh_ops->get_state(parent_pe, NULL);
531 if (ret > 0 && !eeh_state_active(ret)) {
532 pe = parent_pe;
533 pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
534 pe->phb->global_number, pe->addr,
535 pe->phb->global_number, parent_pe->addr);
536 }
537
538 /* Next parent level */
539 parent_pe = parent_pe->parent;
540 }
541
542 eeh_stats.slot_resets++;
543
544 /* Avoid repeated reports of this failure, including problems
545 * with other functions on this device, and functions under
546 * bridges.
547 */
548 eeh_pe_mark_isolated(pe);
549 eeh_serialize_unlock(flags);
550
551 /* Most EEH events are due to device driver bugs. Having
552 * a stack trace will help the device-driver authors figure
553 * out what happened. So print that out.
554 */
555 pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
556 __func__, pe->phb->global_number, pe->addr);
557 eeh_send_failure_event(pe);
558
559 return 1;
560
561 dn_unlock:
562 eeh_serialize_unlock(flags);
563 return rc;
564 }
565
566 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
567
568 /**
569 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
570 * @token: I/O address
571 *
572 * Check for an EEH failure at the given I/O address. Call this
573 * routine if the result of a read was all 0xff's and you want to
574 * find out if this is due to an EEH slot freeze event. This routine
575 * will query firmware for the EEH status.
576 *
577 * Note this routine is safe to call in an interrupt context.
578 */
eeh_check_failure(const volatile void __iomem * token)579 int eeh_check_failure(const volatile void __iomem *token)
580 {
581 unsigned long addr;
582 struct eeh_dev *edev;
583
584 /* Finding the phys addr + pci device; this is pretty quick. */
585 addr = eeh_token_to_phys((unsigned long __force) token);
586 edev = eeh_addr_cache_get_dev(addr);
587 if (!edev) {
588 eeh_stats.no_device++;
589 return 0;
590 }
591
592 return eeh_dev_check_failure(edev);
593 }
594 EXPORT_SYMBOL(eeh_check_failure);
595
596
597 /**
598 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
599 * @pe: EEH PE
600 * @function: EEH option
601 *
602 * This routine should be called to reenable frozen MMIO or DMA
603 * so that it would work correctly again. It's useful while doing
604 * recovery or log collection on the indicated device.
605 */
eeh_pci_enable(struct eeh_pe * pe,int function)606 int eeh_pci_enable(struct eeh_pe *pe, int function)
607 {
608 int active_flag, rc;
609
610 /*
611 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
612 * Also, it's pointless to enable them on unfrozen PE. So
613 * we have to check before enabling IO or DMA.
614 */
615 switch (function) {
616 case EEH_OPT_THAW_MMIO:
617 active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
618 break;
619 case EEH_OPT_THAW_DMA:
620 active_flag = EEH_STATE_DMA_ACTIVE;
621 break;
622 case EEH_OPT_DISABLE:
623 case EEH_OPT_ENABLE:
624 case EEH_OPT_FREEZE_PE:
625 active_flag = 0;
626 break;
627 default:
628 pr_warn("%s: Invalid function %d\n",
629 __func__, function);
630 return -EINVAL;
631 }
632
633 /*
634 * Check if IO or DMA has been enabled before
635 * enabling them.
636 */
637 if (active_flag) {
638 rc = eeh_ops->get_state(pe, NULL);
639 if (rc < 0)
640 return rc;
641
642 /* Needn't enable it at all */
643 if (rc == EEH_STATE_NOT_SUPPORT)
644 return 0;
645
646 /* It's already enabled */
647 if (rc & active_flag)
648 return 0;
649 }
650
651
652 /* Issue the request */
653 rc = eeh_ops->set_option(pe, function);
654 if (rc)
655 pr_warn("%s: Unexpected state change %d on "
656 "PHB#%x-PE#%x, err=%d\n",
657 __func__, function, pe->phb->global_number,
658 pe->addr, rc);
659
660 /* Check if the request is finished successfully */
661 if (active_flag) {
662 rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
663 if (rc < 0)
664 return rc;
665
666 if (rc & active_flag)
667 return 0;
668
669 return -EIO;
670 }
671
672 return rc;
673 }
674
eeh_disable_and_save_dev_state(struct eeh_dev * edev,void * userdata)675 static void eeh_disable_and_save_dev_state(struct eeh_dev *edev,
676 void *userdata)
677 {
678 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
679 struct pci_dev *dev = userdata;
680
681 /*
682 * The caller should have disabled and saved the
683 * state for the specified device
684 */
685 if (!pdev || pdev == dev)
686 return;
687
688 /* Ensure we have D0 power state */
689 pci_set_power_state(pdev, PCI_D0);
690
691 /* Save device state */
692 pci_save_state(pdev);
693
694 /*
695 * Disable device to avoid any DMA traffic and
696 * interrupt from the device
697 */
698 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
699 }
700
eeh_restore_dev_state(struct eeh_dev * edev,void * userdata)701 static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
702 {
703 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
704 struct pci_dev *dev = userdata;
705
706 if (!pdev)
707 return;
708
709 /* Apply customization from firmware */
710 if (eeh_ops->restore_config)
711 eeh_ops->restore_config(edev);
712
713 /* The caller should restore state for the specified device */
714 if (pdev != dev)
715 pci_restore_state(pdev);
716 }
717
718 /**
719 * pcibios_set_pcie_reset_state - Set PCI-E reset state
720 * @dev: pci device struct
721 * @state: reset state to enter
722 *
723 * Return value:
724 * 0 if success
725 */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)726 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
727 {
728 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
729 struct eeh_pe *pe = eeh_dev_to_pe(edev);
730
731 if (!pe) {
732 pr_err("%s: No PE found on PCI device %s\n",
733 __func__, pci_name(dev));
734 return -EINVAL;
735 }
736
737 switch (state) {
738 case pcie_deassert_reset:
739 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
740 eeh_unfreeze_pe(pe);
741 if (!(pe->type & EEH_PE_VF))
742 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
743 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
744 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
745 break;
746 case pcie_hot_reset:
747 eeh_pe_mark_isolated(pe);
748 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
749 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
750 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
751 if (!(pe->type & EEH_PE_VF))
752 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
753 eeh_ops->reset(pe, EEH_RESET_HOT);
754 break;
755 case pcie_warm_reset:
756 eeh_pe_mark_isolated(pe);
757 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
758 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
759 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
760 if (!(pe->type & EEH_PE_VF))
761 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
762 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
763 break;
764 default:
765 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
766 return -EINVAL;
767 }
768
769 return 0;
770 }
771
772 /**
773 * eeh_set_dev_freset - Check the required reset for the indicated device
774 * @edev: EEH device
775 * @flag: return value
776 *
777 * Each device might have its preferred reset type: fundamental or
778 * hot reset. The routine is used to collected the information for
779 * the indicated device and its children so that the bunch of the
780 * devices could be reset properly.
781 */
eeh_set_dev_freset(struct eeh_dev * edev,void * flag)782 static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
783 {
784 struct pci_dev *dev;
785 unsigned int *freset = (unsigned int *)flag;
786
787 dev = eeh_dev_to_pci_dev(edev);
788 if (dev)
789 *freset |= dev->needs_freset;
790 }
791
eeh_pe_refreeze_passed(struct eeh_pe * root)792 static void eeh_pe_refreeze_passed(struct eeh_pe *root)
793 {
794 struct eeh_pe *pe;
795 int state;
796
797 eeh_for_each_pe(root, pe) {
798 if (eeh_pe_passed(pe)) {
799 state = eeh_ops->get_state(pe, NULL);
800 if (state &
801 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
802 pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
803 pe->phb->global_number, pe->addr);
804 eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
805 }
806 }
807 }
808 }
809
810 /**
811 * eeh_pe_reset_full - Complete a full reset process on the indicated PE
812 * @pe: EEH PE
813 * @include_passed: include passed-through devices?
814 *
815 * This function executes a full reset procedure on a PE, including setting
816 * the appropriate flags, performing a fundamental or hot reset, and then
817 * deactivating the reset status. It is designed to be used within the EEH
818 * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
819 * only performs a single operation at a time.
820 *
821 * This function will attempt to reset a PE three times before failing.
822 */
eeh_pe_reset_full(struct eeh_pe * pe,bool include_passed)823 int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
824 {
825 int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
826 int type = EEH_RESET_HOT;
827 unsigned int freset = 0;
828 int i, state = 0, ret;
829
830 /*
831 * Determine the type of reset to perform - hot or fundamental.
832 * Hot reset is the default operation, unless any device under the
833 * PE requires a fundamental reset.
834 */
835 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
836
837 if (freset)
838 type = EEH_RESET_FUNDAMENTAL;
839
840 /* Mark the PE as in reset state and block config space accesses */
841 eeh_pe_state_mark(pe, reset_state);
842
843 /* Make three attempts at resetting the bus */
844 for (i = 0; i < 3; i++) {
845 ret = eeh_pe_reset(pe, type, include_passed);
846 if (!ret)
847 ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
848 include_passed);
849 if (ret) {
850 ret = -EIO;
851 pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
852 state, pe->phb->global_number, pe->addr, i + 1);
853 continue;
854 }
855 if (i)
856 pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
857 pe->phb->global_number, pe->addr, i + 1);
858
859 /* Wait until the PE is in a functioning state */
860 state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
861 if (state < 0) {
862 pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
863 pe->phb->global_number, pe->addr);
864 ret = -ENOTRECOVERABLE;
865 break;
866 }
867 if (eeh_state_active(state))
868 break;
869 else
870 pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
871 pe->phb->global_number, pe->addr, state, i + 1);
872 }
873
874 /* Resetting the PE may have unfrozen child PEs. If those PEs have been
875 * (potentially) passed through to a guest, re-freeze them:
876 */
877 if (!include_passed)
878 eeh_pe_refreeze_passed(pe);
879
880 eeh_pe_state_clear(pe, reset_state, true);
881 return ret;
882 }
883
884 /**
885 * eeh_save_bars - Save device bars
886 * @edev: PCI device associated EEH device
887 *
888 * Save the values of the device bars. Unlike the restore
889 * routine, this routine is *not* recursive. This is because
890 * PCI devices are added individually; but, for the restore,
891 * an entire slot is reset at a time.
892 */
eeh_save_bars(struct eeh_dev * edev)893 void eeh_save_bars(struct eeh_dev *edev)
894 {
895 int i;
896
897 if (!edev)
898 return;
899
900 for (i = 0; i < 16; i++)
901 eeh_ops->read_config(edev, i * 4, 4, &edev->config_space[i]);
902
903 /*
904 * For PCI bridges including root port, we need enable bus
905 * master explicitly. Otherwise, it can't fetch IODA table
906 * entries correctly. So we cache the bit in advance so that
907 * we can restore it after reset, either PHB range or PE range.
908 */
909 if (edev->mode & EEH_DEV_BRIDGE)
910 edev->config_space[1] |= PCI_COMMAND_MASTER;
911 }
912
eeh_reboot_notifier(struct notifier_block * nb,unsigned long action,void * unused)913 static int eeh_reboot_notifier(struct notifier_block *nb,
914 unsigned long action, void *unused)
915 {
916 eeh_clear_flag(EEH_ENABLED);
917 return NOTIFY_DONE;
918 }
919
920 static struct notifier_block eeh_reboot_nb = {
921 .notifier_call = eeh_reboot_notifier,
922 };
923
eeh_device_notifier(struct notifier_block * nb,unsigned long action,void * data)924 static int eeh_device_notifier(struct notifier_block *nb,
925 unsigned long action, void *data)
926 {
927 struct device *dev = data;
928
929 switch (action) {
930 /*
931 * Note: It's not possible to perform EEH device addition (i.e.
932 * {pseries,pnv}_pcibios_bus_add_device()) here because it depends on
933 * the device's resources, which have not yet been set up.
934 */
935 case BUS_NOTIFY_DEL_DEVICE:
936 eeh_remove_device(to_pci_dev(dev));
937 break;
938 default:
939 break;
940 }
941 return NOTIFY_DONE;
942 }
943
944 static struct notifier_block eeh_device_nb = {
945 .notifier_call = eeh_device_notifier,
946 };
947
948 /**
949 * eeh_init - System wide EEH initialization
950 * @ops: struct to trace EEH operation callback functions
951 *
952 * It's the platform's job to call this from an arch_initcall().
953 */
eeh_init(struct eeh_ops * ops)954 int eeh_init(struct eeh_ops *ops)
955 {
956 struct pci_controller *hose, *tmp;
957 int ret = 0;
958
959 /* the platform should only initialise EEH once */
960 if (WARN_ON(eeh_ops))
961 return -EEXIST;
962 if (WARN_ON(!ops))
963 return -ENOENT;
964 eeh_ops = ops;
965
966 /* Register reboot notifier */
967 ret = register_reboot_notifier(&eeh_reboot_nb);
968 if (ret) {
969 pr_warn("%s: Failed to register reboot notifier (%d)\n",
970 __func__, ret);
971 return ret;
972 }
973
974 ret = bus_register_notifier(&pci_bus_type, &eeh_device_nb);
975 if (ret) {
976 pr_warn("%s: Failed to register bus notifier (%d)\n",
977 __func__, ret);
978 return ret;
979 }
980
981 /* Initialize PHB PEs */
982 list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
983 eeh_phb_pe_create(hose);
984
985 eeh_addr_cache_init();
986
987 /* Initialize EEH event */
988 return eeh_event_init();
989 }
990
991 /**
992 * eeh_probe_device() - Perform EEH initialization for the indicated pci device
993 * @dev: pci device for which to set up EEH
994 *
995 * This routine must be used to complete EEH initialization for PCI
996 * devices that were added after system boot (e.g. hotplug, dlpar).
997 */
eeh_probe_device(struct pci_dev * dev)998 void eeh_probe_device(struct pci_dev *dev)
999 {
1000 struct eeh_dev *edev;
1001
1002 pr_debug("EEH: Adding device %s\n", pci_name(dev));
1003
1004 /*
1005 * pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was
1006 * already called for this device.
1007 */
1008 if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev))) {
1009 pci_dbg(dev, "Already bound to an eeh_dev!\n");
1010 return;
1011 }
1012
1013 edev = eeh_ops->probe(dev);
1014 if (!edev) {
1015 pr_debug("EEH: Adding device failed\n");
1016 return;
1017 }
1018
1019 /*
1020 * FIXME: We rely on pcibios_release_device() to remove the
1021 * existing EEH state. The release function is only called if
1022 * the pci_dev's refcount drops to zero so if something is
1023 * keeping a ref to a device (e.g. a filesystem) we need to
1024 * remove the old EEH state.
1025 *
1026 * FIXME: HEY MA, LOOK AT ME, NO LOCKING!
1027 */
1028 if (edev->pdev && edev->pdev != dev) {
1029 eeh_pe_tree_remove(edev);
1030 eeh_addr_cache_rmv_dev(edev->pdev);
1031 eeh_sysfs_remove_device(edev->pdev);
1032
1033 /*
1034 * We definitely should have the PCI device removed
1035 * though it wasn't correctly. So we needn't call
1036 * into error handler afterwards.
1037 */
1038 edev->mode |= EEH_DEV_NO_HANDLER;
1039 }
1040
1041 /* bind the pdev and the edev together */
1042 edev->pdev = dev;
1043 dev->dev.archdata.edev = edev;
1044 eeh_addr_cache_insert_dev(dev);
1045 eeh_sysfs_add_device(dev);
1046 }
1047
1048 /**
1049 * eeh_remove_device - Undo EEH setup for the indicated pci device
1050 * @dev: pci device to be removed
1051 *
1052 * This routine should be called when a device is removed from
1053 * a running system (e.g. by hotplug or dlpar). It unregisters
1054 * the PCI device from the EEH subsystem. I/O errors affecting
1055 * this device will no longer be detected after this call; thus,
1056 * i/o errors affecting this slot may leave this device unusable.
1057 */
eeh_remove_device(struct pci_dev * dev)1058 void eeh_remove_device(struct pci_dev *dev)
1059 {
1060 struct eeh_dev *edev;
1061
1062 if (!dev || !eeh_enabled())
1063 return;
1064 edev = pci_dev_to_eeh_dev(dev);
1065
1066 /* Unregister the device with the EEH/PCI address search system */
1067 dev_dbg(&dev->dev, "EEH: Removing device\n");
1068
1069 if (!edev || !edev->pdev || !edev->pe) {
1070 dev_dbg(&dev->dev, "EEH: Device not referenced!\n");
1071 return;
1072 }
1073
1074 /*
1075 * During the hotplug for EEH error recovery, we need the EEH
1076 * device attached to the parent PE in order for BAR restore
1077 * a bit later. So we keep it for BAR restore and remove it
1078 * from the parent PE during the BAR resotre.
1079 */
1080 edev->pdev = NULL;
1081
1082 /*
1083 * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
1084 * remove the sysfs files before clearing dev.archdata.edev
1085 */
1086 if (edev->mode & EEH_DEV_SYSFS)
1087 eeh_sysfs_remove_device(dev);
1088
1089 /*
1090 * We're removing from the PCI subsystem, that means
1091 * the PCI device driver can't support EEH or not
1092 * well. So we rely on hotplug completely to do recovery
1093 * for the specific PCI device.
1094 */
1095 edev->mode |= EEH_DEV_NO_HANDLER;
1096
1097 eeh_addr_cache_rmv_dev(dev);
1098
1099 /*
1100 * The flag "in_error" is used to trace EEH devices for VFs
1101 * in error state or not. It's set in eeh_report_error(). If
1102 * it's not set, eeh_report_{reset,resume}() won't be called
1103 * for the VF EEH device.
1104 */
1105 edev->in_error = false;
1106 dev->dev.archdata.edev = NULL;
1107 if (!(edev->pe->state & EEH_PE_KEEP))
1108 eeh_pe_tree_remove(edev);
1109 else
1110 edev->mode |= EEH_DEV_DISCONNECTED;
1111 }
1112
eeh_unfreeze_pe(struct eeh_pe * pe)1113 int eeh_unfreeze_pe(struct eeh_pe *pe)
1114 {
1115 int ret;
1116
1117 ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1118 if (ret) {
1119 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1120 __func__, ret, pe->phb->global_number, pe->addr);
1121 return ret;
1122 }
1123
1124 ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1125 if (ret) {
1126 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1127 __func__, ret, pe->phb->global_number, pe->addr);
1128 return ret;
1129 }
1130
1131 return ret;
1132 }
1133
1134
1135 static struct pci_device_id eeh_reset_ids[] = {
1136 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1137 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1138 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1139 { 0 }
1140 };
1141
eeh_pe_change_owner(struct eeh_pe * pe)1142 static int eeh_pe_change_owner(struct eeh_pe *pe)
1143 {
1144 struct eeh_dev *edev, *tmp;
1145 struct pci_dev *pdev;
1146 struct pci_device_id *id;
1147 int ret;
1148
1149 /* Check PE state */
1150 ret = eeh_ops->get_state(pe, NULL);
1151 if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1152 return 0;
1153
1154 /* Unfrozen PE, nothing to do */
1155 if (eeh_state_active(ret))
1156 return 0;
1157
1158 /* Frozen PE, check if it needs PE level reset */
1159 eeh_pe_for_each_dev(pe, edev, tmp) {
1160 pdev = eeh_dev_to_pci_dev(edev);
1161 if (!pdev)
1162 continue;
1163
1164 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1165 if (id->vendor != PCI_ANY_ID &&
1166 id->vendor != pdev->vendor)
1167 continue;
1168 if (id->device != PCI_ANY_ID &&
1169 id->device != pdev->device)
1170 continue;
1171 if (id->subvendor != PCI_ANY_ID &&
1172 id->subvendor != pdev->subsystem_vendor)
1173 continue;
1174 if (id->subdevice != PCI_ANY_ID &&
1175 id->subdevice != pdev->subsystem_device)
1176 continue;
1177
1178 return eeh_pe_reset_and_recover(pe);
1179 }
1180 }
1181
1182 ret = eeh_unfreeze_pe(pe);
1183 if (!ret)
1184 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1185 return ret;
1186 }
1187
1188 /**
1189 * eeh_dev_open - Increase count of pass through devices for PE
1190 * @pdev: PCI device
1191 *
1192 * Increase count of passed through devices for the indicated
1193 * PE. In the result, the EEH errors detected on the PE won't be
1194 * reported. The PE owner will be responsible for detection
1195 * and recovery.
1196 */
eeh_dev_open(struct pci_dev * pdev)1197 int eeh_dev_open(struct pci_dev *pdev)
1198 {
1199 struct eeh_dev *edev;
1200 int ret = -ENODEV;
1201
1202 mutex_lock(&eeh_dev_mutex);
1203
1204 /* No PCI device ? */
1205 if (!pdev)
1206 goto out;
1207
1208 /* No EEH device or PE ? */
1209 edev = pci_dev_to_eeh_dev(pdev);
1210 if (!edev || !edev->pe)
1211 goto out;
1212
1213 /*
1214 * The PE might have been put into frozen state, but we
1215 * didn't detect that yet. The passed through PCI devices
1216 * in frozen PE won't work properly. Clear the frozen state
1217 * in advance.
1218 */
1219 ret = eeh_pe_change_owner(edev->pe);
1220 if (ret)
1221 goto out;
1222
1223 /* Increase PE's pass through count */
1224 atomic_inc(&edev->pe->pass_dev_cnt);
1225 mutex_unlock(&eeh_dev_mutex);
1226
1227 return 0;
1228 out:
1229 mutex_unlock(&eeh_dev_mutex);
1230 return ret;
1231 }
1232 EXPORT_SYMBOL_GPL(eeh_dev_open);
1233
1234 /**
1235 * eeh_dev_release - Decrease count of pass through devices for PE
1236 * @pdev: PCI device
1237 *
1238 * Decrease count of pass through devices for the indicated PE. If
1239 * there is no passed through device in PE, the EEH errors detected
1240 * on the PE will be reported and handled as usual.
1241 */
eeh_dev_release(struct pci_dev * pdev)1242 void eeh_dev_release(struct pci_dev *pdev)
1243 {
1244 struct eeh_dev *edev;
1245
1246 mutex_lock(&eeh_dev_mutex);
1247
1248 /* No PCI device ? */
1249 if (!pdev)
1250 goto out;
1251
1252 /* No EEH device ? */
1253 edev = pci_dev_to_eeh_dev(pdev);
1254 if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1255 goto out;
1256
1257 /* Decrease PE's pass through count */
1258 WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1259 eeh_pe_change_owner(edev->pe);
1260 out:
1261 mutex_unlock(&eeh_dev_mutex);
1262 }
1263 EXPORT_SYMBOL(eeh_dev_release);
1264
1265 #ifdef CONFIG_IOMMU_API
1266
dev_has_iommu_table(struct device * dev,void * data)1267 static int dev_has_iommu_table(struct device *dev, void *data)
1268 {
1269 struct pci_dev *pdev = to_pci_dev(dev);
1270 struct pci_dev **ppdev = data;
1271
1272 if (!dev)
1273 return 0;
1274
1275 if (device_iommu_mapped(dev)) {
1276 *ppdev = pdev;
1277 return 1;
1278 }
1279
1280 return 0;
1281 }
1282
1283 /**
1284 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1285 * @group: IOMMU group
1286 *
1287 * The routine is called to convert IOMMU group to EEH PE.
1288 */
eeh_iommu_group_to_pe(struct iommu_group * group)1289 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1290 {
1291 struct pci_dev *pdev = NULL;
1292 struct eeh_dev *edev;
1293 int ret;
1294
1295 /* No IOMMU group ? */
1296 if (!group)
1297 return NULL;
1298
1299 ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1300 if (!ret || !pdev)
1301 return NULL;
1302
1303 /* No EEH device or PE ? */
1304 edev = pci_dev_to_eeh_dev(pdev);
1305 if (!edev || !edev->pe)
1306 return NULL;
1307
1308 return edev->pe;
1309 }
1310 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1311
1312 #endif /* CONFIG_IOMMU_API */
1313
1314 /**
1315 * eeh_pe_set_option - Set options for the indicated PE
1316 * @pe: EEH PE
1317 * @option: requested option
1318 *
1319 * The routine is called to enable or disable EEH functionality
1320 * on the indicated PE, to enable IO or DMA for the frozen PE.
1321 */
eeh_pe_set_option(struct eeh_pe * pe,int option)1322 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1323 {
1324 int ret = 0;
1325
1326 /* Invalid PE ? */
1327 if (!pe)
1328 return -ENODEV;
1329
1330 /*
1331 * EEH functionality could possibly be disabled, just
1332 * return error for the case. And the EEH functionality
1333 * isn't expected to be disabled on one specific PE.
1334 */
1335 switch (option) {
1336 case EEH_OPT_ENABLE:
1337 if (eeh_enabled()) {
1338 ret = eeh_pe_change_owner(pe);
1339 break;
1340 }
1341 ret = -EIO;
1342 break;
1343 case EEH_OPT_DISABLE:
1344 break;
1345 case EEH_OPT_THAW_MMIO:
1346 case EEH_OPT_THAW_DMA:
1347 case EEH_OPT_FREEZE_PE:
1348 if (!eeh_ops || !eeh_ops->set_option) {
1349 ret = -ENOENT;
1350 break;
1351 }
1352
1353 ret = eeh_pci_enable(pe, option);
1354 break;
1355 default:
1356 pr_debug("%s: Option %d out of range (%d, %d)\n",
1357 __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1358 ret = -EINVAL;
1359 }
1360
1361 return ret;
1362 }
1363 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1364
1365 /**
1366 * eeh_pe_get_state - Retrieve PE's state
1367 * @pe: EEH PE
1368 *
1369 * Retrieve the PE's state, which includes 3 aspects: enabled
1370 * DMA, enabled IO and asserted reset.
1371 */
eeh_pe_get_state(struct eeh_pe * pe)1372 int eeh_pe_get_state(struct eeh_pe *pe)
1373 {
1374 int result, ret = 0;
1375 bool rst_active, dma_en, mmio_en;
1376
1377 /* Existing PE ? */
1378 if (!pe)
1379 return -ENODEV;
1380
1381 if (!eeh_ops || !eeh_ops->get_state)
1382 return -ENOENT;
1383
1384 /*
1385 * If the parent PE is owned by the host kernel and is undergoing
1386 * error recovery, we should return the PE state as temporarily
1387 * unavailable so that the error recovery on the guest is suspended
1388 * until the recovery completes on the host.
1389 */
1390 if (pe->parent &&
1391 !(pe->state & EEH_PE_REMOVED) &&
1392 (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1393 return EEH_PE_STATE_UNAVAIL;
1394
1395 result = eeh_ops->get_state(pe, NULL);
1396 rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1397 dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1398 mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1399
1400 if (rst_active)
1401 ret = EEH_PE_STATE_RESET;
1402 else if (dma_en && mmio_en)
1403 ret = EEH_PE_STATE_NORMAL;
1404 else if (!dma_en && !mmio_en)
1405 ret = EEH_PE_STATE_STOPPED_IO_DMA;
1406 else if (!dma_en && mmio_en)
1407 ret = EEH_PE_STATE_STOPPED_DMA;
1408 else
1409 ret = EEH_PE_STATE_UNAVAIL;
1410
1411 return ret;
1412 }
1413 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1414
eeh_pe_reenable_devices(struct eeh_pe * pe,bool include_passed)1415 static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1416 {
1417 struct eeh_dev *edev, *tmp;
1418 struct pci_dev *pdev;
1419 int ret = 0;
1420
1421 eeh_pe_restore_bars(pe);
1422
1423 /*
1424 * Reenable PCI devices as the devices passed
1425 * through are always enabled before the reset.
1426 */
1427 eeh_pe_for_each_dev(pe, edev, tmp) {
1428 pdev = eeh_dev_to_pci_dev(edev);
1429 if (!pdev)
1430 continue;
1431
1432 ret = pci_reenable_device(pdev);
1433 if (ret) {
1434 pr_warn("%s: Failure %d reenabling %s\n",
1435 __func__, ret, pci_name(pdev));
1436 return ret;
1437 }
1438 }
1439
1440 /* The PE is still in frozen state */
1441 if (include_passed || !eeh_pe_passed(pe)) {
1442 ret = eeh_unfreeze_pe(pe);
1443 } else
1444 pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1445 pe->phb->global_number, pe->addr);
1446 if (!ret)
1447 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1448 return ret;
1449 }
1450
1451
1452 /**
1453 * eeh_pe_reset - Issue PE reset according to specified type
1454 * @pe: EEH PE
1455 * @option: reset type
1456 * @include_passed: include passed-through devices?
1457 *
1458 * The routine is called to reset the specified PE with the
1459 * indicated type, either fundamental reset or hot reset.
1460 * PE reset is the most important part for error recovery.
1461 */
eeh_pe_reset(struct eeh_pe * pe,int option,bool include_passed)1462 int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1463 {
1464 int ret = 0;
1465
1466 /* Invalid PE ? */
1467 if (!pe)
1468 return -ENODEV;
1469
1470 if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1471 return -ENOENT;
1472
1473 switch (option) {
1474 case EEH_RESET_DEACTIVATE:
1475 ret = eeh_ops->reset(pe, option);
1476 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1477 if (ret)
1478 break;
1479
1480 ret = eeh_pe_reenable_devices(pe, include_passed);
1481 break;
1482 case EEH_RESET_HOT:
1483 case EEH_RESET_FUNDAMENTAL:
1484 /*
1485 * Proactively freeze the PE to drop all MMIO access
1486 * during reset, which should be banned as it's always
1487 * cause recursive EEH error.
1488 */
1489 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1490
1491 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1492 ret = eeh_ops->reset(pe, option);
1493 break;
1494 default:
1495 pr_debug("%s: Unsupported option %d\n",
1496 __func__, option);
1497 ret = -EINVAL;
1498 }
1499
1500 return ret;
1501 }
1502 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1503
1504 /**
1505 * eeh_pe_configure - Configure PCI bridges after PE reset
1506 * @pe: EEH PE
1507 *
1508 * The routine is called to restore the PCI config space for
1509 * those PCI devices, especially PCI bridges affected by PE
1510 * reset issued previously.
1511 */
eeh_pe_configure(struct eeh_pe * pe)1512 int eeh_pe_configure(struct eeh_pe *pe)
1513 {
1514 int ret = 0;
1515
1516 /* Invalid PE ? */
1517 if (!pe)
1518 return -ENODEV;
1519
1520 return ret;
1521 }
1522 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1523
1524 /**
1525 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1526 * @pe: the indicated PE
1527 * @type: error type
1528 * @func: error function
1529 * @addr: address
1530 * @mask: address mask
1531 *
1532 * The routine is called to inject the specified PCI error, which
1533 * is determined by @type and @func, to the indicated PE for
1534 * testing purpose.
1535 */
eeh_pe_inject_err(struct eeh_pe * pe,int type,int func,unsigned long addr,unsigned long mask)1536 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1537 unsigned long addr, unsigned long mask)
1538 {
1539 /* Invalid PE ? */
1540 if (!pe)
1541 return -ENODEV;
1542
1543 /* Unsupported operation ? */
1544 if (!eeh_ops || !eeh_ops->err_inject)
1545 return -ENOENT;
1546
1547 /* Check on PCI error type */
1548 if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1549 return -EINVAL;
1550
1551 /* Check on PCI error function */
1552 if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1553 return -EINVAL;
1554
1555 return eeh_ops->err_inject(pe, type, func, addr, mask);
1556 }
1557 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1558
1559 #ifdef CONFIG_PROC_FS
proc_eeh_show(struct seq_file * m,void * v)1560 static int proc_eeh_show(struct seq_file *m, void *v)
1561 {
1562 if (!eeh_enabled()) {
1563 seq_printf(m, "EEH Subsystem is globally disabled\n");
1564 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1565 } else {
1566 seq_printf(m, "EEH Subsystem is enabled\n");
1567 seq_printf(m,
1568 "no device=%llu\n"
1569 "no device node=%llu\n"
1570 "no config address=%llu\n"
1571 "check not wanted=%llu\n"
1572 "eeh_total_mmio_ffs=%llu\n"
1573 "eeh_false_positives=%llu\n"
1574 "eeh_slot_resets=%llu\n",
1575 eeh_stats.no_device,
1576 eeh_stats.no_dn,
1577 eeh_stats.no_cfg_addr,
1578 eeh_stats.ignored_check,
1579 eeh_stats.total_mmio_ffs,
1580 eeh_stats.false_positives,
1581 eeh_stats.slot_resets);
1582 }
1583
1584 return 0;
1585 }
1586 #endif /* CONFIG_PROC_FS */
1587
1588 #ifdef CONFIG_DEBUG_FS
1589
1590
eeh_debug_lookup_pdev(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1591 static struct pci_dev *eeh_debug_lookup_pdev(struct file *filp,
1592 const char __user *user_buf,
1593 size_t count, loff_t *ppos)
1594 {
1595 uint32_t domain, bus, dev, fn;
1596 struct pci_dev *pdev;
1597 char buf[20];
1598 int ret;
1599
1600 memset(buf, 0, sizeof(buf));
1601 ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1602 if (!ret)
1603 return ERR_PTR(-EFAULT);
1604
1605 ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1606 if (ret != 4) {
1607 pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1608 return ERR_PTR(-EINVAL);
1609 }
1610
1611 pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1612 if (!pdev)
1613 return ERR_PTR(-ENODEV);
1614
1615 return pdev;
1616 }
1617
eeh_enable_dbgfs_set(void * data,u64 val)1618 static int eeh_enable_dbgfs_set(void *data, u64 val)
1619 {
1620 if (val)
1621 eeh_clear_flag(EEH_FORCE_DISABLED);
1622 else
1623 eeh_add_flag(EEH_FORCE_DISABLED);
1624
1625 return 0;
1626 }
1627
eeh_enable_dbgfs_get(void * data,u64 * val)1628 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1629 {
1630 if (eeh_enabled())
1631 *val = 0x1ul;
1632 else
1633 *val = 0x0ul;
1634 return 0;
1635 }
1636
1637 DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1638 eeh_enable_dbgfs_set, "0x%llx\n");
1639
eeh_force_recover_write(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1640 static ssize_t eeh_force_recover_write(struct file *filp,
1641 const char __user *user_buf,
1642 size_t count, loff_t *ppos)
1643 {
1644 struct pci_controller *hose;
1645 uint32_t phbid, pe_no;
1646 struct eeh_pe *pe;
1647 char buf[20];
1648 int ret;
1649
1650 ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1651 if (!ret)
1652 return -EFAULT;
1653
1654 /*
1655 * When PE is NULL the event is a "special" event. Rather than
1656 * recovering a specific PE it forces the EEH core to scan for failed
1657 * PHBs and recovers each. This needs to be done before any device
1658 * recoveries can occur.
1659 */
1660 if (!strncmp(buf, "hwcheck", 7)) {
1661 __eeh_send_failure_event(NULL);
1662 return count;
1663 }
1664
1665 ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1666 if (ret != 2)
1667 return -EINVAL;
1668
1669 hose = pci_find_controller_for_domain(phbid);
1670 if (!hose)
1671 return -ENODEV;
1672
1673 /* Retrieve PE */
1674 pe = eeh_pe_get(hose, pe_no);
1675 if (!pe)
1676 return -ENODEV;
1677
1678 /*
1679 * We don't do any state checking here since the detection
1680 * process is async to the recovery process. The recovery
1681 * thread *should* not break even if we schedule a recovery
1682 * from an odd state (e.g. PE removed, or recovery of a
1683 * non-isolated PE)
1684 */
1685 __eeh_send_failure_event(pe);
1686
1687 return ret < 0 ? ret : count;
1688 }
1689
1690 static const struct file_operations eeh_force_recover_fops = {
1691 .open = simple_open,
1692 .llseek = no_llseek,
1693 .write = eeh_force_recover_write,
1694 };
1695
eeh_debugfs_dev_usage(struct file * filp,char __user * user_buf,size_t count,loff_t * ppos)1696 static ssize_t eeh_debugfs_dev_usage(struct file *filp,
1697 char __user *user_buf,
1698 size_t count, loff_t *ppos)
1699 {
1700 static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
1701
1702 return simple_read_from_buffer(user_buf, count, ppos,
1703 usage, sizeof(usage) - 1);
1704 }
1705
eeh_dev_check_write(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1706 static ssize_t eeh_dev_check_write(struct file *filp,
1707 const char __user *user_buf,
1708 size_t count, loff_t *ppos)
1709 {
1710 struct pci_dev *pdev;
1711 struct eeh_dev *edev;
1712 int ret;
1713
1714 pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1715 if (IS_ERR(pdev))
1716 return PTR_ERR(pdev);
1717
1718 edev = pci_dev_to_eeh_dev(pdev);
1719 if (!edev) {
1720 pci_err(pdev, "No eeh_dev for this device!\n");
1721 pci_dev_put(pdev);
1722 return -ENODEV;
1723 }
1724
1725 ret = eeh_dev_check_failure(edev);
1726 pci_info(pdev, "eeh_dev_check_failure(%s) = %d\n",
1727 pci_name(pdev), ret);
1728
1729 pci_dev_put(pdev);
1730
1731 return count;
1732 }
1733
1734 static const struct file_operations eeh_dev_check_fops = {
1735 .open = simple_open,
1736 .llseek = no_llseek,
1737 .write = eeh_dev_check_write,
1738 .read = eeh_debugfs_dev_usage,
1739 };
1740
eeh_debugfs_break_device(struct pci_dev * pdev)1741 static int eeh_debugfs_break_device(struct pci_dev *pdev)
1742 {
1743 struct resource *bar = NULL;
1744 void __iomem *mapped;
1745 u16 old, bit;
1746 int i, pos;
1747
1748 /* Do we have an MMIO BAR to disable? */
1749 for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
1750 struct resource *r = &pdev->resource[i];
1751
1752 if (!r->flags || !r->start)
1753 continue;
1754 if (r->flags & IORESOURCE_IO)
1755 continue;
1756 if (r->flags & IORESOURCE_UNSET)
1757 continue;
1758
1759 bar = r;
1760 break;
1761 }
1762
1763 if (!bar) {
1764 pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n");
1765 return -ENXIO;
1766 }
1767
1768 pci_err(pdev, "Going to break: %pR\n", bar);
1769
1770 if (pdev->is_virtfn) {
1771 #ifndef CONFIG_PCI_IOV
1772 return -ENXIO;
1773 #else
1774 /*
1775 * VFs don't have a per-function COMMAND register, so the best
1776 * we can do is clear the Memory Space Enable bit in the PF's
1777 * SRIOV control reg.
1778 *
1779 * Unfortunately, this requires that we have a PF (i.e doesn't
1780 * work for a passed-through VF) and it has the potential side
1781 * effect of also causing an EEH on every other VF under the
1782 * PF. Oh well.
1783 */
1784 pdev = pdev->physfn;
1785 if (!pdev)
1786 return -ENXIO; /* passed through VFs have no PF */
1787
1788 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1789 pos += PCI_SRIOV_CTRL;
1790 bit = PCI_SRIOV_CTRL_MSE;
1791 #endif /* !CONFIG_PCI_IOV */
1792 } else {
1793 bit = PCI_COMMAND_MEMORY;
1794 pos = PCI_COMMAND;
1795 }
1796
1797 /*
1798 * Process here is:
1799 *
1800 * 1. Disable Memory space.
1801 *
1802 * 2. Perform an MMIO to the device. This should result in an error
1803 * (CA / UR) being raised by the device which results in an EEH
1804 * PE freeze. Using the in_8() accessor skips the eeh detection hook
1805 * so the freeze hook so the EEH Detection machinery won't be
1806 * triggered here. This is to match the usual behaviour of EEH
1807 * where the HW will asynchronously freeze a PE and it's up to
1808 * the kernel to notice and deal with it.
1809 *
1810 * 3. Turn Memory space back on. This is more important for VFs
1811 * since recovery will probably fail if we don't. For normal
1812 * the COMMAND register is reset as a part of re-initialising
1813 * the device.
1814 *
1815 * Breaking stuff is the point so who cares if it's racy ;)
1816 */
1817 pci_read_config_word(pdev, pos, &old);
1818
1819 mapped = ioremap(bar->start, PAGE_SIZE);
1820 if (!mapped) {
1821 pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar);
1822 return -ENXIO;
1823 }
1824
1825 pci_write_config_word(pdev, pos, old & ~bit);
1826 in_8(mapped);
1827 pci_write_config_word(pdev, pos, old);
1828
1829 iounmap(mapped);
1830
1831 return 0;
1832 }
1833
eeh_dev_break_write(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1834 static ssize_t eeh_dev_break_write(struct file *filp,
1835 const char __user *user_buf,
1836 size_t count, loff_t *ppos)
1837 {
1838 struct pci_dev *pdev;
1839 int ret;
1840
1841 pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1842 if (IS_ERR(pdev))
1843 return PTR_ERR(pdev);
1844
1845 ret = eeh_debugfs_break_device(pdev);
1846 pci_dev_put(pdev);
1847
1848 if (ret < 0)
1849 return ret;
1850
1851 return count;
1852 }
1853
1854 static const struct file_operations eeh_dev_break_fops = {
1855 .open = simple_open,
1856 .llseek = no_llseek,
1857 .write = eeh_dev_break_write,
1858 .read = eeh_debugfs_dev_usage,
1859 };
1860
eeh_dev_can_recover(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1861 static ssize_t eeh_dev_can_recover(struct file *filp,
1862 const char __user *user_buf,
1863 size_t count, loff_t *ppos)
1864 {
1865 struct pci_driver *drv;
1866 struct pci_dev *pdev;
1867 size_t ret;
1868
1869 pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1870 if (IS_ERR(pdev))
1871 return PTR_ERR(pdev);
1872
1873 /*
1874 * In order for error recovery to work the driver needs to implement
1875 * .error_detected(), so it can quiesce IO to the device, and
1876 * .slot_reset() so it can re-initialise the device after a reset.
1877 *
1878 * Ideally they'd implement .resume() too, but some drivers which
1879 * we need to support (notably IPR) don't so I guess we can tolerate
1880 * that.
1881 *
1882 * .mmio_enabled() is mostly there as a work-around for devices which
1883 * take forever to re-init after a hot reset. Implementing that is
1884 * strictly optional.
1885 */
1886 drv = pci_dev_driver(pdev);
1887 if (drv &&
1888 drv->err_handler &&
1889 drv->err_handler->error_detected &&
1890 drv->err_handler->slot_reset) {
1891 ret = count;
1892 } else {
1893 ret = -EOPNOTSUPP;
1894 }
1895
1896 pci_dev_put(pdev);
1897
1898 return ret;
1899 }
1900
1901 static const struct file_operations eeh_dev_can_recover_fops = {
1902 .open = simple_open,
1903 .llseek = no_llseek,
1904 .write = eeh_dev_can_recover,
1905 .read = eeh_debugfs_dev_usage,
1906 };
1907
1908 #endif
1909
eeh_init_proc(void)1910 static int __init eeh_init_proc(void)
1911 {
1912 if (machine_is(pseries) || machine_is(powernv)) {
1913 proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1914 #ifdef CONFIG_DEBUG_FS
1915 debugfs_create_file_unsafe("eeh_enable", 0600,
1916 arch_debugfs_dir, NULL,
1917 &eeh_enable_dbgfs_ops);
1918 debugfs_create_u32("eeh_max_freezes", 0600,
1919 arch_debugfs_dir, &eeh_max_freezes);
1920 debugfs_create_bool("eeh_disable_recovery", 0600,
1921 arch_debugfs_dir,
1922 &eeh_debugfs_no_recover);
1923 debugfs_create_file_unsafe("eeh_dev_check", 0600,
1924 arch_debugfs_dir, NULL,
1925 &eeh_dev_check_fops);
1926 debugfs_create_file_unsafe("eeh_dev_break", 0600,
1927 arch_debugfs_dir, NULL,
1928 &eeh_dev_break_fops);
1929 debugfs_create_file_unsafe("eeh_force_recover", 0600,
1930 arch_debugfs_dir, NULL,
1931 &eeh_force_recover_fops);
1932 debugfs_create_file_unsafe("eeh_dev_can_recover", 0600,
1933 arch_debugfs_dir, NULL,
1934 &eeh_dev_can_recover_fops);
1935 eeh_cache_debugfs_init();
1936 #endif
1937 }
1938
1939 return 0;
1940 }
1941 __initcall(eeh_init_proc);
1942