1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Processor cache information made available to userspace via sysfs; 4 * intended to be compatible with x86 intel_cacheinfo implementation. 5 * 6 * Copyright 2008 IBM Corporation 7 * Author: Nathan Lynch 8 */ 9 10 #define pr_fmt(fmt) "cacheinfo: " fmt 11 12 #include <linux/cpu.h> 13 #include <linux/cpumask.h> 14 #include <linux/kernel.h> 15 #include <linux/kobject.h> 16 #include <linux/list.h> 17 #include <linux/notifier.h> 18 #include <linux/of.h> 19 #include <linux/percpu.h> 20 #include <linux/slab.h> 21 #include <asm/prom.h> 22 #include <asm/cputhreads.h> 23 #include <asm/smp.h> 24 25 #include "cacheinfo.h" 26 27 /* per-cpu object for tracking: 28 * - a "cache" kobject for the top-level directory 29 * - a list of "index" objects representing the cpu's local cache hierarchy 30 */ 31 struct cache_dir { 32 struct kobject *kobj; /* bare (not embedded) kobject for cache 33 * directory */ 34 struct cache_index_dir *index; /* list of index objects */ 35 }; 36 37 /* "index" object: each cpu's cache directory has an index 38 * subdirectory corresponding to a cache object associated with the 39 * cpu. This object's lifetime is managed via the embedded kobject. 40 */ 41 struct cache_index_dir { 42 struct kobject kobj; 43 struct cache_index_dir *next; /* next index in parent directory */ 44 struct cache *cache; 45 }; 46 47 /* Template for determining which OF properties to query for a given 48 * cache type */ 49 struct cache_type_info { 50 const char *name; 51 const char *size_prop; 52 53 /* Allow for both [di]-cache-line-size and 54 * [di]-cache-block-size properties. According to the PowerPC 55 * Processor binding, -line-size should be provided if it 56 * differs from the cache block size (that which is operated 57 * on by cache instructions), so we look for -line-size first. 58 * See cache_get_line_size(). */ 59 60 const char *line_size_props[2]; 61 const char *nr_sets_prop; 62 }; 63 64 /* These are used to index the cache_type_info array. */ 65 #define CACHE_TYPE_UNIFIED 0 /* cache-size, cache-block-size, etc. */ 66 #define CACHE_TYPE_UNIFIED_D 1 /* d-cache-size, d-cache-block-size, etc */ 67 #define CACHE_TYPE_INSTRUCTION 2 68 #define CACHE_TYPE_DATA 3 69 70 static const struct cache_type_info cache_type_info[] = { 71 { 72 /* Embedded systems that use cache-size, cache-block-size, 73 * etc. for the Unified (typically L2) cache. */ 74 .name = "Unified", 75 .size_prop = "cache-size", 76 .line_size_props = { "cache-line-size", 77 "cache-block-size", }, 78 .nr_sets_prop = "cache-sets", 79 }, 80 { 81 /* PowerPC Processor binding says the [di]-cache-* 82 * must be equal on unified caches, so just use 83 * d-cache properties. */ 84 .name = "Unified", 85 .size_prop = "d-cache-size", 86 .line_size_props = { "d-cache-line-size", 87 "d-cache-block-size", }, 88 .nr_sets_prop = "d-cache-sets", 89 }, 90 { 91 .name = "Instruction", 92 .size_prop = "i-cache-size", 93 .line_size_props = { "i-cache-line-size", 94 "i-cache-block-size", }, 95 .nr_sets_prop = "i-cache-sets", 96 }, 97 { 98 .name = "Data", 99 .size_prop = "d-cache-size", 100 .line_size_props = { "d-cache-line-size", 101 "d-cache-block-size", }, 102 .nr_sets_prop = "d-cache-sets", 103 }, 104 }; 105 106 /* Cache object: each instance of this corresponds to a distinct cache 107 * in the system. There are separate objects for Harvard caches: one 108 * each for instruction and data, and each refers to the same OF node. 109 * The refcount of the OF node is elevated for the lifetime of the 110 * cache object. A cache object is released when its shared_cpu_map 111 * is cleared (see cache_cpu_clear). 112 * 113 * A cache object is on two lists: an unsorted global list 114 * (cache_list) of cache objects; and a singly-linked list 115 * representing the local cache hierarchy, which is ordered by level 116 * (e.g. L1d -> L1i -> L2 -> L3). 117 */ 118 struct cache { 119 struct device_node *ofnode; /* OF node for this cache, may be cpu */ 120 struct cpumask shared_cpu_map; /* online CPUs using this cache */ 121 int type; /* split cache disambiguation */ 122 int level; /* level not explicit in device tree */ 123 int group_id; /* id of the group of threads that share this cache */ 124 struct list_head list; /* global list of cache objects */ 125 struct cache *next_local; /* next cache of >= level */ 126 }; 127 128 static DEFINE_PER_CPU(struct cache_dir *, cache_dir_pcpu); 129 130 /* traversal/modification of this list occurs only at cpu hotplug time; 131 * access is serialized by cpu hotplug locking 132 */ 133 static LIST_HEAD(cache_list); 134 135 static struct cache_index_dir *kobj_to_cache_index_dir(struct kobject *k) 136 { 137 return container_of(k, struct cache_index_dir, kobj); 138 } 139 140 static const char *cache_type_string(const struct cache *cache) 141 { 142 return cache_type_info[cache->type].name; 143 } 144 145 static void cache_init(struct cache *cache, int type, int level, 146 struct device_node *ofnode, int group_id) 147 { 148 cache->type = type; 149 cache->level = level; 150 cache->ofnode = of_node_get(ofnode); 151 cache->group_id = group_id; 152 INIT_LIST_HEAD(&cache->list); 153 list_add(&cache->list, &cache_list); 154 } 155 156 static struct cache *new_cache(int type, int level, 157 struct device_node *ofnode, int group_id) 158 { 159 struct cache *cache; 160 161 cache = kzalloc(sizeof(*cache), GFP_KERNEL); 162 if (cache) 163 cache_init(cache, type, level, ofnode, group_id); 164 165 return cache; 166 } 167 168 static void release_cache_debugcheck(struct cache *cache) 169 { 170 struct cache *iter; 171 172 list_for_each_entry(iter, &cache_list, list) 173 WARN_ONCE(iter->next_local == cache, 174 "cache for %pOFP(%s) refers to cache for %pOFP(%s)\n", 175 iter->ofnode, 176 cache_type_string(iter), 177 cache->ofnode, 178 cache_type_string(cache)); 179 } 180 181 static void release_cache(struct cache *cache) 182 { 183 if (!cache) 184 return; 185 186 pr_debug("freeing L%d %s cache for %pOFP\n", cache->level, 187 cache_type_string(cache), cache->ofnode); 188 189 release_cache_debugcheck(cache); 190 list_del(&cache->list); 191 of_node_put(cache->ofnode); 192 kfree(cache); 193 } 194 195 static void cache_cpu_set(struct cache *cache, int cpu) 196 { 197 struct cache *next = cache; 198 199 while (next) { 200 WARN_ONCE(cpumask_test_cpu(cpu, &next->shared_cpu_map), 201 "CPU %i already accounted in %pOFP(%s)\n", 202 cpu, next->ofnode, 203 cache_type_string(next)); 204 cpumask_set_cpu(cpu, &next->shared_cpu_map); 205 next = next->next_local; 206 } 207 } 208 209 static int cache_size(const struct cache *cache, unsigned int *ret) 210 { 211 const char *propname; 212 const __be32 *cache_size; 213 214 propname = cache_type_info[cache->type].size_prop; 215 216 cache_size = of_get_property(cache->ofnode, propname, NULL); 217 if (!cache_size) 218 return -ENODEV; 219 220 *ret = of_read_number(cache_size, 1); 221 return 0; 222 } 223 224 static int cache_size_kb(const struct cache *cache, unsigned int *ret) 225 { 226 unsigned int size; 227 228 if (cache_size(cache, &size)) 229 return -ENODEV; 230 231 *ret = size / 1024; 232 return 0; 233 } 234 235 /* not cache_line_size() because that's a macro in include/linux/cache.h */ 236 static int cache_get_line_size(const struct cache *cache, unsigned int *ret) 237 { 238 const __be32 *line_size; 239 int i, lim; 240 241 lim = ARRAY_SIZE(cache_type_info[cache->type].line_size_props); 242 243 for (i = 0; i < lim; i++) { 244 const char *propname; 245 246 propname = cache_type_info[cache->type].line_size_props[i]; 247 line_size = of_get_property(cache->ofnode, propname, NULL); 248 if (line_size) 249 break; 250 } 251 252 if (!line_size) 253 return -ENODEV; 254 255 *ret = of_read_number(line_size, 1); 256 return 0; 257 } 258 259 static int cache_nr_sets(const struct cache *cache, unsigned int *ret) 260 { 261 const char *propname; 262 const __be32 *nr_sets; 263 264 propname = cache_type_info[cache->type].nr_sets_prop; 265 266 nr_sets = of_get_property(cache->ofnode, propname, NULL); 267 if (!nr_sets) 268 return -ENODEV; 269 270 *ret = of_read_number(nr_sets, 1); 271 return 0; 272 } 273 274 static int cache_associativity(const struct cache *cache, unsigned int *ret) 275 { 276 unsigned int line_size; 277 unsigned int nr_sets; 278 unsigned int size; 279 280 if (cache_nr_sets(cache, &nr_sets)) 281 goto err; 282 283 /* If the cache is fully associative, there is no need to 284 * check the other properties. 285 */ 286 if (nr_sets == 1) { 287 *ret = 0; 288 return 0; 289 } 290 291 if (cache_get_line_size(cache, &line_size)) 292 goto err; 293 if (cache_size(cache, &size)) 294 goto err; 295 296 if (!(nr_sets > 0 && size > 0 && line_size > 0)) 297 goto err; 298 299 *ret = (size / nr_sets) / line_size; 300 return 0; 301 err: 302 return -ENODEV; 303 } 304 305 /* helper for dealing with split caches */ 306 static struct cache *cache_find_first_sibling(struct cache *cache) 307 { 308 struct cache *iter; 309 310 if (cache->type == CACHE_TYPE_UNIFIED || 311 cache->type == CACHE_TYPE_UNIFIED_D) 312 return cache; 313 314 list_for_each_entry(iter, &cache_list, list) 315 if (iter->ofnode == cache->ofnode && 316 iter->group_id == cache->group_id && 317 iter->next_local == cache) 318 return iter; 319 320 return cache; 321 } 322 323 /* return the first cache on a local list matching node and thread-group id */ 324 static struct cache *cache_lookup_by_node_group(const struct device_node *node, 325 int group_id) 326 { 327 struct cache *cache = NULL; 328 struct cache *iter; 329 330 list_for_each_entry(iter, &cache_list, list) { 331 if (iter->ofnode != node || 332 iter->group_id != group_id) 333 continue; 334 cache = cache_find_first_sibling(iter); 335 break; 336 } 337 338 return cache; 339 } 340 341 static bool cache_node_is_unified(const struct device_node *np) 342 { 343 return of_get_property(np, "cache-unified", NULL); 344 } 345 346 /* 347 * Unified caches can have two different sets of tags. Most embedded 348 * use cache-size, etc. for the unified cache size, but open firmware systems 349 * use d-cache-size, etc. Check on initialization for which type we have, and 350 * return the appropriate structure type. Assume it's embedded if it isn't 351 * open firmware. If it's yet a 3rd type, then there will be missing entries 352 * in /sys/devices/system/cpu/cpu0/cache/index2/, and this code will need 353 * to be extended further. 354 */ 355 static int cache_is_unified_d(const struct device_node *np) 356 { 357 return of_get_property(np, 358 cache_type_info[CACHE_TYPE_UNIFIED_D].size_prop, NULL) ? 359 CACHE_TYPE_UNIFIED_D : CACHE_TYPE_UNIFIED; 360 } 361 362 static struct cache *cache_do_one_devnode_unified(struct device_node *node, int group_id, 363 int level) 364 { 365 pr_debug("creating L%d ucache for %pOFP\n", level, node); 366 367 return new_cache(cache_is_unified_d(node), level, node, group_id); 368 } 369 370 static struct cache *cache_do_one_devnode_split(struct device_node *node, int group_id, 371 int level) 372 { 373 struct cache *dcache, *icache; 374 375 pr_debug("creating L%d dcache and icache for %pOFP\n", level, 376 node); 377 378 dcache = new_cache(CACHE_TYPE_DATA, level, node, group_id); 379 icache = new_cache(CACHE_TYPE_INSTRUCTION, level, node, group_id); 380 381 if (!dcache || !icache) 382 goto err; 383 384 dcache->next_local = icache; 385 386 return dcache; 387 err: 388 release_cache(dcache); 389 release_cache(icache); 390 return NULL; 391 } 392 393 static struct cache *cache_do_one_devnode(struct device_node *node, int group_id, int level) 394 { 395 struct cache *cache; 396 397 if (cache_node_is_unified(node)) 398 cache = cache_do_one_devnode_unified(node, group_id, level); 399 else 400 cache = cache_do_one_devnode_split(node, group_id, level); 401 402 return cache; 403 } 404 405 static struct cache *cache_lookup_or_instantiate(struct device_node *node, 406 int group_id, 407 int level) 408 { 409 struct cache *cache; 410 411 cache = cache_lookup_by_node_group(node, group_id); 412 413 WARN_ONCE(cache && cache->level != level, 414 "cache level mismatch on lookup (got %d, expected %d)\n", 415 cache->level, level); 416 417 if (!cache) 418 cache = cache_do_one_devnode(node, group_id, level); 419 420 return cache; 421 } 422 423 static void link_cache_lists(struct cache *smaller, struct cache *bigger) 424 { 425 while (smaller->next_local) { 426 if (smaller->next_local == bigger) 427 return; /* already linked */ 428 smaller = smaller->next_local; 429 } 430 431 smaller->next_local = bigger; 432 433 /* 434 * The cache->next_local list sorts by level ascending: 435 * L1d -> L1i -> L2 -> L3 ... 436 */ 437 WARN_ONCE((smaller->level == 1 && bigger->level > 2) || 438 (smaller->level > 1 && bigger->level != smaller->level + 1), 439 "linking L%i cache %pOFP to L%i cache %pOFP; skipped a level?\n", 440 smaller->level, smaller->ofnode, bigger->level, bigger->ofnode); 441 } 442 443 static void do_subsidiary_caches_debugcheck(struct cache *cache) 444 { 445 WARN_ONCE(cache->level != 1, 446 "instantiating cache chain from L%d %s cache for " 447 "%pOFP instead of an L1\n", cache->level, 448 cache_type_string(cache), cache->ofnode); 449 WARN_ONCE(!of_node_is_type(cache->ofnode, "cpu"), 450 "instantiating cache chain from node %pOFP of type '%s' " 451 "instead of a cpu node\n", cache->ofnode, 452 of_node_get_device_type(cache->ofnode)); 453 } 454 455 /* 456 * If sub-groups of threads in a core containing @cpu_id share the 457 * L@level-cache (information obtained via "ibm,thread-groups" 458 * device-tree property), then we identify the group by the first 459 * thread-sibling in the group. We define this to be the group-id. 460 * 461 * In the absence of any thread-group information for L@level-cache, 462 * this function returns -1. 463 */ 464 static int get_group_id(unsigned int cpu_id, int level) 465 { 466 if (has_big_cores && level == 1) 467 return cpumask_first(per_cpu(thread_group_l1_cache_map, 468 cpu_id)); 469 else if (thread_group_shares_l2 && level == 2) 470 return cpumask_first(per_cpu(thread_group_l2_cache_map, 471 cpu_id)); 472 else if (thread_group_shares_l3 && level == 3) 473 return cpumask_first(per_cpu(thread_group_l3_cache_map, 474 cpu_id)); 475 return -1; 476 } 477 478 static void do_subsidiary_caches(struct cache *cache, unsigned int cpu_id) 479 { 480 struct device_node *subcache_node; 481 int level = cache->level; 482 483 do_subsidiary_caches_debugcheck(cache); 484 485 while ((subcache_node = of_find_next_cache_node(cache->ofnode))) { 486 struct cache *subcache; 487 int group_id; 488 489 level++; 490 group_id = get_group_id(cpu_id, level); 491 subcache = cache_lookup_or_instantiate(subcache_node, group_id, level); 492 of_node_put(subcache_node); 493 if (!subcache) 494 break; 495 496 link_cache_lists(cache, subcache); 497 cache = subcache; 498 } 499 } 500 501 static struct cache *cache_chain_instantiate(unsigned int cpu_id) 502 { 503 struct device_node *cpu_node; 504 struct cache *cpu_cache = NULL; 505 int group_id; 506 507 pr_debug("creating cache object(s) for CPU %i\n", cpu_id); 508 509 cpu_node = of_get_cpu_node(cpu_id, NULL); 510 WARN_ONCE(!cpu_node, "no OF node found for CPU %i\n", cpu_id); 511 if (!cpu_node) 512 goto out; 513 514 group_id = get_group_id(cpu_id, 1); 515 516 cpu_cache = cache_lookup_or_instantiate(cpu_node, group_id, 1); 517 if (!cpu_cache) 518 goto out; 519 520 do_subsidiary_caches(cpu_cache, cpu_id); 521 522 cache_cpu_set(cpu_cache, cpu_id); 523 out: 524 of_node_put(cpu_node); 525 526 return cpu_cache; 527 } 528 529 static struct cache_dir *cacheinfo_create_cache_dir(unsigned int cpu_id) 530 { 531 struct cache_dir *cache_dir; 532 struct device *dev; 533 struct kobject *kobj = NULL; 534 535 dev = get_cpu_device(cpu_id); 536 WARN_ONCE(!dev, "no dev for CPU %i\n", cpu_id); 537 if (!dev) 538 goto err; 539 540 kobj = kobject_create_and_add("cache", &dev->kobj); 541 if (!kobj) 542 goto err; 543 544 cache_dir = kzalloc(sizeof(*cache_dir), GFP_KERNEL); 545 if (!cache_dir) 546 goto err; 547 548 cache_dir->kobj = kobj; 549 550 WARN_ON_ONCE(per_cpu(cache_dir_pcpu, cpu_id) != NULL); 551 552 per_cpu(cache_dir_pcpu, cpu_id) = cache_dir; 553 554 return cache_dir; 555 err: 556 kobject_put(kobj); 557 return NULL; 558 } 559 560 static void cache_index_release(struct kobject *kobj) 561 { 562 struct cache_index_dir *index; 563 564 index = kobj_to_cache_index_dir(kobj); 565 566 pr_debug("freeing index directory for L%d %s cache\n", 567 index->cache->level, cache_type_string(index->cache)); 568 569 kfree(index); 570 } 571 572 static ssize_t cache_index_show(struct kobject *k, struct attribute *attr, char *buf) 573 { 574 struct kobj_attribute *kobj_attr; 575 576 kobj_attr = container_of(attr, struct kobj_attribute, attr); 577 578 return kobj_attr->show(k, kobj_attr, buf); 579 } 580 581 static struct cache *index_kobj_to_cache(struct kobject *k) 582 { 583 struct cache_index_dir *index; 584 585 index = kobj_to_cache_index_dir(k); 586 587 return index->cache; 588 } 589 590 static ssize_t size_show(struct kobject *k, struct kobj_attribute *attr, char *buf) 591 { 592 unsigned int size_kb; 593 struct cache *cache; 594 595 cache = index_kobj_to_cache(k); 596 597 if (cache_size_kb(cache, &size_kb)) 598 return -ENODEV; 599 600 return sprintf(buf, "%uK\n", size_kb); 601 } 602 603 static struct kobj_attribute cache_size_attr = 604 __ATTR(size, 0444, size_show, NULL); 605 606 607 static ssize_t line_size_show(struct kobject *k, struct kobj_attribute *attr, char *buf) 608 { 609 unsigned int line_size; 610 struct cache *cache; 611 612 cache = index_kobj_to_cache(k); 613 614 if (cache_get_line_size(cache, &line_size)) 615 return -ENODEV; 616 617 return sprintf(buf, "%u\n", line_size); 618 } 619 620 static struct kobj_attribute cache_line_size_attr = 621 __ATTR(coherency_line_size, 0444, line_size_show, NULL); 622 623 static ssize_t nr_sets_show(struct kobject *k, struct kobj_attribute *attr, char *buf) 624 { 625 unsigned int nr_sets; 626 struct cache *cache; 627 628 cache = index_kobj_to_cache(k); 629 630 if (cache_nr_sets(cache, &nr_sets)) 631 return -ENODEV; 632 633 return sprintf(buf, "%u\n", nr_sets); 634 } 635 636 static struct kobj_attribute cache_nr_sets_attr = 637 __ATTR(number_of_sets, 0444, nr_sets_show, NULL); 638 639 static ssize_t associativity_show(struct kobject *k, struct kobj_attribute *attr, char *buf) 640 { 641 unsigned int associativity; 642 struct cache *cache; 643 644 cache = index_kobj_to_cache(k); 645 646 if (cache_associativity(cache, &associativity)) 647 return -ENODEV; 648 649 return sprintf(buf, "%u\n", associativity); 650 } 651 652 static struct kobj_attribute cache_assoc_attr = 653 __ATTR(ways_of_associativity, 0444, associativity_show, NULL); 654 655 static ssize_t type_show(struct kobject *k, struct kobj_attribute *attr, char *buf) 656 { 657 struct cache *cache; 658 659 cache = index_kobj_to_cache(k); 660 661 return sprintf(buf, "%s\n", cache_type_string(cache)); 662 } 663 664 static struct kobj_attribute cache_type_attr = 665 __ATTR(type, 0444, type_show, NULL); 666 667 static ssize_t level_show(struct kobject *k, struct kobj_attribute *attr, char *buf) 668 { 669 struct cache_index_dir *index; 670 struct cache *cache; 671 672 index = kobj_to_cache_index_dir(k); 673 cache = index->cache; 674 675 return sprintf(buf, "%d\n", cache->level); 676 } 677 678 static struct kobj_attribute cache_level_attr = 679 __ATTR(level, 0444, level_show, NULL); 680 681 static ssize_t 682 show_shared_cpumap(struct kobject *k, struct kobj_attribute *attr, char *buf, bool list) 683 { 684 struct cache_index_dir *index; 685 struct cache *cache; 686 const struct cpumask *mask; 687 688 index = kobj_to_cache_index_dir(k); 689 cache = index->cache; 690 691 mask = &cache->shared_cpu_map; 692 693 return cpumap_print_to_pagebuf(list, buf, mask); 694 } 695 696 static ssize_t shared_cpu_map_show(struct kobject *k, struct kobj_attribute *attr, char *buf) 697 { 698 return show_shared_cpumap(k, attr, buf, false); 699 } 700 701 static ssize_t shared_cpu_list_show(struct kobject *k, struct kobj_attribute *attr, char *buf) 702 { 703 return show_shared_cpumap(k, attr, buf, true); 704 } 705 706 static struct kobj_attribute cache_shared_cpu_map_attr = 707 __ATTR(shared_cpu_map, 0444, shared_cpu_map_show, NULL); 708 709 static struct kobj_attribute cache_shared_cpu_list_attr = 710 __ATTR(shared_cpu_list, 0444, shared_cpu_list_show, NULL); 711 712 /* Attributes which should always be created -- the kobject/sysfs core 713 * does this automatically via kobj_type->default_attrs. This is the 714 * minimum data required to uniquely identify a cache. 715 */ 716 static struct attribute *cache_index_default_attrs[] = { 717 &cache_type_attr.attr, 718 &cache_level_attr.attr, 719 &cache_shared_cpu_map_attr.attr, 720 &cache_shared_cpu_list_attr.attr, 721 NULL, 722 }; 723 724 /* Attributes which should be created if the cache device node has the 725 * right properties -- see cacheinfo_create_index_opt_attrs 726 */ 727 static struct kobj_attribute *cache_index_opt_attrs[] = { 728 &cache_size_attr, 729 &cache_line_size_attr, 730 &cache_nr_sets_attr, 731 &cache_assoc_attr, 732 }; 733 734 static const struct sysfs_ops cache_index_ops = { 735 .show = cache_index_show, 736 }; 737 738 static struct kobj_type cache_index_type = { 739 .release = cache_index_release, 740 .sysfs_ops = &cache_index_ops, 741 .default_attrs = cache_index_default_attrs, 742 }; 743 744 static void cacheinfo_create_index_opt_attrs(struct cache_index_dir *dir) 745 { 746 const char *cache_type; 747 struct cache *cache; 748 char *buf; 749 int i; 750 751 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 752 if (!buf) 753 return; 754 755 cache = dir->cache; 756 cache_type = cache_type_string(cache); 757 758 /* We don't want to create an attribute that can't provide a 759 * meaningful value. Check the return value of each optional 760 * attribute's ->show method before registering the 761 * attribute. 762 */ 763 for (i = 0; i < ARRAY_SIZE(cache_index_opt_attrs); i++) { 764 struct kobj_attribute *attr; 765 ssize_t rc; 766 767 attr = cache_index_opt_attrs[i]; 768 769 rc = attr->show(&dir->kobj, attr, buf); 770 if (rc <= 0) { 771 pr_debug("not creating %s attribute for " 772 "%pOFP(%s) (rc = %zd)\n", 773 attr->attr.name, cache->ofnode, 774 cache_type, rc); 775 continue; 776 } 777 if (sysfs_create_file(&dir->kobj, &attr->attr)) 778 pr_debug("could not create %s attribute for %pOFP(%s)\n", 779 attr->attr.name, cache->ofnode, cache_type); 780 } 781 782 kfree(buf); 783 } 784 785 static void cacheinfo_create_index_dir(struct cache *cache, int index, 786 struct cache_dir *cache_dir) 787 { 788 struct cache_index_dir *index_dir; 789 int rc; 790 791 index_dir = kzalloc(sizeof(*index_dir), GFP_KERNEL); 792 if (!index_dir) 793 return; 794 795 index_dir->cache = cache; 796 797 rc = kobject_init_and_add(&index_dir->kobj, &cache_index_type, 798 cache_dir->kobj, "index%d", index); 799 if (rc) { 800 kobject_put(&index_dir->kobj); 801 return; 802 } 803 804 index_dir->next = cache_dir->index; 805 cache_dir->index = index_dir; 806 807 cacheinfo_create_index_opt_attrs(index_dir); 808 } 809 810 static void cacheinfo_sysfs_populate(unsigned int cpu_id, 811 struct cache *cache_list) 812 { 813 struct cache_dir *cache_dir; 814 struct cache *cache; 815 int index = 0; 816 817 cache_dir = cacheinfo_create_cache_dir(cpu_id); 818 if (!cache_dir) 819 return; 820 821 cache = cache_list; 822 while (cache) { 823 cacheinfo_create_index_dir(cache, index, cache_dir); 824 index++; 825 cache = cache->next_local; 826 } 827 } 828 829 void cacheinfo_cpu_online(unsigned int cpu_id) 830 { 831 struct cache *cache; 832 833 cache = cache_chain_instantiate(cpu_id); 834 if (!cache) 835 return; 836 837 cacheinfo_sysfs_populate(cpu_id, cache); 838 } 839 840 /* functions needed to remove cache entry for cpu offline or suspend/resume */ 841 842 #if (defined(CONFIG_PPC_PSERIES) && defined(CONFIG_SUSPEND)) || \ 843 defined(CONFIG_HOTPLUG_CPU) 844 845 static struct cache *cache_lookup_by_cpu(unsigned int cpu_id) 846 { 847 struct device_node *cpu_node; 848 struct cache *cache; 849 int group_id; 850 851 cpu_node = of_get_cpu_node(cpu_id, NULL); 852 WARN_ONCE(!cpu_node, "no OF node found for CPU %i\n", cpu_id); 853 if (!cpu_node) 854 return NULL; 855 856 group_id = get_group_id(cpu_id, 1); 857 cache = cache_lookup_by_node_group(cpu_node, group_id); 858 of_node_put(cpu_node); 859 860 return cache; 861 } 862 863 static void remove_index_dirs(struct cache_dir *cache_dir) 864 { 865 struct cache_index_dir *index; 866 867 index = cache_dir->index; 868 869 while (index) { 870 struct cache_index_dir *next; 871 872 next = index->next; 873 kobject_put(&index->kobj); 874 index = next; 875 } 876 } 877 878 static void remove_cache_dir(struct cache_dir *cache_dir) 879 { 880 remove_index_dirs(cache_dir); 881 882 /* Remove cache dir from sysfs */ 883 kobject_del(cache_dir->kobj); 884 885 kobject_put(cache_dir->kobj); 886 887 kfree(cache_dir); 888 } 889 890 static void cache_cpu_clear(struct cache *cache, int cpu) 891 { 892 while (cache) { 893 struct cache *next = cache->next_local; 894 895 WARN_ONCE(!cpumask_test_cpu(cpu, &cache->shared_cpu_map), 896 "CPU %i not accounted in %pOFP(%s)\n", 897 cpu, cache->ofnode, 898 cache_type_string(cache)); 899 900 cpumask_clear_cpu(cpu, &cache->shared_cpu_map); 901 902 /* Release the cache object if all the cpus using it 903 * are offline */ 904 if (cpumask_empty(&cache->shared_cpu_map)) 905 release_cache(cache); 906 907 cache = next; 908 } 909 } 910 911 void cacheinfo_cpu_offline(unsigned int cpu_id) 912 { 913 struct cache_dir *cache_dir; 914 struct cache *cache; 915 916 /* Prevent userspace from seeing inconsistent state - remove 917 * the sysfs hierarchy first */ 918 cache_dir = per_cpu(cache_dir_pcpu, cpu_id); 919 920 /* careful, sysfs population may have failed */ 921 if (cache_dir) 922 remove_cache_dir(cache_dir); 923 924 per_cpu(cache_dir_pcpu, cpu_id) = NULL; 925 926 /* clear the CPU's bit in its cache chain, possibly freeing 927 * cache objects */ 928 cache = cache_lookup_by_cpu(cpu_id); 929 if (cache) 930 cache_cpu_clear(cache, cpu_id); 931 } 932 933 void cacheinfo_teardown(void) 934 { 935 unsigned int cpu; 936 937 lockdep_assert_cpus_held(); 938 939 for_each_online_cpu(cpu) 940 cacheinfo_cpu_offline(cpu); 941 } 942 943 void cacheinfo_rebuild(void) 944 { 945 unsigned int cpu; 946 947 lockdep_assert_cpus_held(); 948 949 for_each_online_cpu(cpu) 950 cacheinfo_cpu_online(cpu); 951 } 952 953 #endif /* (CONFIG_PPC_PSERIES && CONFIG_SUSPEND) || CONFIG_HOTPLUG_CPU */ 954