xref: /openbmc/linux/arch/powerpc/kernel/align.c (revision c4ee0af3)
1 /* align.c - handle alignment exceptions for the Power PC.
2  *
3  * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
4  * Copyright (c) 1998-1999 TiVo, Inc.
5  *   PowerPC 403GCX modifications.
6  * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
7  *   PowerPC 403GCX/405GP modifications.
8  * Copyright (c) 2001-2002 PPC64 team, IBM Corp
9  *   64-bit and Power4 support
10  * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
11  *                    <benh@kernel.crashing.org>
12  *   Merge ppc32 and ppc64 implementations
13  *
14  * This program is free software; you can redistribute it and/or
15  * modify it under the terms of the GNU General Public License
16  * as published by the Free Software Foundation; either version
17  * 2 of the License, or (at your option) any later version.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <asm/processor.h>
23 #include <asm/uaccess.h>
24 #include <asm/cache.h>
25 #include <asm/cputable.h>
26 #include <asm/emulated_ops.h>
27 #include <asm/switch_to.h>
28 
29 struct aligninfo {
30 	unsigned char len;
31 	unsigned char flags;
32 };
33 
34 #define IS_XFORM(inst)	(((inst) >> 26) == 31)
35 #define IS_DSFORM(inst)	(((inst) >> 26) >= 56)
36 
37 #define INVALID	{ 0, 0 }
38 
39 /* Bits in the flags field */
40 #define LD	0	/* load */
41 #define ST	1	/* store */
42 #define SE	2	/* sign-extend value, or FP ld/st as word */
43 #define F	4	/* to/from fp regs */
44 #define U	8	/* update index register */
45 #define M	0x10	/* multiple load/store */
46 #define SW	0x20	/* byte swap */
47 #define S	0x40	/* single-precision fp or... */
48 #define SX	0x40	/* ... byte count in XER */
49 #define HARD	0x80	/* string, stwcx. */
50 #define E4	0x40	/* SPE endianness is word */
51 #define E8	0x80	/* SPE endianness is double word */
52 #define SPLT	0x80	/* VSX SPLAT load */
53 
54 /* DSISR bits reported for a DCBZ instruction: */
55 #define DCBZ	0x5f	/* 8xx/82xx dcbz faults when cache not enabled */
56 
57 /*
58  * The PowerPC stores certain bits of the instruction that caused the
59  * alignment exception in the DSISR register.  This array maps those
60  * bits to information about the operand length and what the
61  * instruction would do.
62  */
63 static struct aligninfo aligninfo[128] = {
64 	{ 4, LD },		/* 00 0 0000: lwz / lwarx */
65 	INVALID,		/* 00 0 0001 */
66 	{ 4, ST },		/* 00 0 0010: stw */
67 	INVALID,		/* 00 0 0011 */
68 	{ 2, LD },		/* 00 0 0100: lhz */
69 	{ 2, LD+SE },		/* 00 0 0101: lha */
70 	{ 2, ST },		/* 00 0 0110: sth */
71 	{ 4, LD+M },		/* 00 0 0111: lmw */
72 	{ 4, LD+F+S },		/* 00 0 1000: lfs */
73 	{ 8, LD+F },		/* 00 0 1001: lfd */
74 	{ 4, ST+F+S },		/* 00 0 1010: stfs */
75 	{ 8, ST+F },		/* 00 0 1011: stfd */
76 	INVALID,		/* 00 0 1100 */
77 	{ 8, LD },		/* 00 0 1101: ld/ldu/lwa */
78 	INVALID,		/* 00 0 1110 */
79 	{ 8, ST },		/* 00 0 1111: std/stdu */
80 	{ 4, LD+U },		/* 00 1 0000: lwzu */
81 	INVALID,		/* 00 1 0001 */
82 	{ 4, ST+U },		/* 00 1 0010: stwu */
83 	INVALID,		/* 00 1 0011 */
84 	{ 2, LD+U },		/* 00 1 0100: lhzu */
85 	{ 2, LD+SE+U },		/* 00 1 0101: lhau */
86 	{ 2, ST+U },		/* 00 1 0110: sthu */
87 	{ 4, ST+M },		/* 00 1 0111: stmw */
88 	{ 4, LD+F+S+U },	/* 00 1 1000: lfsu */
89 	{ 8, LD+F+U },		/* 00 1 1001: lfdu */
90 	{ 4, ST+F+S+U },	/* 00 1 1010: stfsu */
91 	{ 8, ST+F+U },		/* 00 1 1011: stfdu */
92 	{ 16, LD+F },		/* 00 1 1100: lfdp */
93 	INVALID,		/* 00 1 1101 */
94 	{ 16, ST+F },		/* 00 1 1110: stfdp */
95 	INVALID,		/* 00 1 1111 */
96 	{ 8, LD },		/* 01 0 0000: ldx */
97 	INVALID,		/* 01 0 0001 */
98 	{ 8, ST },		/* 01 0 0010: stdx */
99 	INVALID,		/* 01 0 0011 */
100 	INVALID,		/* 01 0 0100 */
101 	{ 4, LD+SE },		/* 01 0 0101: lwax */
102 	INVALID,		/* 01 0 0110 */
103 	INVALID,		/* 01 0 0111 */
104 	{ 4, LD+M+HARD+SX },	/* 01 0 1000: lswx */
105 	{ 4, LD+M+HARD },	/* 01 0 1001: lswi */
106 	{ 4, ST+M+HARD+SX },	/* 01 0 1010: stswx */
107 	{ 4, ST+M+HARD },	/* 01 0 1011: stswi */
108 	INVALID,		/* 01 0 1100 */
109 	{ 8, LD+U },		/* 01 0 1101: ldu */
110 	INVALID,		/* 01 0 1110 */
111 	{ 8, ST+U },		/* 01 0 1111: stdu */
112 	{ 8, LD+U },		/* 01 1 0000: ldux */
113 	INVALID,		/* 01 1 0001 */
114 	{ 8, ST+U },		/* 01 1 0010: stdux */
115 	INVALID,		/* 01 1 0011 */
116 	INVALID,		/* 01 1 0100 */
117 	{ 4, LD+SE+U },		/* 01 1 0101: lwaux */
118 	INVALID,		/* 01 1 0110 */
119 	INVALID,		/* 01 1 0111 */
120 	INVALID,		/* 01 1 1000 */
121 	INVALID,		/* 01 1 1001 */
122 	INVALID,		/* 01 1 1010 */
123 	INVALID,		/* 01 1 1011 */
124 	INVALID,		/* 01 1 1100 */
125 	INVALID,		/* 01 1 1101 */
126 	INVALID,		/* 01 1 1110 */
127 	INVALID,		/* 01 1 1111 */
128 	INVALID,		/* 10 0 0000 */
129 	INVALID,		/* 10 0 0001 */
130 	INVALID,		/* 10 0 0010: stwcx. */
131 	INVALID,		/* 10 0 0011 */
132 	INVALID,		/* 10 0 0100 */
133 	INVALID,		/* 10 0 0101 */
134 	INVALID,		/* 10 0 0110 */
135 	INVALID,		/* 10 0 0111 */
136 	{ 4, LD+SW },		/* 10 0 1000: lwbrx */
137 	INVALID,		/* 10 0 1001 */
138 	{ 4, ST+SW },		/* 10 0 1010: stwbrx */
139 	INVALID,		/* 10 0 1011 */
140 	{ 2, LD+SW },		/* 10 0 1100: lhbrx */
141 	{ 4, LD+SE },		/* 10 0 1101  lwa */
142 	{ 2, ST+SW },		/* 10 0 1110: sthbrx */
143 	INVALID,		/* 10 0 1111 */
144 	INVALID,		/* 10 1 0000 */
145 	INVALID,		/* 10 1 0001 */
146 	INVALID,		/* 10 1 0010 */
147 	INVALID,		/* 10 1 0011 */
148 	INVALID,		/* 10 1 0100 */
149 	INVALID,		/* 10 1 0101 */
150 	INVALID,		/* 10 1 0110 */
151 	INVALID,		/* 10 1 0111 */
152 	INVALID,		/* 10 1 1000 */
153 	INVALID,		/* 10 1 1001 */
154 	INVALID,		/* 10 1 1010 */
155 	INVALID,		/* 10 1 1011 */
156 	INVALID,		/* 10 1 1100 */
157 	INVALID,		/* 10 1 1101 */
158 	INVALID,		/* 10 1 1110 */
159 	{ 0, ST+HARD },		/* 10 1 1111: dcbz */
160 	{ 4, LD },		/* 11 0 0000: lwzx */
161 	INVALID,		/* 11 0 0001 */
162 	{ 4, ST },		/* 11 0 0010: stwx */
163 	INVALID,		/* 11 0 0011 */
164 	{ 2, LD },		/* 11 0 0100: lhzx */
165 	{ 2, LD+SE },		/* 11 0 0101: lhax */
166 	{ 2, ST },		/* 11 0 0110: sthx */
167 	INVALID,		/* 11 0 0111 */
168 	{ 4, LD+F+S },		/* 11 0 1000: lfsx */
169 	{ 8, LD+F },		/* 11 0 1001: lfdx */
170 	{ 4, ST+F+S },		/* 11 0 1010: stfsx */
171 	{ 8, ST+F },		/* 11 0 1011: stfdx */
172 	{ 16, LD+F },		/* 11 0 1100: lfdpx */
173 	{ 4, LD+F+SE },		/* 11 0 1101: lfiwax */
174 	{ 16, ST+F },		/* 11 0 1110: stfdpx */
175 	{ 4, ST+F },		/* 11 0 1111: stfiwx */
176 	{ 4, LD+U },		/* 11 1 0000: lwzux */
177 	INVALID,		/* 11 1 0001 */
178 	{ 4, ST+U },		/* 11 1 0010: stwux */
179 	INVALID,		/* 11 1 0011 */
180 	{ 2, LD+U },		/* 11 1 0100: lhzux */
181 	{ 2, LD+SE+U },		/* 11 1 0101: lhaux */
182 	{ 2, ST+U },		/* 11 1 0110: sthux */
183 	INVALID,		/* 11 1 0111 */
184 	{ 4, LD+F+S+U },	/* 11 1 1000: lfsux */
185 	{ 8, LD+F+U },		/* 11 1 1001: lfdux */
186 	{ 4, ST+F+S+U },	/* 11 1 1010: stfsux */
187 	{ 8, ST+F+U },		/* 11 1 1011: stfdux */
188 	INVALID,		/* 11 1 1100 */
189 	{ 4, LD+F },		/* 11 1 1101: lfiwzx */
190 	INVALID,		/* 11 1 1110 */
191 	INVALID,		/* 11 1 1111 */
192 };
193 
194 /*
195  * Create a DSISR value from the instruction
196  */
197 static inline unsigned make_dsisr(unsigned instr)
198 {
199 	unsigned dsisr;
200 
201 
202 	/* bits  6:15 --> 22:31 */
203 	dsisr = (instr & 0x03ff0000) >> 16;
204 
205 	if (IS_XFORM(instr)) {
206 		/* bits 29:30 --> 15:16 */
207 		dsisr |= (instr & 0x00000006) << 14;
208 		/* bit     25 -->    17 */
209 		dsisr |= (instr & 0x00000040) << 8;
210 		/* bits 21:24 --> 18:21 */
211 		dsisr |= (instr & 0x00000780) << 3;
212 	} else {
213 		/* bit      5 -->    17 */
214 		dsisr |= (instr & 0x04000000) >> 12;
215 		/* bits  1: 4 --> 18:21 */
216 		dsisr |= (instr & 0x78000000) >> 17;
217 		/* bits 30:31 --> 12:13 */
218 		if (IS_DSFORM(instr))
219 			dsisr |= (instr & 0x00000003) << 18;
220 	}
221 
222 	return dsisr;
223 }
224 
225 /*
226  * The dcbz (data cache block zero) instruction
227  * gives an alignment fault if used on non-cacheable
228  * memory.  We handle the fault mainly for the
229  * case when we are running with the cache disabled
230  * for debugging.
231  */
232 static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr)
233 {
234 	long __user *p;
235 	int i, size;
236 
237 #ifdef __powerpc64__
238 	size = ppc64_caches.dline_size;
239 #else
240 	size = L1_CACHE_BYTES;
241 #endif
242 	p = (long __user *) (regs->dar & -size);
243 	if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size))
244 		return -EFAULT;
245 	for (i = 0; i < size / sizeof(long); ++i)
246 		if (__put_user_inatomic(0, p+i))
247 			return -EFAULT;
248 	return 1;
249 }
250 
251 /*
252  * Emulate load & store multiple instructions
253  * On 64-bit machines, these instructions only affect/use the
254  * bottom 4 bytes of each register, and the loads clear the
255  * top 4 bytes of the affected register.
256  */
257 #ifdef __BIG_ENDIAN__
258 #ifdef CONFIG_PPC64
259 #define REG_BYTE(rp, i)		*((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4)
260 #else
261 #define REG_BYTE(rp, i)		*((u8 *)(rp) + (i))
262 #endif
263 #endif
264 
265 #ifdef __LITTLE_ENDIAN__
266 #define REG_BYTE(rp, i)		(*(((u8 *)((rp) + ((i)>>2)) + ((i)&3))))
267 #endif
268 
269 #define SWIZ_PTR(p)		((unsigned char __user *)((p) ^ swiz))
270 
271 static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
272 			    unsigned int reg, unsigned int nb,
273 			    unsigned int flags, unsigned int instr,
274 			    unsigned long swiz)
275 {
276 	unsigned long *rptr;
277 	unsigned int nb0, i, bswiz;
278 	unsigned long p;
279 
280 	/*
281 	 * We do not try to emulate 8 bytes multiple as they aren't really
282 	 * available in our operating environments and we don't try to
283 	 * emulate multiples operations in kernel land as they should never
284 	 * be used/generated there at least not on unaligned boundaries
285 	 */
286 	if (unlikely((nb > 4) || !user_mode(regs)))
287 		return 0;
288 
289 	/* lmw, stmw, lswi/x, stswi/x */
290 	nb0 = 0;
291 	if (flags & HARD) {
292 		if (flags & SX) {
293 			nb = regs->xer & 127;
294 			if (nb == 0)
295 				return 1;
296 		} else {
297 			unsigned long pc = regs->nip ^ (swiz & 4);
298 
299 			if (__get_user_inatomic(instr,
300 						(unsigned int __user *)pc))
301 				return -EFAULT;
302 			if (swiz == 0 && (flags & SW))
303 				instr = cpu_to_le32(instr);
304 			nb = (instr >> 11) & 0x1f;
305 			if (nb == 0)
306 				nb = 32;
307 		}
308 		if (nb + reg * 4 > 128) {
309 			nb0 = nb + reg * 4 - 128;
310 			nb = 128 - reg * 4;
311 		}
312 #ifdef __LITTLE_ENDIAN__
313 		/*
314 		 *  String instructions are endian neutral but the code
315 		 *  below is not.  Force byte swapping on so that the
316 		 *  effects of swizzling are undone in the load/store
317 		 *  loops below.
318 		 */
319 		flags ^= SW;
320 #endif
321 	} else {
322 		/* lwm, stmw */
323 		nb = (32 - reg) * 4;
324 	}
325 
326 	if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0))
327 		return -EFAULT;	/* bad address */
328 
329 	rptr = &regs->gpr[reg];
330 	p = (unsigned long) addr;
331 	bswiz = (flags & SW)? 3: 0;
332 
333 	if (!(flags & ST)) {
334 		/*
335 		 * This zeroes the top 4 bytes of the affected registers
336 		 * in 64-bit mode, and also zeroes out any remaining
337 		 * bytes of the last register for lsw*.
338 		 */
339 		memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long));
340 		if (nb0 > 0)
341 			memset(&regs->gpr[0], 0,
342 			       ((nb0 + 3) / 4) * sizeof(unsigned long));
343 
344 		for (i = 0; i < nb; ++i, ++p)
345 			if (__get_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
346 						SWIZ_PTR(p)))
347 				return -EFAULT;
348 		if (nb0 > 0) {
349 			rptr = &regs->gpr[0];
350 			addr += nb;
351 			for (i = 0; i < nb0; ++i, ++p)
352 				if (__get_user_inatomic(REG_BYTE(rptr,
353 								 i ^ bswiz),
354 							SWIZ_PTR(p)))
355 					return -EFAULT;
356 		}
357 
358 	} else {
359 		for (i = 0; i < nb; ++i, ++p)
360 			if (__put_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
361 						SWIZ_PTR(p)))
362 				return -EFAULT;
363 		if (nb0 > 0) {
364 			rptr = &regs->gpr[0];
365 			addr += nb;
366 			for (i = 0; i < nb0; ++i, ++p)
367 				if (__put_user_inatomic(REG_BYTE(rptr,
368 								 i ^ bswiz),
369 							SWIZ_PTR(p)))
370 					return -EFAULT;
371 		}
372 	}
373 	return 1;
374 }
375 
376 /*
377  * Emulate floating-point pair loads and stores.
378  * Only POWER6 has these instructions, and it does true little-endian,
379  * so we don't need the address swizzling.
380  */
381 static int emulate_fp_pair(unsigned char __user *addr, unsigned int reg,
382 			   unsigned int flags)
383 {
384 	char *ptr0 = (char *) &current->thread.TS_FPR(reg);
385 	char *ptr1 = (char *) &current->thread.TS_FPR(reg+1);
386 	int i, ret, sw = 0;
387 
388 	if (!(flags & F))
389 		return 0;
390 	if (reg & 1)
391 		return 0;	/* invalid form: FRS/FRT must be even */
392 	if (flags & SW)
393 		sw = 7;
394 	ret = 0;
395 	for (i = 0; i < 8; ++i) {
396 		if (!(flags & ST)) {
397 			ret |= __get_user(ptr0[i^sw], addr + i);
398 			ret |= __get_user(ptr1[i^sw], addr + i + 8);
399 		} else {
400 			ret |= __put_user(ptr0[i^sw], addr + i);
401 			ret |= __put_user(ptr1[i^sw], addr + i + 8);
402 		}
403 	}
404 	if (ret)
405 		return -EFAULT;
406 	return 1;	/* exception handled and fixed up */
407 }
408 
409 #ifdef CONFIG_SPE
410 
411 static struct aligninfo spe_aligninfo[32] = {
412 	{ 8, LD+E8 },		/* 0 00 00: evldd[x] */
413 	{ 8, LD+E4 },		/* 0 00 01: evldw[x] */
414 	{ 8, LD },		/* 0 00 10: evldh[x] */
415 	INVALID,		/* 0 00 11 */
416 	{ 2, LD },		/* 0 01 00: evlhhesplat[x] */
417 	INVALID,		/* 0 01 01 */
418 	{ 2, LD },		/* 0 01 10: evlhhousplat[x] */
419 	{ 2, LD+SE },		/* 0 01 11: evlhhossplat[x] */
420 	{ 4, LD },		/* 0 10 00: evlwhe[x] */
421 	INVALID,		/* 0 10 01 */
422 	{ 4, LD },		/* 0 10 10: evlwhou[x] */
423 	{ 4, LD+SE },		/* 0 10 11: evlwhos[x] */
424 	{ 4, LD+E4 },		/* 0 11 00: evlwwsplat[x] */
425 	INVALID,		/* 0 11 01 */
426 	{ 4, LD },		/* 0 11 10: evlwhsplat[x] */
427 	INVALID,		/* 0 11 11 */
428 
429 	{ 8, ST+E8 },		/* 1 00 00: evstdd[x] */
430 	{ 8, ST+E4 },		/* 1 00 01: evstdw[x] */
431 	{ 8, ST },		/* 1 00 10: evstdh[x] */
432 	INVALID,		/* 1 00 11 */
433 	INVALID,		/* 1 01 00 */
434 	INVALID,		/* 1 01 01 */
435 	INVALID,		/* 1 01 10 */
436 	INVALID,		/* 1 01 11 */
437 	{ 4, ST },		/* 1 10 00: evstwhe[x] */
438 	INVALID,		/* 1 10 01 */
439 	{ 4, ST },		/* 1 10 10: evstwho[x] */
440 	INVALID,		/* 1 10 11 */
441 	{ 4, ST+E4 },		/* 1 11 00: evstwwe[x] */
442 	INVALID,		/* 1 11 01 */
443 	{ 4, ST+E4 },		/* 1 11 10: evstwwo[x] */
444 	INVALID,		/* 1 11 11 */
445 };
446 
447 #define	EVLDD		0x00
448 #define	EVLDW		0x01
449 #define	EVLDH		0x02
450 #define	EVLHHESPLAT	0x04
451 #define	EVLHHOUSPLAT	0x06
452 #define	EVLHHOSSPLAT	0x07
453 #define	EVLWHE		0x08
454 #define	EVLWHOU		0x0A
455 #define	EVLWHOS		0x0B
456 #define	EVLWWSPLAT	0x0C
457 #define	EVLWHSPLAT	0x0E
458 #define	EVSTDD		0x10
459 #define	EVSTDW		0x11
460 #define	EVSTDH		0x12
461 #define	EVSTWHE		0x18
462 #define	EVSTWHO		0x1A
463 #define	EVSTWWE		0x1C
464 #define	EVSTWWO		0x1E
465 
466 /*
467  * Emulate SPE loads and stores.
468  * Only Book-E has these instructions, and it does true little-endian,
469  * so we don't need the address swizzling.
470  */
471 static int emulate_spe(struct pt_regs *regs, unsigned int reg,
472 		       unsigned int instr)
473 {
474 	int ret;
475 	union {
476 		u64 ll;
477 		u32 w[2];
478 		u16 h[4];
479 		u8 v[8];
480 	} data, temp;
481 	unsigned char __user *p, *addr;
482 	unsigned long *evr = &current->thread.evr[reg];
483 	unsigned int nb, flags;
484 
485 	instr = (instr >> 1) & 0x1f;
486 
487 	/* DAR has the operand effective address */
488 	addr = (unsigned char __user *)regs->dar;
489 
490 	nb = spe_aligninfo[instr].len;
491 	flags = spe_aligninfo[instr].flags;
492 
493 	/* Verify the address of the operand */
494 	if (unlikely(user_mode(regs) &&
495 		     !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
496 				addr, nb)))
497 		return -EFAULT;
498 
499 	/* userland only */
500 	if (unlikely(!user_mode(regs)))
501 		return 0;
502 
503 	flush_spe_to_thread(current);
504 
505 	/* If we are loading, get the data from user space, else
506 	 * get it from register values
507 	 */
508 	if (flags & ST) {
509 		data.ll = 0;
510 		switch (instr) {
511 		case EVSTDD:
512 		case EVSTDW:
513 		case EVSTDH:
514 			data.w[0] = *evr;
515 			data.w[1] = regs->gpr[reg];
516 			break;
517 		case EVSTWHE:
518 			data.h[2] = *evr >> 16;
519 			data.h[3] = regs->gpr[reg] >> 16;
520 			break;
521 		case EVSTWHO:
522 			data.h[2] = *evr & 0xffff;
523 			data.h[3] = regs->gpr[reg] & 0xffff;
524 			break;
525 		case EVSTWWE:
526 			data.w[1] = *evr;
527 			break;
528 		case EVSTWWO:
529 			data.w[1] = regs->gpr[reg];
530 			break;
531 		default:
532 			return -EINVAL;
533 		}
534 	} else {
535 		temp.ll = data.ll = 0;
536 		ret = 0;
537 		p = addr;
538 
539 		switch (nb) {
540 		case 8:
541 			ret |= __get_user_inatomic(temp.v[0], p++);
542 			ret |= __get_user_inatomic(temp.v[1], p++);
543 			ret |= __get_user_inatomic(temp.v[2], p++);
544 			ret |= __get_user_inatomic(temp.v[3], p++);
545 		case 4:
546 			ret |= __get_user_inatomic(temp.v[4], p++);
547 			ret |= __get_user_inatomic(temp.v[5], p++);
548 		case 2:
549 			ret |= __get_user_inatomic(temp.v[6], p++);
550 			ret |= __get_user_inatomic(temp.v[7], p++);
551 			if (unlikely(ret))
552 				return -EFAULT;
553 		}
554 
555 		switch (instr) {
556 		case EVLDD:
557 		case EVLDW:
558 		case EVLDH:
559 			data.ll = temp.ll;
560 			break;
561 		case EVLHHESPLAT:
562 			data.h[0] = temp.h[3];
563 			data.h[2] = temp.h[3];
564 			break;
565 		case EVLHHOUSPLAT:
566 		case EVLHHOSSPLAT:
567 			data.h[1] = temp.h[3];
568 			data.h[3] = temp.h[3];
569 			break;
570 		case EVLWHE:
571 			data.h[0] = temp.h[2];
572 			data.h[2] = temp.h[3];
573 			break;
574 		case EVLWHOU:
575 		case EVLWHOS:
576 			data.h[1] = temp.h[2];
577 			data.h[3] = temp.h[3];
578 			break;
579 		case EVLWWSPLAT:
580 			data.w[0] = temp.w[1];
581 			data.w[1] = temp.w[1];
582 			break;
583 		case EVLWHSPLAT:
584 			data.h[0] = temp.h[2];
585 			data.h[1] = temp.h[2];
586 			data.h[2] = temp.h[3];
587 			data.h[3] = temp.h[3];
588 			break;
589 		default:
590 			return -EINVAL;
591 		}
592 	}
593 
594 	if (flags & SW) {
595 		switch (flags & 0xf0) {
596 		case E8:
597 			data.ll = swab64(data.ll);
598 			break;
599 		case E4:
600 			data.w[0] = swab32(data.w[0]);
601 			data.w[1] = swab32(data.w[1]);
602 			break;
603 		/* Its half word endian */
604 		default:
605 			data.h[0] = swab16(data.h[0]);
606 			data.h[1] = swab16(data.h[1]);
607 			data.h[2] = swab16(data.h[2]);
608 			data.h[3] = swab16(data.h[3]);
609 			break;
610 		}
611 	}
612 
613 	if (flags & SE) {
614 		data.w[0] = (s16)data.h[1];
615 		data.w[1] = (s16)data.h[3];
616 	}
617 
618 	/* Store result to memory or update registers */
619 	if (flags & ST) {
620 		ret = 0;
621 		p = addr;
622 		switch (nb) {
623 		case 8:
624 			ret |= __put_user_inatomic(data.v[0], p++);
625 			ret |= __put_user_inatomic(data.v[1], p++);
626 			ret |= __put_user_inatomic(data.v[2], p++);
627 			ret |= __put_user_inatomic(data.v[3], p++);
628 		case 4:
629 			ret |= __put_user_inatomic(data.v[4], p++);
630 			ret |= __put_user_inatomic(data.v[5], p++);
631 		case 2:
632 			ret |= __put_user_inatomic(data.v[6], p++);
633 			ret |= __put_user_inatomic(data.v[7], p++);
634 		}
635 		if (unlikely(ret))
636 			return -EFAULT;
637 	} else {
638 		*evr = data.w[0];
639 		regs->gpr[reg] = data.w[1];
640 	}
641 
642 	return 1;
643 }
644 #endif /* CONFIG_SPE */
645 
646 #ifdef CONFIG_VSX
647 /*
648  * Emulate VSX instructions...
649  */
650 static int emulate_vsx(unsigned char __user *addr, unsigned int reg,
651 		       unsigned int areg, struct pt_regs *regs,
652 		       unsigned int flags, unsigned int length,
653 		       unsigned int elsize)
654 {
655 	char *ptr;
656 	unsigned long *lptr;
657 	int ret = 0;
658 	int sw = 0;
659 	int i, j;
660 
661 	/* userland only */
662 	if (unlikely(!user_mode(regs)))
663 		return 0;
664 
665 	flush_vsx_to_thread(current);
666 
667 	if (reg < 32)
668 		ptr = (char *) &current->thread.fp_state.fpr[reg][0];
669 	else
670 		ptr = (char *) &current->thread.vr_state.vr[reg - 32];
671 
672 	lptr = (unsigned long *) ptr;
673 
674 #ifdef __LITTLE_ENDIAN__
675 	if (flags & SW) {
676 		elsize = length;
677 		sw = length-1;
678 	} else {
679 		/*
680 		 * The elements are BE ordered, even in LE mode, so process
681 		 * them in reverse order.
682 		 */
683 		addr += length - elsize;
684 
685 		/* 8 byte memory accesses go in the top 8 bytes of the VR */
686 		if (length == 8)
687 			ptr += 8;
688 	}
689 #else
690 	if (flags & SW)
691 		sw = elsize-1;
692 #endif
693 
694 	for (j = 0; j < length; j += elsize) {
695 		for (i = 0; i < elsize; ++i) {
696 			if (flags & ST)
697 				ret |= __put_user(ptr[i^sw], addr + i);
698 			else
699 				ret |= __get_user(ptr[i^sw], addr + i);
700 		}
701 		ptr  += elsize;
702 #ifdef __LITTLE_ENDIAN__
703 		addr -= elsize;
704 #else
705 		addr += elsize;
706 #endif
707 	}
708 
709 #ifdef __BIG_ENDIAN__
710 #define VSX_HI 0
711 #define VSX_LO 1
712 #else
713 #define VSX_HI 1
714 #define VSX_LO 0
715 #endif
716 
717 	if (!ret) {
718 		if (flags & U)
719 			regs->gpr[areg] = regs->dar;
720 
721 		/* Splat load copies the same data to top and bottom 8 bytes */
722 		if (flags & SPLT)
723 			lptr[VSX_LO] = lptr[VSX_HI];
724 		/* For 8 byte loads, zero the low 8 bytes */
725 		else if (!(flags & ST) && (8 == length))
726 			lptr[VSX_LO] = 0;
727 	} else
728 		return -EFAULT;
729 
730 	return 1;
731 }
732 #endif
733 
734 /*
735  * Called on alignment exception. Attempts to fixup
736  *
737  * Return 1 on success
738  * Return 0 if unable to handle the interrupt
739  * Return -EFAULT if data address is bad
740  */
741 
742 int fix_alignment(struct pt_regs *regs)
743 {
744 	unsigned int instr, nb, flags, instruction = 0;
745 	unsigned int reg, areg;
746 	unsigned int dsisr;
747 	unsigned char __user *addr;
748 	unsigned long p, swiz;
749 	int ret, i;
750 	union data {
751 		u64 ll;
752 		double dd;
753 		unsigned char v[8];
754 		struct {
755 #ifdef __LITTLE_ENDIAN__
756 			int	 low32;
757 			unsigned hi32;
758 #else
759 			unsigned hi32;
760 			int	 low32;
761 #endif
762 		} x32;
763 		struct {
764 #ifdef __LITTLE_ENDIAN__
765 			short	      low16;
766 			unsigned char hi48[6];
767 #else
768 			unsigned char hi48[6];
769 			short	      low16;
770 #endif
771 		} x16;
772 	} data;
773 
774 	/*
775 	 * We require a complete register set, if not, then our assembly
776 	 * is broken
777 	 */
778 	CHECK_FULL_REGS(regs);
779 
780 	dsisr = regs->dsisr;
781 
782 	/* Some processors don't provide us with a DSISR we can use here,
783 	 * let's make one up from the instruction
784 	 */
785 	if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) {
786 		unsigned long pc = regs->nip;
787 
788 		if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE))
789 			pc ^= 4;
790 		if (unlikely(__get_user_inatomic(instr,
791 						 (unsigned int __user *)pc)))
792 			return -EFAULT;
793 		if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE))
794 			instr = cpu_to_le32(instr);
795 		dsisr = make_dsisr(instr);
796 		instruction = instr;
797 	}
798 
799 	/* extract the operation and registers from the dsisr */
800 	reg = (dsisr >> 5) & 0x1f;	/* source/dest register */
801 	areg = dsisr & 0x1f;		/* register to update */
802 
803 #ifdef CONFIG_SPE
804 	if ((instr >> 26) == 0x4) {
805 		PPC_WARN_ALIGNMENT(spe, regs);
806 		return emulate_spe(regs, reg, instr);
807 	}
808 #endif
809 
810 	instr = (dsisr >> 10) & 0x7f;
811 	instr |= (dsisr >> 13) & 0x60;
812 
813 	/* Lookup the operation in our table */
814 	nb = aligninfo[instr].len;
815 	flags = aligninfo[instr].flags;
816 
817 	/* ldbrx/stdbrx overlap lfs/stfs in the DSISR unfortunately */
818 	if (IS_XFORM(instruction) && ((instruction >> 1) & 0x3ff) == 532) {
819 		nb = 8;
820 		flags = LD+SW;
821 	} else if (IS_XFORM(instruction) &&
822 		   ((instruction >> 1) & 0x3ff) == 660) {
823 		nb = 8;
824 		flags = ST+SW;
825 	}
826 
827 	/* Byteswap little endian loads and stores */
828 	swiz = 0;
829 	if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE)) {
830 		flags ^= SW;
831 #ifdef __BIG_ENDIAN__
832 		/*
833 		 * So-called "PowerPC little endian" mode works by
834 		 * swizzling addresses rather than by actually doing
835 		 * any byte-swapping.  To emulate this, we XOR each
836 		 * byte address with 7.  We also byte-swap, because
837 		 * the processor's address swizzling depends on the
838 		 * operand size (it xors the address with 7 for bytes,
839 		 * 6 for halfwords, 4 for words, 0 for doublewords) but
840 		 * we will xor with 7 and load/store each byte separately.
841 		 */
842 		if (cpu_has_feature(CPU_FTR_PPC_LE))
843 			swiz = 7;
844 #endif
845 	}
846 
847 	/* DAR has the operand effective address */
848 	addr = (unsigned char __user *)regs->dar;
849 
850 #ifdef CONFIG_VSX
851 	if ((instruction & 0xfc00003e) == 0x7c000018) {
852 		unsigned int elsize;
853 
854 		/* Additional register addressing bit (64 VSX vs 32 FPR/GPR) */
855 		reg |= (instruction & 0x1) << 5;
856 		/* Simple inline decoder instead of a table */
857 		/* VSX has only 8 and 16 byte memory accesses */
858 		nb = 8;
859 		if (instruction & 0x200)
860 			nb = 16;
861 
862 		/* Vector stores in little-endian mode swap individual
863 		   elements, so process them separately */
864 		elsize = 4;
865 		if (instruction & 0x80)
866 			elsize = 8;
867 
868 		flags = 0;
869 		if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE))
870 			flags |= SW;
871 		if (instruction & 0x100)
872 			flags |= ST;
873 		if (instruction & 0x040)
874 			flags |= U;
875 		/* splat load needs a special decoder */
876 		if ((instruction & 0x400) == 0){
877 			flags |= SPLT;
878 			nb = 8;
879 		}
880 		PPC_WARN_ALIGNMENT(vsx, regs);
881 		return emulate_vsx(addr, reg, areg, regs, flags, nb, elsize);
882 	}
883 #endif
884 	/* A size of 0 indicates an instruction we don't support, with
885 	 * the exception of DCBZ which is handled as a special case here
886 	 */
887 	if (instr == DCBZ) {
888 		PPC_WARN_ALIGNMENT(dcbz, regs);
889 		return emulate_dcbz(regs, addr);
890 	}
891 	if (unlikely(nb == 0))
892 		return 0;
893 
894 	/* Load/Store Multiple instructions are handled in their own
895 	 * function
896 	 */
897 	if (flags & M) {
898 		PPC_WARN_ALIGNMENT(multiple, regs);
899 		return emulate_multiple(regs, addr, reg, nb,
900 					flags, instr, swiz);
901 	}
902 
903 	/* Verify the address of the operand */
904 	if (unlikely(user_mode(regs) &&
905 		     !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
906 				addr, nb)))
907 		return -EFAULT;
908 
909 	/* Force the fprs into the save area so we can reference them */
910 	if (flags & F) {
911 		/* userland only */
912 		if (unlikely(!user_mode(regs)))
913 			return 0;
914 		flush_fp_to_thread(current);
915 	}
916 
917 	/* Special case for 16-byte FP loads and stores */
918 	if (nb == 16) {
919 		PPC_WARN_ALIGNMENT(fp_pair, regs);
920 		return emulate_fp_pair(addr, reg, flags);
921 	}
922 
923 	PPC_WARN_ALIGNMENT(unaligned, regs);
924 
925 	/* If we are loading, get the data from user space, else
926 	 * get it from register values
927 	 */
928 	if (!(flags & ST)) {
929 		unsigned int start = 0;
930 
931 		switch (nb) {
932 		case 4:
933 			start = offsetof(union data, x32.low32);
934 			break;
935 		case 2:
936 			start = offsetof(union data, x16.low16);
937 			break;
938 		}
939 
940 		data.ll = 0;
941 		ret = 0;
942 		p = (unsigned long)addr;
943 
944 		for (i = 0; i < nb; i++)
945 			ret |= __get_user_inatomic(data.v[start + i],
946 						   SWIZ_PTR(p++));
947 
948 		if (unlikely(ret))
949 			return -EFAULT;
950 
951 	} else if (flags & F) {
952 		data.ll = current->thread.TS_FPR(reg);
953 		if (flags & S) {
954 			/* Single-precision FP store requires conversion... */
955 #ifdef CONFIG_PPC_FPU
956 			preempt_disable();
957 			enable_kernel_fp();
958 			cvt_df(&data.dd, (float *)&data.x32.low32);
959 			preempt_enable();
960 #else
961 			return 0;
962 #endif
963 		}
964 	} else
965 		data.ll = regs->gpr[reg];
966 
967 	if (flags & SW) {
968 		switch (nb) {
969 		case 8:
970 			data.ll = swab64(data.ll);
971 			break;
972 		case 4:
973 			data.x32.low32 = swab32(data.x32.low32);
974 			break;
975 		case 2:
976 			data.x16.low16 = swab16(data.x16.low16);
977 			break;
978 		}
979 	}
980 
981 	/* Perform other misc operations like sign extension
982 	 * or floating point single precision conversion
983 	 */
984 	switch (flags & ~(U|SW)) {
985 	case LD+SE:	/* sign extending integer loads */
986 	case LD+F+SE:	/* sign extend for lfiwax */
987 		if ( nb == 2 )
988 			data.ll = data.x16.low16;
989 		else	/* nb must be 4 */
990 			data.ll = data.x32.low32;
991 		break;
992 
993 	/* Single-precision FP load requires conversion... */
994 	case LD+F+S:
995 #ifdef CONFIG_PPC_FPU
996 		preempt_disable();
997 		enable_kernel_fp();
998 		cvt_fd((float *)&data.x32.low32, &data.dd);
999 		preempt_enable();
1000 #else
1001 		return 0;
1002 #endif
1003 		break;
1004 	}
1005 
1006 	/* Store result to memory or update registers */
1007 	if (flags & ST) {
1008 		unsigned int start = 0;
1009 
1010 		switch (nb) {
1011 		case 4:
1012 			start = offsetof(union data, x32.low32);
1013 			break;
1014 		case 2:
1015 			start = offsetof(union data, x16.low16);
1016 			break;
1017 		}
1018 
1019 		ret = 0;
1020 		p = (unsigned long)addr;
1021 
1022 		for (i = 0; i < nb; i++)
1023 			ret |= __put_user_inatomic(data.v[start + i],
1024 						   SWIZ_PTR(p++));
1025 
1026 		if (unlikely(ret))
1027 			return -EFAULT;
1028 	} else if (flags & F)
1029 		current->thread.TS_FPR(reg) = data.ll;
1030 	else
1031 		regs->gpr[reg] = data.ll;
1032 
1033 	/* Update RA as needed */
1034 	if (flags & U)
1035 		regs->gpr[areg] = regs->dar;
1036 
1037 	return 1;
1038 }
1039