xref: /openbmc/linux/arch/powerpc/kernel/align.c (revision 64c70b1c)
1 /* align.c - handle alignment exceptions for the Power PC.
2  *
3  * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
4  * Copyright (c) 1998-1999 TiVo, Inc.
5  *   PowerPC 403GCX modifications.
6  * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
7  *   PowerPC 403GCX/405GP modifications.
8  * Copyright (c) 2001-2002 PPC64 team, IBM Corp
9  *   64-bit and Power4 support
10  * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
11  *                    <benh@kernel.crashing.org>
12  *   Merge ppc32 and ppc64 implementations
13  *
14  * This program is free software; you can redistribute it and/or
15  * modify it under the terms of the GNU General Public License
16  * as published by the Free Software Foundation; either version
17  * 2 of the License, or (at your option) any later version.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <asm/processor.h>
23 #include <asm/uaccess.h>
24 #include <asm/system.h>
25 #include <asm/cache.h>
26 #include <asm/cputable.h>
27 
28 struct aligninfo {
29 	unsigned char len;
30 	unsigned char flags;
31 };
32 
33 #define IS_XFORM(inst)	(((inst) >> 26) == 31)
34 #define IS_DSFORM(inst)	(((inst) >> 26) >= 56)
35 
36 #define INVALID	{ 0, 0 }
37 
38 /* Bits in the flags field */
39 #define LD	0	/* load */
40 #define ST	1	/* store */
41 #define	SE	2	/* sign-extend value */
42 #define F	4	/* to/from fp regs */
43 #define U	8	/* update index register */
44 #define M	0x10	/* multiple load/store */
45 #define SW	0x20	/* byte swap */
46 #define S	0x40	/* single-precision fp or... */
47 #define SX	0x40	/* ... byte count in XER */
48 #define HARD	0x80	/* string, stwcx. */
49 
50 /* DSISR bits reported for a DCBZ instruction: */
51 #define DCBZ	0x5f	/* 8xx/82xx dcbz faults when cache not enabled */
52 
53 #define SWAP(a, b)	(t = (a), (a) = (b), (b) = t)
54 
55 /*
56  * The PowerPC stores certain bits of the instruction that caused the
57  * alignment exception in the DSISR register.  This array maps those
58  * bits to information about the operand length and what the
59  * instruction would do.
60  */
61 static struct aligninfo aligninfo[128] = {
62 	{ 4, LD },		/* 00 0 0000: lwz / lwarx */
63 	INVALID,		/* 00 0 0001 */
64 	{ 4, ST },		/* 00 0 0010: stw */
65 	INVALID,		/* 00 0 0011 */
66 	{ 2, LD },		/* 00 0 0100: lhz */
67 	{ 2, LD+SE },		/* 00 0 0101: lha */
68 	{ 2, ST },		/* 00 0 0110: sth */
69 	{ 4, LD+M },		/* 00 0 0111: lmw */
70 	{ 4, LD+F+S },		/* 00 0 1000: lfs */
71 	{ 8, LD+F },		/* 00 0 1001: lfd */
72 	{ 4, ST+F+S },		/* 00 0 1010: stfs */
73 	{ 8, ST+F },		/* 00 0 1011: stfd */
74 	INVALID,		/* 00 0 1100 */
75 	{ 8, LD },		/* 00 0 1101: ld/ldu/lwa */
76 	INVALID,		/* 00 0 1110 */
77 	{ 8, ST },		/* 00 0 1111: std/stdu */
78 	{ 4, LD+U },		/* 00 1 0000: lwzu */
79 	INVALID,		/* 00 1 0001 */
80 	{ 4, ST+U },		/* 00 1 0010: stwu */
81 	INVALID,		/* 00 1 0011 */
82 	{ 2, LD+U },		/* 00 1 0100: lhzu */
83 	{ 2, LD+SE+U },		/* 00 1 0101: lhau */
84 	{ 2, ST+U },		/* 00 1 0110: sthu */
85 	{ 4, ST+M },		/* 00 1 0111: stmw */
86 	{ 4, LD+F+S+U },	/* 00 1 1000: lfsu */
87 	{ 8, LD+F+U },		/* 00 1 1001: lfdu */
88 	{ 4, ST+F+S+U },	/* 00 1 1010: stfsu */
89 	{ 8, ST+F+U },		/* 00 1 1011: stfdu */
90 	INVALID,		/* 00 1 1100 */
91 	INVALID,		/* 00 1 1101 */
92 	INVALID,		/* 00 1 1110 */
93 	INVALID,		/* 00 1 1111 */
94 	{ 8, LD },		/* 01 0 0000: ldx */
95 	INVALID,		/* 01 0 0001 */
96 	{ 8, ST },		/* 01 0 0010: stdx */
97 	INVALID,		/* 01 0 0011 */
98 	INVALID,		/* 01 0 0100 */
99 	{ 4, LD+SE },		/* 01 0 0101: lwax */
100 	INVALID,		/* 01 0 0110 */
101 	INVALID,		/* 01 0 0111 */
102 	{ 4, LD+M+HARD+SX },	/* 01 0 1000: lswx */
103 	{ 4, LD+M+HARD },	/* 01 0 1001: lswi */
104 	{ 4, ST+M+HARD+SX },	/* 01 0 1010: stswx */
105 	{ 4, ST+M+HARD },	/* 01 0 1011: stswi */
106 	INVALID,		/* 01 0 1100 */
107 	{ 8, LD+U },		/* 01 0 1101: ldu */
108 	INVALID,		/* 01 0 1110 */
109 	{ 8, ST+U },		/* 01 0 1111: stdu */
110 	{ 8, LD+U },		/* 01 1 0000: ldux */
111 	INVALID,		/* 01 1 0001 */
112 	{ 8, ST+U },		/* 01 1 0010: stdux */
113 	INVALID,		/* 01 1 0011 */
114 	INVALID,		/* 01 1 0100 */
115 	{ 4, LD+SE+U },		/* 01 1 0101: lwaux */
116 	INVALID,		/* 01 1 0110 */
117 	INVALID,		/* 01 1 0111 */
118 	INVALID,		/* 01 1 1000 */
119 	INVALID,		/* 01 1 1001 */
120 	INVALID,		/* 01 1 1010 */
121 	INVALID,		/* 01 1 1011 */
122 	INVALID,		/* 01 1 1100 */
123 	INVALID,		/* 01 1 1101 */
124 	INVALID,		/* 01 1 1110 */
125 	INVALID,		/* 01 1 1111 */
126 	INVALID,		/* 10 0 0000 */
127 	INVALID,		/* 10 0 0001 */
128 	INVALID,		/* 10 0 0010: stwcx. */
129 	INVALID,		/* 10 0 0011 */
130 	INVALID,		/* 10 0 0100 */
131 	INVALID,		/* 10 0 0101 */
132 	INVALID,		/* 10 0 0110 */
133 	INVALID,		/* 10 0 0111 */
134 	{ 4, LD+SW },		/* 10 0 1000: lwbrx */
135 	INVALID,		/* 10 0 1001 */
136 	{ 4, ST+SW },		/* 10 0 1010: stwbrx */
137 	INVALID,		/* 10 0 1011 */
138 	{ 2, LD+SW },		/* 10 0 1100: lhbrx */
139 	{ 4, LD+SE },		/* 10 0 1101  lwa */
140 	{ 2, ST+SW },		/* 10 0 1110: sthbrx */
141 	INVALID,		/* 10 0 1111 */
142 	INVALID,		/* 10 1 0000 */
143 	INVALID,		/* 10 1 0001 */
144 	INVALID,		/* 10 1 0010 */
145 	INVALID,		/* 10 1 0011 */
146 	INVALID,		/* 10 1 0100 */
147 	INVALID,		/* 10 1 0101 */
148 	INVALID,		/* 10 1 0110 */
149 	INVALID,		/* 10 1 0111 */
150 	INVALID,		/* 10 1 1000 */
151 	INVALID,		/* 10 1 1001 */
152 	INVALID,		/* 10 1 1010 */
153 	INVALID,		/* 10 1 1011 */
154 	INVALID,		/* 10 1 1100 */
155 	INVALID,		/* 10 1 1101 */
156 	INVALID,		/* 10 1 1110 */
157 	{ 0, ST+HARD },		/* 10 1 1111: dcbz */
158 	{ 4, LD },		/* 11 0 0000: lwzx */
159 	INVALID,		/* 11 0 0001 */
160 	{ 4, ST },		/* 11 0 0010: stwx */
161 	INVALID,		/* 11 0 0011 */
162 	{ 2, LD },		/* 11 0 0100: lhzx */
163 	{ 2, LD+SE },		/* 11 0 0101: lhax */
164 	{ 2, ST },		/* 11 0 0110: sthx */
165 	INVALID,		/* 11 0 0111 */
166 	{ 4, LD+F+S },		/* 11 0 1000: lfsx */
167 	{ 8, LD+F },		/* 11 0 1001: lfdx */
168 	{ 4, ST+F+S },		/* 11 0 1010: stfsx */
169 	{ 8, ST+F },		/* 11 0 1011: stfdx */
170 	INVALID,		/* 11 0 1100 */
171 	{ 8, LD+M },		/* 11 0 1101: lmd */
172 	INVALID,		/* 11 0 1110 */
173 	{ 8, ST+M },		/* 11 0 1111: stmd */
174 	{ 4, LD+U },		/* 11 1 0000: lwzux */
175 	INVALID,		/* 11 1 0001 */
176 	{ 4, ST+U },		/* 11 1 0010: stwux */
177 	INVALID,		/* 11 1 0011 */
178 	{ 2, LD+U },		/* 11 1 0100: lhzux */
179 	{ 2, LD+SE+U },		/* 11 1 0101: lhaux */
180 	{ 2, ST+U },		/* 11 1 0110: sthux */
181 	INVALID,		/* 11 1 0111 */
182 	{ 4, LD+F+S+U },	/* 11 1 1000: lfsux */
183 	{ 8, LD+F+U },		/* 11 1 1001: lfdux */
184 	{ 4, ST+F+S+U },	/* 11 1 1010: stfsux */
185 	{ 8, ST+F+U },		/* 11 1 1011: stfdux */
186 	INVALID,		/* 11 1 1100 */
187 	INVALID,		/* 11 1 1101 */
188 	INVALID,		/* 11 1 1110 */
189 	INVALID,		/* 11 1 1111 */
190 };
191 
192 /*
193  * Create a DSISR value from the instruction
194  */
195 static inline unsigned make_dsisr(unsigned instr)
196 {
197 	unsigned dsisr;
198 
199 
200 	/* bits  6:15 --> 22:31 */
201 	dsisr = (instr & 0x03ff0000) >> 16;
202 
203 	if (IS_XFORM(instr)) {
204 		/* bits 29:30 --> 15:16 */
205 		dsisr |= (instr & 0x00000006) << 14;
206 		/* bit     25 -->    17 */
207 		dsisr |= (instr & 0x00000040) << 8;
208 		/* bits 21:24 --> 18:21 */
209 		dsisr |= (instr & 0x00000780) << 3;
210 	} else {
211 		/* bit      5 -->    17 */
212 		dsisr |= (instr & 0x04000000) >> 12;
213 		/* bits  1: 4 --> 18:21 */
214 		dsisr |= (instr & 0x78000000) >> 17;
215 		/* bits 30:31 --> 12:13 */
216 		if (IS_DSFORM(instr))
217 			dsisr |= (instr & 0x00000003) << 18;
218 	}
219 
220 	return dsisr;
221 }
222 
223 /*
224  * The dcbz (data cache block zero) instruction
225  * gives an alignment fault if used on non-cacheable
226  * memory.  We handle the fault mainly for the
227  * case when we are running with the cache disabled
228  * for debugging.
229  */
230 static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr)
231 {
232 	long __user *p;
233 	int i, size;
234 
235 #ifdef __powerpc64__
236 	size = ppc64_caches.dline_size;
237 #else
238 	size = L1_CACHE_BYTES;
239 #endif
240 	p = (long __user *) (regs->dar & -size);
241 	if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size))
242 		return -EFAULT;
243 	for (i = 0; i < size / sizeof(long); ++i)
244 		if (__put_user_inatomic(0, p+i))
245 			return -EFAULT;
246 	return 1;
247 }
248 
249 /*
250  * Emulate load & store multiple instructions
251  * On 64-bit machines, these instructions only affect/use the
252  * bottom 4 bytes of each register, and the loads clear the
253  * top 4 bytes of the affected register.
254  */
255 #ifdef CONFIG_PPC64
256 #define REG_BYTE(rp, i)		*((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4)
257 #else
258 #define REG_BYTE(rp, i)		*((u8 *)(rp) + (i))
259 #endif
260 
261 #define SWIZ_PTR(p)		((unsigned char __user *)((p) ^ swiz))
262 
263 static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
264 			    unsigned int reg, unsigned int nb,
265 			    unsigned int flags, unsigned int instr,
266 			    unsigned long swiz)
267 {
268 	unsigned long *rptr;
269 	unsigned int nb0, i, bswiz;
270 	unsigned long p;
271 
272 	/*
273 	 * We do not try to emulate 8 bytes multiple as they aren't really
274 	 * available in our operating environments and we don't try to
275 	 * emulate multiples operations in kernel land as they should never
276 	 * be used/generated there at least not on unaligned boundaries
277 	 */
278 	if (unlikely((nb > 4) || !user_mode(regs)))
279 		return 0;
280 
281 	/* lmw, stmw, lswi/x, stswi/x */
282 	nb0 = 0;
283 	if (flags & HARD) {
284 		if (flags & SX) {
285 			nb = regs->xer & 127;
286 			if (nb == 0)
287 				return 1;
288 		} else {
289 			unsigned long pc = regs->nip ^ (swiz & 4);
290 
291 			if (__get_user_inatomic(instr,
292 						(unsigned int __user *)pc))
293 				return -EFAULT;
294 			if (swiz == 0 && (flags & SW))
295 				instr = cpu_to_le32(instr);
296 			nb = (instr >> 11) & 0x1f;
297 			if (nb == 0)
298 				nb = 32;
299 		}
300 		if (nb + reg * 4 > 128) {
301 			nb0 = nb + reg * 4 - 128;
302 			nb = 128 - reg * 4;
303 		}
304 	} else {
305 		/* lwm, stmw */
306 		nb = (32 - reg) * 4;
307 	}
308 
309 	if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0))
310 		return -EFAULT;	/* bad address */
311 
312 	rptr = &regs->gpr[reg];
313 	p = (unsigned long) addr;
314 	bswiz = (flags & SW)? 3: 0;
315 
316 	if (!(flags & ST)) {
317 		/*
318 		 * This zeroes the top 4 bytes of the affected registers
319 		 * in 64-bit mode, and also zeroes out any remaining
320 		 * bytes of the last register for lsw*.
321 		 */
322 		memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long));
323 		if (nb0 > 0)
324 			memset(&regs->gpr[0], 0,
325 			       ((nb0 + 3) / 4) * sizeof(unsigned long));
326 
327 		for (i = 0; i < nb; ++i, ++p)
328 			if (__get_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
329 						SWIZ_PTR(p)))
330 				return -EFAULT;
331 		if (nb0 > 0) {
332 			rptr = &regs->gpr[0];
333 			addr += nb;
334 			for (i = 0; i < nb0; ++i, ++p)
335 				if (__get_user_inatomic(REG_BYTE(rptr,
336 								 i ^ bswiz),
337 							SWIZ_PTR(p)))
338 					return -EFAULT;
339 		}
340 
341 	} else {
342 		for (i = 0; i < nb; ++i, ++p)
343 			if (__put_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
344 						SWIZ_PTR(p)))
345 				return -EFAULT;
346 		if (nb0 > 0) {
347 			rptr = &regs->gpr[0];
348 			addr += nb;
349 			for (i = 0; i < nb0; ++i, ++p)
350 				if (__put_user_inatomic(REG_BYTE(rptr,
351 								 i ^ bswiz),
352 							SWIZ_PTR(p)))
353 					return -EFAULT;
354 		}
355 	}
356 	return 1;
357 }
358 
359 
360 /*
361  * Called on alignment exception. Attempts to fixup
362  *
363  * Return 1 on success
364  * Return 0 if unable to handle the interrupt
365  * Return -EFAULT if data address is bad
366  */
367 
368 int fix_alignment(struct pt_regs *regs)
369 {
370 	unsigned int instr, nb, flags;
371 	unsigned int reg, areg;
372 	unsigned int dsisr;
373 	unsigned char __user *addr;
374 	unsigned long p, swiz;
375 	int ret, t;
376 	union {
377 		u64 ll;
378 		double dd;
379 		unsigned char v[8];
380 		struct {
381 			unsigned hi32;
382 			int	 low32;
383 		} x32;
384 		struct {
385 			unsigned char hi48[6];
386 			short	      low16;
387 		} x16;
388 	} data;
389 
390 	/*
391 	 * We require a complete register set, if not, then our assembly
392 	 * is broken
393 	 */
394 	CHECK_FULL_REGS(regs);
395 
396 	dsisr = regs->dsisr;
397 
398 	/* Some processors don't provide us with a DSISR we can use here,
399 	 * let's make one up from the instruction
400 	 */
401 	if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) {
402 		unsigned long pc = regs->nip;
403 
404 		if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE))
405 			pc ^= 4;
406 		if (unlikely(__get_user_inatomic(instr,
407 						 (unsigned int __user *)pc)))
408 			return -EFAULT;
409 		if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE))
410 			instr = cpu_to_le32(instr);
411 		dsisr = make_dsisr(instr);
412 	}
413 
414 	/* extract the operation and registers from the dsisr */
415 	reg = (dsisr >> 5) & 0x1f;	/* source/dest register */
416 	areg = dsisr & 0x1f;		/* register to update */
417 	instr = (dsisr >> 10) & 0x7f;
418 	instr |= (dsisr >> 13) & 0x60;
419 
420 	/* Lookup the operation in our table */
421 	nb = aligninfo[instr].len;
422 	flags = aligninfo[instr].flags;
423 
424 	/* Byteswap little endian loads and stores */
425 	swiz = 0;
426 	if (regs->msr & MSR_LE) {
427 		flags ^= SW;
428 		/*
429 		 * So-called "PowerPC little endian" mode works by
430 		 * swizzling addresses rather than by actually doing
431 		 * any byte-swapping.  To emulate this, we XOR each
432 		 * byte address with 7.  We also byte-swap, because
433 		 * the processor's address swizzling depends on the
434 		 * operand size (it xors the address with 7 for bytes,
435 		 * 6 for halfwords, 4 for words, 0 for doublewords) but
436 		 * we will xor with 7 and load/store each byte separately.
437 		 */
438 		if (cpu_has_feature(CPU_FTR_PPC_LE))
439 			swiz = 7;
440 	}
441 
442 	/* DAR has the operand effective address */
443 	addr = (unsigned char __user *)regs->dar;
444 
445 	/* A size of 0 indicates an instruction we don't support, with
446 	 * the exception of DCBZ which is handled as a special case here
447 	 */
448 	if (instr == DCBZ)
449 		return emulate_dcbz(regs, addr);
450 	if (unlikely(nb == 0))
451 		return 0;
452 
453 	/* Load/Store Multiple instructions are handled in their own
454 	 * function
455 	 */
456 	if (flags & M)
457 		return emulate_multiple(regs, addr, reg, nb,
458 					flags, instr, swiz);
459 
460 	/* Verify the address of the operand */
461 	if (unlikely(user_mode(regs) &&
462 		     !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
463 				addr, nb)))
464 		return -EFAULT;
465 
466 	/* Force the fprs into the save area so we can reference them */
467 	if (flags & F) {
468 		/* userland only */
469 		if (unlikely(!user_mode(regs)))
470 			return 0;
471 		flush_fp_to_thread(current);
472 	}
473 
474 	/* If we are loading, get the data from user space, else
475 	 * get it from register values
476 	 */
477 	if (!(flags & ST)) {
478 		data.ll = 0;
479 		ret = 0;
480 		p = (unsigned long) addr;
481 		switch (nb) {
482 		case 8:
483 			ret |= __get_user_inatomic(data.v[0], SWIZ_PTR(p++));
484 			ret |= __get_user_inatomic(data.v[1], SWIZ_PTR(p++));
485 			ret |= __get_user_inatomic(data.v[2], SWIZ_PTR(p++));
486 			ret |= __get_user_inatomic(data.v[3], SWIZ_PTR(p++));
487 		case 4:
488 			ret |= __get_user_inatomic(data.v[4], SWIZ_PTR(p++));
489 			ret |= __get_user_inatomic(data.v[5], SWIZ_PTR(p++));
490 		case 2:
491 			ret |= __get_user_inatomic(data.v[6], SWIZ_PTR(p++));
492 			ret |= __get_user_inatomic(data.v[7], SWIZ_PTR(p++));
493 			if (unlikely(ret))
494 				return -EFAULT;
495 		}
496 	} else if (flags & F) {
497 		data.dd = current->thread.fpr[reg];
498 		if (flags & S) {
499 			/* Single-precision FP store requires conversion... */
500 #ifdef CONFIG_PPC_FPU
501 			preempt_disable();
502 			enable_kernel_fp();
503 			cvt_df(&data.dd, (float *)&data.v[4], &current->thread);
504 			preempt_enable();
505 #else
506 			return 0;
507 #endif
508 		}
509 	} else
510 		data.ll = regs->gpr[reg];
511 
512 	if (flags & SW) {
513 		switch (nb) {
514 		case 8:
515 			SWAP(data.v[0], data.v[7]);
516 			SWAP(data.v[1], data.v[6]);
517 			SWAP(data.v[2], data.v[5]);
518 			SWAP(data.v[3], data.v[4]);
519 			break;
520 		case 4:
521 			SWAP(data.v[4], data.v[7]);
522 			SWAP(data.v[5], data.v[6]);
523 			break;
524 		case 2:
525 			SWAP(data.v[6], data.v[7]);
526 			break;
527 		}
528 	}
529 
530 	/* Perform other misc operations like sign extension
531 	 * or floating point single precision conversion
532 	 */
533 	switch (flags & ~(U|SW)) {
534 	case LD+SE:	/* sign extend */
535 		if ( nb == 2 )
536 			data.ll = data.x16.low16;
537 		else	/* nb must be 4 */
538 			data.ll = data.x32.low32;
539 		break;
540 
541 	/* Single-precision FP load requires conversion... */
542 	case LD+F+S:
543 #ifdef CONFIG_PPC_FPU
544 		preempt_disable();
545 		enable_kernel_fp();
546 		cvt_fd((float *)&data.v[4], &data.dd, &current->thread);
547 		preempt_enable();
548 #else
549 		return 0;
550 #endif
551 		break;
552 	}
553 
554 	/* Store result to memory or update registers */
555 	if (flags & ST) {
556 		ret = 0;
557 		p = (unsigned long) addr;
558 		switch (nb) {
559 		case 8:
560 			ret |= __put_user_inatomic(data.v[0], SWIZ_PTR(p++));
561 			ret |= __put_user_inatomic(data.v[1], SWIZ_PTR(p++));
562 			ret |= __put_user_inatomic(data.v[2], SWIZ_PTR(p++));
563 			ret |= __put_user_inatomic(data.v[3], SWIZ_PTR(p++));
564 		case 4:
565 			ret |= __put_user_inatomic(data.v[4], SWIZ_PTR(p++));
566 			ret |= __put_user_inatomic(data.v[5], SWIZ_PTR(p++));
567 		case 2:
568 			ret |= __put_user_inatomic(data.v[6], SWIZ_PTR(p++));
569 			ret |= __put_user_inatomic(data.v[7], SWIZ_PTR(p++));
570 		}
571 		if (unlikely(ret))
572 			return -EFAULT;
573 	} else if (flags & F)
574 		current->thread.fpr[reg] = data.dd;
575 	else
576 		regs->gpr[reg] = data.ll;
577 
578 	/* Update RA as needed */
579 	if (flags & U)
580 		regs->gpr[areg] = regs->dar;
581 
582 	return 1;
583 }
584