xref: /openbmc/linux/arch/powerpc/include/asm/xive.h (revision a6ca5ac746d104019e76c29e69c2a1fc6dd2b29f)
1 /*
2  * Copyright 2016,2017 IBM Corporation.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version
7  * 2 of the License, or (at your option) any later version.
8  */
9 #ifndef _ASM_POWERPC_XIVE_H
10 #define _ASM_POWERPC_XIVE_H
11 
12 #define XIVE_INVALID_VP	0xffffffff
13 
14 #ifdef CONFIG_PPC_XIVE
15 
16 /*
17  * Thread Interrupt Management Area (TIMA)
18  *
19  * This is a global MMIO region divided in 4 pages of varying access
20  * permissions, providing access to per-cpu interrupt management
21  * functions. It always identifies the CPU doing the access based
22  * on the PowerBus initiator ID, thus we always access via the
23  * same offset regardless of where the code is executing
24  */
25 extern void __iomem *xive_tima;
26 
27 /*
28  * Offset in the TM area of our current execution level (provided by
29  * the backend)
30  */
31 extern u32 xive_tima_offset;
32 
33 /*
34  * Per-irq data (irq_get_handler_data for normal IRQs), IPIs
35  * have it stored in the xive_cpu structure. We also cache
36  * for normal interrupts the current target CPU.
37  *
38  * This structure is setup by the backend for each interrupt.
39  */
40 struct xive_irq_data {
41 	u64 flags;
42 	u64 eoi_page;
43 	void __iomem *eoi_mmio;
44 	u64 trig_page;
45 	void __iomem *trig_mmio;
46 	u32 esb_shift;
47 	int src_chip;
48 
49 	/* Setup/used by frontend */
50 	int target;
51 	bool saved_p;
52 };
53 #define XIVE_IRQ_FLAG_STORE_EOI	0x01
54 #define XIVE_IRQ_FLAG_LSI	0x02
55 #define XIVE_IRQ_FLAG_SHIFT_BUG	0x04
56 #define XIVE_IRQ_FLAG_MASK_FW	0x08
57 #define XIVE_IRQ_FLAG_EOI_FW	0x10
58 
59 #define XIVE_INVALID_CHIP_ID	-1
60 
61 /* A queue tracking structure in a CPU */
62 struct xive_q {
63 	__be32 			*qpage;
64 	u32			msk;
65 	u32			idx;
66 	u32			toggle;
67 	u64			eoi_phys;
68 	u32			esc_irq;
69 	atomic_t		count;
70 	atomic_t		pending_count;
71 };
72 
73 /*
74  * "magic" Event State Buffer (ESB) MMIO offsets.
75  *
76  * Each interrupt source has a 2-bit state machine called ESB
77  * which can be controlled by MMIO. It's made of 2 bits, P and
78  * Q. P indicates that an interrupt is pending (has been sent
79  * to a queue and is waiting for an EOI). Q indicates that the
80  * interrupt has been triggered while pending.
81  *
82  * This acts as a coalescing mechanism in order to guarantee
83  * that a given interrupt only occurs at most once in a queue.
84  *
85  * When doing an EOI, the Q bit will indicate if the interrupt
86  * needs to be re-triggered.
87  *
88  * The following offsets into the ESB MMIO allow to read or
89  * manipulate the PQ bits. They must be used with an 8-bytes
90  * load instruction. They all return the previous state of the
91  * interrupt (atomically).
92  *
93  * Additionally, some ESB pages support doing an EOI via a
94  * store at 0 and some ESBs support doing a trigger via a
95  * separate trigger page.
96  */
97 #define XIVE_ESB_GET		0x800
98 #define XIVE_ESB_SET_PQ_00	0xc00
99 #define XIVE_ESB_SET_PQ_01	0xd00
100 #define XIVE_ESB_SET_PQ_10	0xe00
101 #define XIVE_ESB_SET_PQ_11	0xf00
102 
103 #define XIVE_ESB_VAL_P		0x2
104 #define XIVE_ESB_VAL_Q		0x1
105 
106 /* Global enable flags for the XIVE support */
107 extern bool __xive_enabled;
108 
109 static inline bool xive_enabled(void) { return __xive_enabled; }
110 
111 extern bool xive_native_init(void);
112 extern void xive_smp_probe(void);
113 extern int  xive_smp_prepare_cpu(unsigned int cpu);
114 extern void xive_smp_setup_cpu(void);
115 extern void xive_smp_disable_cpu(void);
116 extern void xive_kexec_teardown_cpu(int secondary);
117 extern void xive_shutdown(void);
118 extern void xive_flush_interrupt(void);
119 
120 /* xmon hook */
121 extern void xmon_xive_do_dump(int cpu);
122 
123 /* APIs used by KVM */
124 extern u32 xive_native_default_eq_shift(void);
125 extern u32 xive_native_alloc_vp_block(u32 max_vcpus);
126 extern void xive_native_free_vp_block(u32 vp_base);
127 extern int xive_native_populate_irq_data(u32 hw_irq,
128 					 struct xive_irq_data *data);
129 extern void xive_cleanup_irq_data(struct xive_irq_data *xd);
130 extern u32 xive_native_alloc_irq(void);
131 extern void xive_native_free_irq(u32 irq);
132 extern int xive_native_configure_irq(u32 hw_irq, u32 target, u8 prio, u32 sw_irq);
133 
134 extern int xive_native_configure_queue(u32 vp_id, struct xive_q *q, u8 prio,
135 				       __be32 *qpage, u32 order, bool can_escalate);
136 extern void xive_native_disable_queue(u32 vp_id, struct xive_q *q, u8 prio);
137 
138 extern void xive_native_sync_source(u32 hw_irq);
139 extern bool is_xive_irq(struct irq_chip *chip);
140 extern int xive_native_enable_vp(u32 vp_id);
141 extern int xive_native_disable_vp(u32 vp_id);
142 extern int xive_native_get_vp_info(u32 vp_id, u32 *out_cam_id, u32 *out_chip_id);
143 
144 #else
145 
146 static inline bool xive_enabled(void) { return false; }
147 
148 static inline bool xive_native_init(void) { return false; }
149 static inline void xive_smp_probe(void) { }
150 extern inline int  xive_smp_prepare_cpu(unsigned int cpu) { return -EINVAL; }
151 static inline void xive_smp_setup_cpu(void) { }
152 static inline void xive_smp_disable_cpu(void) { }
153 static inline void xive_kexec_teardown_cpu(int secondary) { }
154 static inline void xive_shutdown(void) { }
155 static inline void xive_flush_interrupt(void) { }
156 
157 static inline u32 xive_native_alloc_vp_block(u32 max_vcpus) { return XIVE_INVALID_VP; }
158 static inline void xive_native_free_vp_block(u32 vp_base) { }
159 
160 #endif
161 
162 #endif /* _ASM_POWERPC_XIVE_H */
163