1 /* 2 * Copyright 2016,2017 IBM Corporation. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 */ 9 #ifndef _ASM_POWERPC_XIVE_REGS_H 10 #define _ASM_POWERPC_XIVE_REGS_H 11 12 /* 13 * "magic" Event State Buffer (ESB) MMIO offsets. 14 * 15 * Each interrupt source has a 2-bit state machine called ESB 16 * which can be controlled by MMIO. It's made of 2 bits, P and 17 * Q. P indicates that an interrupt is pending (has been sent 18 * to a queue and is waiting for an EOI). Q indicates that the 19 * interrupt has been triggered while pending. 20 * 21 * This acts as a coalescing mechanism in order to guarantee 22 * that a given interrupt only occurs at most once in a queue. 23 * 24 * When doing an EOI, the Q bit will indicate if the interrupt 25 * needs to be re-triggered. 26 * 27 * The following offsets into the ESB MMIO allow to read or 28 * manipulate the PQ bits. They must be used with an 8-bytes 29 * load instruction. They all return the previous state of the 30 * interrupt (atomically). 31 * 32 * Additionally, some ESB pages support doing an EOI via a 33 * store at 0 and some ESBs support doing a trigger via a 34 * separate trigger page. 35 */ 36 #define XIVE_ESB_STORE_EOI 0x400 /* Store */ 37 #define XIVE_ESB_LOAD_EOI 0x000 /* Load */ 38 #define XIVE_ESB_GET 0x800 /* Load */ 39 #define XIVE_ESB_SET_PQ_00 0xc00 /* Load */ 40 #define XIVE_ESB_SET_PQ_01 0xd00 /* Load */ 41 #define XIVE_ESB_SET_PQ_10 0xe00 /* Load */ 42 #define XIVE_ESB_SET_PQ_11 0xf00 /* Load */ 43 44 #define XIVE_ESB_VAL_P 0x2 45 #define XIVE_ESB_VAL_Q 0x1 46 47 /* 48 * Thread Management (aka "TM") registers 49 */ 50 51 /* TM register offsets */ 52 #define TM_QW0_USER 0x000 /* All rings */ 53 #define TM_QW1_OS 0x010 /* Ring 0..2 */ 54 #define TM_QW2_HV_POOL 0x020 /* Ring 0..1 */ 55 #define TM_QW3_HV_PHYS 0x030 /* Ring 0..1 */ 56 57 /* Byte offsets inside a QW QW0 QW1 QW2 QW3 */ 58 #define TM_NSR 0x0 /* + + - + */ 59 #define TM_CPPR 0x1 /* - + - + */ 60 #define TM_IPB 0x2 /* - + + + */ 61 #define TM_LSMFB 0x3 /* - + + + */ 62 #define TM_ACK_CNT 0x4 /* - + - - */ 63 #define TM_INC 0x5 /* - + - + */ 64 #define TM_AGE 0x6 /* - + - + */ 65 #define TM_PIPR 0x7 /* - + - + */ 66 67 #define TM_WORD0 0x0 68 #define TM_WORD1 0x4 69 70 /* 71 * QW word 2 contains the valid bit at the top and other fields 72 * depending on the QW. 73 */ 74 #define TM_WORD2 0x8 75 #define TM_QW0W2_VU PPC_BIT32(0) 76 #define TM_QW0W2_LOGIC_SERV PPC_BITMASK32(1,31) // XX 2,31 ? 77 #define TM_QW1W2_VO PPC_BIT32(0) 78 #define TM_QW1W2_OS_CAM PPC_BITMASK32(8,31) 79 #define TM_QW2W2_VP PPC_BIT32(0) 80 #define TM_QW2W2_POOL_CAM PPC_BITMASK32(8,31) 81 #define TM_QW3W2_VT PPC_BIT32(0) 82 #define TM_QW3W2_LP PPC_BIT32(6) 83 #define TM_QW3W2_LE PPC_BIT32(7) 84 #define TM_QW3W2_T PPC_BIT32(31) 85 86 /* 87 * In addition to normal loads to "peek" and writes (only when invalid) 88 * using 4 and 8 bytes accesses, the above registers support these 89 * "special" byte operations: 90 * 91 * - Byte load from QW0[NSR] - User level NSR (EBB) 92 * - Byte store to QW0[NSR] - User level NSR (EBB) 93 * - Byte load/store to QW1[CPPR] and QW3[CPPR] - CPPR access 94 * - Byte load from QW3[TM_WORD2] - Read VT||00000||LP||LE on thrd 0 95 * otherwise VT||0000000 96 * - Byte store to QW3[TM_WORD2] - Set VT bit (and LP/LE if present) 97 * 98 * Then we have all these "special" CI ops at these offset that trigger 99 * all sorts of side effects: 100 */ 101 #define TM_SPC_ACK_EBB 0x800 /* Load8 ack EBB to reg*/ 102 #define TM_SPC_ACK_OS_REG 0x810 /* Load16 ack OS irq to reg */ 103 #define TM_SPC_PUSH_USR_CTX 0x808 /* Store32 Push/Validate user context */ 104 #define TM_SPC_PULL_USR_CTX 0x808 /* Load32 Pull/Invalidate user context */ 105 #define TM_SPC_SET_OS_PENDING 0x812 /* Store8 Set OS irq pending bit */ 106 #define TM_SPC_PULL_OS_CTX 0x818 /* Load32/Load64 Pull/Invalidate OS context to reg */ 107 #define TM_SPC_PULL_POOL_CTX 0x828 /* Load32/Load64 Pull/Invalidate Pool context to reg*/ 108 #define TM_SPC_ACK_HV_REG 0x830 /* Load16 ack HV irq to reg */ 109 #define TM_SPC_PULL_USR_CTX_OL 0xc08 /* Store8 Pull/Inval usr ctx to odd line */ 110 #define TM_SPC_ACK_OS_EL 0xc10 /* Store8 ack OS irq to even line */ 111 #define TM_SPC_ACK_HV_POOL_EL 0xc20 /* Store8 ack HV evt pool to even line */ 112 #define TM_SPC_ACK_HV_EL 0xc30 /* Store8 ack HV irq to even line */ 113 /* XXX more... */ 114 115 /* NSR fields for the various QW ack types */ 116 #define TM_QW0_NSR_EB PPC_BIT8(0) 117 #define TM_QW1_NSR_EO PPC_BIT8(0) 118 #define TM_QW3_NSR_HE PPC_BITMASK8(0,1) 119 #define TM_QW3_NSR_HE_NONE 0 120 #define TM_QW3_NSR_HE_POOL 1 121 #define TM_QW3_NSR_HE_PHYS 2 122 #define TM_QW3_NSR_HE_LSI 3 123 #define TM_QW3_NSR_I PPC_BIT8(2) 124 #define TM_QW3_NSR_GRP_LVL PPC_BIT8(3,7) 125 126 /* Utilities to manipulate these (originaly from OPAL) */ 127 #define MASK_TO_LSH(m) (__builtin_ffsl(m) - 1) 128 #define GETFIELD(m, v) (((v) & (m)) >> MASK_TO_LSH(m)) 129 #define SETFIELD(m, v, val) \ 130 (((v) & ~(m)) | ((((typeof(v))(val)) << MASK_TO_LSH(m)) & (m))) 131 132 #endif /* _ASM_POWERPC_XIVE_REGS_H */ 133