1 #ifndef _SMU_H 2 #define _SMU_H 3 4 /* 5 * Definitions for talking to the SMU chip in newer G5 PowerMacs 6 */ 7 #ifdef __KERNEL__ 8 #include <linux/list.h> 9 #endif 10 #include <linux/types.h> 11 12 /* 13 * Known SMU commands 14 * 15 * Most of what is below comes from looking at the Open Firmware driver, 16 * though this is still incomplete and could use better documentation here 17 * or there... 18 */ 19 20 21 /* 22 * Partition info commands 23 * 24 * These commands are used to retrieve the sdb-partition-XX datas from 25 * the SMU. The length is always 2. First byte is the subcommand code 26 * and second byte is the partition ID. 27 * 28 * The reply is 6 bytes: 29 * 30 * - 0..1 : partition address 31 * - 2 : a byte containing the partition ID 32 * - 3 : length (maybe other bits are rest of header ?) 33 * 34 * The data must then be obtained with calls to another command: 35 * SMU_CMD_MISC_ee_GET_DATABLOCK_REC (described below). 36 */ 37 #define SMU_CMD_PARTITION_COMMAND 0x3e 38 #define SMU_CMD_PARTITION_LATEST 0x01 39 #define SMU_CMD_PARTITION_BASE 0x02 40 #define SMU_CMD_PARTITION_UPDATE 0x03 41 42 43 /* 44 * Fan control 45 * 46 * This is a "mux" for fan control commands. The command seem to 47 * act differently based on the number of arguments. With 1 byte 48 * of argument, this seem to be queries for fans status, setpoint, 49 * etc..., while with 0xe arguments, we will set the fans speeds. 50 * 51 * Queries (1 byte arg): 52 * --------------------- 53 * 54 * arg=0x01: read RPM fans status 55 * arg=0x02: read RPM fans setpoint 56 * arg=0x11: read PWM fans status 57 * arg=0x12: read PWM fans setpoint 58 * 59 * the "status" queries return the current speed while the "setpoint" ones 60 * return the programmed/target speed. It _seems_ that the result is a bit 61 * mask in the first byte of active/available fans, followed by 6 words (16 62 * bits) containing the requested speed. 63 * 64 * Setpoint (14 bytes arg): 65 * ------------------------ 66 * 67 * first arg byte is 0 for RPM fans and 0x10 for PWM. Second arg byte is the 68 * mask of fans affected by the command. Followed by 6 words containing the 69 * setpoint value for selected fans in the mask (or 0 if mask value is 0) 70 */ 71 #define SMU_CMD_FAN_COMMAND 0x4a 72 73 74 /* 75 * Battery access 76 * 77 * Same command number as the PMU, could it be same syntax ? 78 */ 79 #define SMU_CMD_BATTERY_COMMAND 0x6f 80 #define SMU_CMD_GET_BATTERY_INFO 0x00 81 82 /* 83 * Real time clock control 84 * 85 * This is a "mux", first data byte contains the "sub" command. 86 * The "RTC" part of the SMU controls the date, time, powerup 87 * timer, but also a PRAM 88 * 89 * Dates are in BCD format on 7 bytes: 90 * [sec] [min] [hour] [weekday] [month day] [month] [year] 91 * with month being 1 based and year minus 100 92 */ 93 #define SMU_CMD_RTC_COMMAND 0x8e 94 #define SMU_CMD_RTC_SET_PWRUP_TIMER 0x00 /* i: 7 bytes date */ 95 #define SMU_CMD_RTC_GET_PWRUP_TIMER 0x01 /* o: 7 bytes date */ 96 #define SMU_CMD_RTC_STOP_PWRUP_TIMER 0x02 97 #define SMU_CMD_RTC_SET_PRAM_BYTE_ACC 0x20 /* i: 1 byte (address?) */ 98 #define SMU_CMD_RTC_SET_PRAM_AUTOINC 0x21 /* i: 1 byte (data?) */ 99 #define SMU_CMD_RTC_SET_PRAM_LO_BYTES 0x22 /* i: 10 bytes */ 100 #define SMU_CMD_RTC_SET_PRAM_HI_BYTES 0x23 /* i: 10 bytes */ 101 #define SMU_CMD_RTC_GET_PRAM_BYTE 0x28 /* i: 1 bytes (address?) */ 102 #define SMU_CMD_RTC_GET_PRAM_LO_BYTES 0x29 /* o: 10 bytes */ 103 #define SMU_CMD_RTC_GET_PRAM_HI_BYTES 0x2a /* o: 10 bytes */ 104 #define SMU_CMD_RTC_SET_DATETIME 0x80 /* i: 7 bytes date */ 105 #define SMU_CMD_RTC_GET_DATETIME 0x81 /* o: 7 bytes date */ 106 107 /* 108 * i2c commands 109 * 110 * To issue an i2c command, first is to send a parameter block to the 111 * the SMU. This is a command of type 0x9a with 9 bytes of header 112 * eventually followed by data for a write: 113 * 114 * 0: bus number (from device-tree usually, SMU has lots of busses !) 115 * 1: transfer type/format (see below) 116 * 2: device address. For combined and combined4 type transfers, this 117 * is the "write" version of the address (bit 0x01 cleared) 118 * 3: subaddress length (0..3) 119 * 4: subaddress byte 0 (or only byte for subaddress length 1) 120 * 5: subaddress byte 1 121 * 6: subaddress byte 2 122 * 7: combined address (device address for combined mode data phase) 123 * 8: data length 124 * 125 * The transfer types are the same good old Apple ones it seems, 126 * that is: 127 * - 0x00: Simple transfer 128 * - 0x01: Subaddress transfer (addr write + data tx, no restart) 129 * - 0x02: Combined transfer (addr write + restart + data tx) 130 * 131 * This is then followed by actual data for a write. 132 * 133 * At this point, the OF driver seems to have a limitation on transfer 134 * sizes of 0xd bytes on reads and 0x5 bytes on writes. I do not know 135 * wether this is just an OF limit due to some temporary buffer size 136 * or if this is an SMU imposed limit. This driver has the same limitation 137 * for now as I use a 0x10 bytes temporary buffer as well 138 * 139 * Once that is completed, a response is expected from the SMU. This is 140 * obtained via a command of type 0x9a with a length of 1 byte containing 141 * 0 as the data byte. OF also fills the rest of the data buffer with 0xff's 142 * though I can't tell yet if this is actually necessary. Once this command 143 * is complete, at this point, all I can tell is what OF does. OF tests 144 * byte 0 of the reply: 145 * - on read, 0xfe or 0xfc : bus is busy, wait (see below) or nak ? 146 * - on read, 0x00 or 0x01 : reply is in buffer (after the byte 0) 147 * - on write, < 0 -> failure (immediate exit) 148 * - else, OF just exists (without error, weird) 149 * 150 * So on read, there is this wait-for-busy thing when getting a 0xfc or 151 * 0xfe result. OF does a loop of up to 64 retries, waiting 20ms and 152 * doing the above again until either the retries expire or the result 153 * is no longer 0xfe or 0xfc 154 * 155 * The Darwin I2C driver is less subtle though. On any non-success status 156 * from the response command, it waits 5ms and tries again up to 20 times, 157 * it doesn't differenciate between fatal errors or "busy" status. 158 * 159 * This driver provides an asynchronous paramblock based i2c command 160 * interface to be used either directly by low level code or by a higher 161 * level driver interfacing to the linux i2c layer. The current 162 * implementation of this relies on working timers & timer interrupts 163 * though, so be careful of calling context for now. This may be "fixed" 164 * in the future by adding a polling facility. 165 */ 166 #define SMU_CMD_I2C_COMMAND 0x9a 167 /* transfer types */ 168 #define SMU_I2C_TRANSFER_SIMPLE 0x00 169 #define SMU_I2C_TRANSFER_STDSUB 0x01 170 #define SMU_I2C_TRANSFER_COMBINED 0x02 171 172 /* 173 * Power supply control 174 * 175 * The "sub" command is an ASCII string in the data, the 176 * data length is that of the string. 177 * 178 * The VSLEW command can be used to get or set the voltage slewing. 179 * - length 5 (only "VSLEW") : it returns "DONE" and 3 bytes of 180 * reply at data offset 6, 7 and 8. 181 * - length 8 ("VSLEWxyz") has 3 additional bytes appended, and is 182 * used to set the voltage slewing point. The SMU replies with "DONE" 183 * I yet have to figure out their exact meaning of those 3 bytes in 184 * both cases. They seem to be: 185 * x = processor mask 186 * y = op. point index 187 * z = processor freq. step index 188 * I haven't yet decyphered result codes 189 * 190 */ 191 #define SMU_CMD_POWER_COMMAND 0xaa 192 #define SMU_CMD_POWER_RESTART "RESTART" 193 #define SMU_CMD_POWER_SHUTDOWN "SHUTDOWN" 194 #define SMU_CMD_POWER_VOLTAGE_SLEW "VSLEW" 195 196 /* 197 * Read ADC sensors 198 * 199 * This command takes one byte of parameter: the sensor ID (or "reg" 200 * value in the device-tree) and returns a 16 bits value 201 */ 202 #define SMU_CMD_READ_ADC 0xd8 203 204 205 /* Misc commands 206 * 207 * This command seem to be a grab bag of various things 208 * 209 * Parameters: 210 * 1: subcommand 211 */ 212 #define SMU_CMD_MISC_df_COMMAND 0xdf 213 214 /* 215 * Sets "system ready" status 216 * 217 * I did not yet understand how it exactly works or what it does. 218 * 219 * Guessing from OF code, 0x02 activates the display backlight. Apple uses/used 220 * the same codebase for all OF versions. On PowerBooks, this command would 221 * enable the backlight. For the G5s, it only activates the front LED. However, 222 * don't take this for granted. 223 * 224 * Parameters: 225 * 2: status [0x00, 0x01 or 0x02] 226 */ 227 #define SMU_CMD_MISC_df_SET_DISPLAY_LIT 0x02 228 229 /* 230 * Sets mode of power switch. 231 * 232 * What this actually does is not yet known. Maybe it enables some interrupt. 233 * 234 * Parameters: 235 * 2: enable power switch? [0x00 or 0x01] 236 * 3 (optional): enable nmi? [0x00 or 0x01] 237 * 238 * Returns: 239 * If parameter 2 is 0x00 and parameter 3 is not specified, returns wether 240 * NMI is enabled. Otherwise unknown. 241 */ 242 #define SMU_CMD_MISC_df_NMI_OPTION 0x04 243 244 /* Sets LED dimm offset. 245 * 246 * The front LED dimms itself during sleep. Its brightness (or, well, the PWM 247 * frequency) depends on current time. Therefore, the SMU needs to know the 248 * timezone. 249 * 250 * Parameters: 251 * 2-8: unknown (BCD coding) 252 */ 253 #define SMU_CMD_MISC_df_DIMM_OFFSET 0x99 254 255 256 /* 257 * Version info commands 258 * 259 * Parameters: 260 * 1 (optional): Specifies version part to retrieve 261 * 262 * Returns: 263 * Version value 264 */ 265 #define SMU_CMD_VERSION_COMMAND 0xea 266 #define SMU_VERSION_RUNNING 0x00 267 #define SMU_VERSION_BASE 0x01 268 #define SMU_VERSION_UPDATE 0x02 269 270 271 /* 272 * Switches 273 * 274 * These are switches whose status seems to be known to the SMU. 275 * 276 * Parameters: 277 * none 278 * 279 * Result: 280 * Switch bits (ORed, see below) 281 */ 282 #define SMU_CMD_SWITCHES 0xdc 283 284 /* Switches bits */ 285 #define SMU_SWITCH_CASE_CLOSED 0x01 286 #define SMU_SWITCH_AC_POWER 0x04 287 #define SMU_SWITCH_POWER_SWITCH 0x08 288 289 290 /* 291 * Misc commands 292 * 293 * This command seem to be a grab bag of various things 294 * 295 * SMU_CMD_MISC_ee_GET_DATABLOCK_REC is used, among others, to 296 * transfer blocks of data from the SMU. So far, I've decrypted it's 297 * usage to retrieve partition data. In order to do that, you have to 298 * break your transfer in "chunks" since that command cannot transfer 299 * more than a chunk at a time. The chunk size used by OF is 0xe bytes, 300 * but it seems that the darwin driver will let you do 0x1e bytes if 301 * your "PMU" version is >= 0x30. You can get the "PMU" version apparently 302 * either in the last 16 bits of property "smu-version-pmu" or as the 16 303 * bytes at offset 1 of "smu-version-info" 304 * 305 * For each chunk, the command takes 7 bytes of arguments: 306 * byte 0: subcommand code (0x02) 307 * byte 1: 0x04 (always, I don't know what it means, maybe the address 308 * space to use or some other nicety. It's hard coded in OF) 309 * byte 2..5: SMU address of the chunk (big endian 32 bits) 310 * byte 6: size to transfer (up to max chunk size) 311 * 312 * The data is returned directly 313 */ 314 #define SMU_CMD_MISC_ee_COMMAND 0xee 315 #define SMU_CMD_MISC_ee_GET_DATABLOCK_REC 0x02 316 317 /* Retrieves currently used watts. 318 * 319 * Parameters: 320 * 1: 0x03 (Meaning unknown) 321 */ 322 #define SMU_CMD_MISC_ee_GET_WATTS 0x03 323 324 #define SMU_CMD_MISC_ee_LEDS_CTRL 0x04 /* i: 00 (00,01) [00] */ 325 #define SMU_CMD_MISC_ee_GET_DATA 0x05 /* i: 00 , o: ?? */ 326 327 328 /* 329 * Power related commands 330 * 331 * Parameters: 332 * 1: subcommand 333 */ 334 #define SMU_CMD_POWER_EVENTS_COMMAND 0x8f 335 336 /* SMU_POWER_EVENTS subcommands */ 337 enum { 338 SMU_PWR_GET_POWERUP_EVENTS = 0x00, 339 SMU_PWR_SET_POWERUP_EVENTS = 0x01, 340 SMU_PWR_CLR_POWERUP_EVENTS = 0x02, 341 SMU_PWR_GET_WAKEUP_EVENTS = 0x03, 342 SMU_PWR_SET_WAKEUP_EVENTS = 0x04, 343 SMU_PWR_CLR_WAKEUP_EVENTS = 0x05, 344 345 /* 346 * Get last shutdown cause 347 * 348 * Returns: 349 * 1 byte (signed char): Last shutdown cause. Exact meaning unknown. 350 */ 351 SMU_PWR_LAST_SHUTDOWN_CAUSE = 0x07, 352 353 /* 354 * Sets or gets server ID. Meaning or use is unknown. 355 * 356 * Parameters: 357 * 2 (optional): Set server ID (1 byte) 358 * 359 * Returns: 360 * 1 byte (server ID?) 361 */ 362 SMU_PWR_SERVER_ID = 0x08, 363 }; 364 365 /* Power events wakeup bits */ 366 enum { 367 SMU_PWR_WAKEUP_KEY = 0x01, /* Wake on key press */ 368 SMU_PWR_WAKEUP_AC_INSERT = 0x02, /* Wake on AC adapter plug */ 369 SMU_PWR_WAKEUP_AC_CHANGE = 0x04, 370 SMU_PWR_WAKEUP_LID_OPEN = 0x08, 371 SMU_PWR_WAKEUP_RING = 0x10, 372 }; 373 374 375 /* 376 * - Kernel side interface - 377 */ 378 379 #ifdef __KERNEL__ 380 381 /* 382 * Asynchronous SMU commands 383 * 384 * Fill up this structure and submit it via smu_queue_command(), 385 * and get notified by the optional done() callback, or because 386 * status becomes != 1 387 */ 388 389 struct smu_cmd; 390 391 struct smu_cmd 392 { 393 /* public */ 394 u8 cmd; /* command */ 395 int data_len; /* data len */ 396 int reply_len; /* reply len */ 397 void *data_buf; /* data buffer */ 398 void *reply_buf; /* reply buffer */ 399 int status; /* command status */ 400 void (*done)(struct smu_cmd *cmd, void *misc); 401 void *misc; 402 403 /* private */ 404 struct list_head link; 405 }; 406 407 /* 408 * Queues an SMU command, all fields have to be initialized 409 */ 410 extern int smu_queue_cmd(struct smu_cmd *cmd); 411 412 /* 413 * Simple command wrapper. This structure embeds a small buffer 414 * to ease sending simple SMU commands from the stack 415 */ 416 struct smu_simple_cmd 417 { 418 struct smu_cmd cmd; 419 u8 buffer[16]; 420 }; 421 422 /* 423 * Queues a simple command. All fields will be initialized by that 424 * function 425 */ 426 extern int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command, 427 unsigned int data_len, 428 void (*done)(struct smu_cmd *cmd, void *misc), 429 void *misc, 430 ...); 431 432 /* 433 * Completion helper. Pass it to smu_queue_simple or as 'done' 434 * member to smu_queue_cmd, it will call complete() on the struct 435 * completion passed in the "misc" argument 436 */ 437 extern void smu_done_complete(struct smu_cmd *cmd, void *misc); 438 439 /* 440 * Synchronous helpers. Will spin-wait for completion of a command 441 */ 442 extern void smu_spinwait_cmd(struct smu_cmd *cmd); 443 444 static inline void smu_spinwait_simple(struct smu_simple_cmd *scmd) 445 { 446 smu_spinwait_cmd(&scmd->cmd); 447 } 448 449 /* 450 * Poll routine to call if blocked with irqs off 451 */ 452 extern void smu_poll(void); 453 454 455 /* 456 * Init routine, presence check.... 457 */ 458 extern int smu_init(void); 459 extern int smu_present(void); 460 struct platform_device; 461 extern struct platform_device *smu_get_ofdev(void); 462 463 464 /* 465 * Common command wrappers 466 */ 467 extern void smu_shutdown(void); 468 extern void smu_restart(void); 469 struct rtc_time; 470 extern int smu_get_rtc_time(struct rtc_time *time, int spinwait); 471 extern int smu_set_rtc_time(struct rtc_time *time, int spinwait); 472 473 /* 474 * SMU command buffer absolute address, exported by pmac_setup, 475 * this is allocated very early during boot. 476 */ 477 extern unsigned long smu_cmdbuf_abs; 478 479 480 /* 481 * Kenrel asynchronous i2c interface 482 */ 483 484 #define SMU_I2C_READ_MAX 0x1d 485 #define SMU_I2C_WRITE_MAX 0x15 486 487 /* SMU i2c header, exactly matches i2c header on wire */ 488 struct smu_i2c_param 489 { 490 u8 bus; /* SMU bus ID (from device tree) */ 491 u8 type; /* i2c transfer type */ 492 u8 devaddr; /* device address (includes direction) */ 493 u8 sublen; /* subaddress length */ 494 u8 subaddr[3]; /* subaddress */ 495 u8 caddr; /* combined address, filled by SMU driver */ 496 u8 datalen; /* length of transfer */ 497 u8 data[SMU_I2C_READ_MAX]; /* data */ 498 }; 499 500 struct smu_i2c_cmd 501 { 502 /* public */ 503 struct smu_i2c_param info; 504 void (*done)(struct smu_i2c_cmd *cmd, void *misc); 505 void *misc; 506 int status; /* 1 = pending, 0 = ok, <0 = fail */ 507 508 /* private */ 509 struct smu_cmd scmd; 510 int read; 511 int stage; 512 int retries; 513 u8 pdata[32]; 514 struct list_head link; 515 }; 516 517 /* 518 * Call this to queue an i2c command to the SMU. You must fill info, 519 * including info.data for a write, done and misc. 520 * For now, no polling interface is provided so you have to use completion 521 * callback. 522 */ 523 extern int smu_queue_i2c(struct smu_i2c_cmd *cmd); 524 525 526 #endif /* __KERNEL__ */ 527 528 529 /* 530 * - SMU "sdb" partitions informations - 531 */ 532 533 534 /* 535 * Partition header format 536 */ 537 struct smu_sdbp_header { 538 __u8 id; 539 __u8 len; 540 __u8 version; 541 __u8 flags; 542 }; 543 544 545 /* 546 * demangle 16 and 32 bits integer in some SMU partitions 547 * (currently, afaik, this concerns only the FVT partition 548 * (0x12) 549 */ 550 #define SMU_U16_MIX(x) le16_to_cpu(x) 551 #define SMU_U32_MIX(x) ((((x) & 0xff00ff00u) >> 8)|(((x) & 0x00ff00ffu) << 8)) 552 553 554 /* This is the definition of the SMU sdb-partition-0x12 table (called 555 * CPU F/V/T operating points in Darwin). The definition for all those 556 * SMU tables should be moved to some separate file 557 */ 558 #define SMU_SDB_FVT_ID 0x12 559 560 struct smu_sdbp_fvt { 561 __u32 sysclk; /* Base SysClk frequency in Hz for 562 * this operating point. Value need to 563 * be unmixed with SMU_U32_MIX() 564 */ 565 __u8 pad; 566 __u8 maxtemp; /* Max temp. supported by this 567 * operating point 568 */ 569 570 __u16 volts[3]; /* CPU core voltage for the 3 571 * PowerTune modes, a mode with 572 * 0V = not supported. Value need 573 * to be unmixed with SMU_U16_MIX() 574 */ 575 }; 576 577 /* This partition contains voltage & current sensor calibration 578 * informations 579 */ 580 #define SMU_SDB_CPUVCP_ID 0x21 581 582 struct smu_sdbp_cpuvcp { 583 __u16 volt_scale; /* u4.12 fixed point */ 584 __s16 volt_offset; /* s4.12 fixed point */ 585 __u16 curr_scale; /* u4.12 fixed point */ 586 __s16 curr_offset; /* s4.12 fixed point */ 587 __s32 power_quads[3]; /* s4.28 fixed point */ 588 }; 589 590 /* This partition contains CPU thermal diode calibration 591 */ 592 #define SMU_SDB_CPUDIODE_ID 0x18 593 594 struct smu_sdbp_cpudiode { 595 __u16 m_value; /* u1.15 fixed point */ 596 __s16 b_value; /* s10.6 fixed point */ 597 598 }; 599 600 /* This partition contains Slots power calibration 601 */ 602 #define SMU_SDB_SLOTSPOW_ID 0x78 603 604 struct smu_sdbp_slotspow { 605 __u16 pow_scale; /* u4.12 fixed point */ 606 __s16 pow_offset; /* s4.12 fixed point */ 607 }; 608 609 /* This partition contains machine specific version information about 610 * the sensor/control layout 611 */ 612 #define SMU_SDB_SENSORTREE_ID 0x25 613 614 struct smu_sdbp_sensortree { 615 __u8 model_id; 616 __u8 unknown[3]; 617 }; 618 619 /* This partition contains CPU thermal control PID informations. So far 620 * only single CPU machines have been seen with an SMU, so we assume this 621 * carries only informations for those 622 */ 623 #define SMU_SDB_CPUPIDDATA_ID 0x17 624 625 struct smu_sdbp_cpupiddata { 626 __u8 unknown1; 627 __u8 target_temp_delta; 628 __u8 unknown2; 629 __u8 history_len; 630 __s16 power_adj; 631 __u16 max_power; 632 __s32 gp,gr,gd; 633 }; 634 635 636 /* Other partitions without known structures */ 637 #define SMU_SDB_DEBUG_SWITCHES_ID 0x05 638 639 #ifdef __KERNEL__ 640 /* 641 * This returns the pointer to an SMU "sdb" partition data or NULL 642 * if not found. The data format is described below 643 */ 644 extern const struct smu_sdbp_header *smu_get_sdb_partition(int id, 645 unsigned int *size); 646 647 /* Get "sdb" partition data from an SMU satellite */ 648 extern struct smu_sdbp_header *smu_sat_get_sdb_partition(unsigned int sat_id, 649 int id, unsigned int *size); 650 651 652 #endif /* __KERNEL__ */ 653 654 655 /* 656 * - Userland interface - 657 */ 658 659 /* 660 * A given instance of the device can be configured for 2 different 661 * things at the moment: 662 * 663 * - sending SMU commands (default at open() time) 664 * - receiving SMU events (not yet implemented) 665 * 666 * Commands are written with write() of a command block. They can be 667 * "driver" commands (for example to switch to event reception mode) 668 * or real SMU commands. They are made of a header followed by command 669 * data if any. 670 * 671 * For SMU commands (not for driver commands), you can then read() back 672 * a reply. The reader will be blocked or not depending on how the device 673 * file is opened. poll() isn't implemented yet. The reply will consist 674 * of a header as well, followed by the reply data if any. You should 675 * always provide a buffer large enough for the maximum reply data, I 676 * recommand one page. 677 * 678 * It is illegal to send SMU commands through a file descriptor configured 679 * for events reception 680 * 681 */ 682 struct smu_user_cmd_hdr 683 { 684 __u32 cmdtype; 685 #define SMU_CMDTYPE_SMU 0 /* SMU command */ 686 #define SMU_CMDTYPE_WANTS_EVENTS 1 /* switch fd to events mode */ 687 #define SMU_CMDTYPE_GET_PARTITION 2 /* retrieve an sdb partition */ 688 689 __u8 cmd; /* SMU command byte */ 690 __u8 pad[3]; /* padding */ 691 __u32 data_len; /* Length of data following */ 692 }; 693 694 struct smu_user_reply_hdr 695 { 696 __u32 status; /* Command status */ 697 __u32 reply_len; /* Length of data follwing */ 698 }; 699 700 #endif /* _SMU_H */ 701