1 /* Machine-dependent software floating-point definitions. PPC version. 2 Copyright (C) 1997 Free Software Foundation, Inc. 3 This file is part of the GNU C Library. 4 5 The GNU C Library is free software; you can redistribute it and/or 6 modify it under the terms of the GNU Library General Public License as 7 published by the Free Software Foundation; either version 2 of the 8 License, or (at your option) any later version. 9 10 The GNU C Library is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 13 Library General Public License for more details. 14 15 You should have received a copy of the GNU Library General Public 16 License along with the GNU C Library; see the file COPYING.LIB. If 17 not, write to the Free Software Foundation, Inc., 18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 20 Actually, this is a PPC (32bit) version, written based on the 21 i386, sparc, and sparc64 versions, by me, 22 Peter Maydell (pmaydell@chiark.greenend.org.uk). 23 Comments are by and large also mine, although they may be inaccurate. 24 25 In picking out asm fragments I've gone with the lowest common 26 denominator, which also happens to be the hardware I have :-> 27 That is, a SPARC without hardware multiply and divide. 28 */ 29 30 /* basic word size definitions */ 31 #define _FP_W_TYPE_SIZE 32 32 #define _FP_W_TYPE unsigned int 33 #define _FP_WS_TYPE signed int 34 #define _FP_I_TYPE int 35 36 #define __ll_B ((UWtype) 1 << (W_TYPE_SIZE / 2)) 37 #define __ll_lowpart(t) ((UWtype) (t) & (__ll_B - 1)) 38 #define __ll_highpart(t) ((UWtype) (t) >> (W_TYPE_SIZE / 2)) 39 40 /* You can optionally code some things like addition in asm. For 41 * example, i386 defines __FP_FRAC_ADD_2 as asm. If you don't 42 * then you get a fragment of C code [if you change an #ifdef 0 43 * in op-2.h] or a call to add_ssaaaa (see below). 44 * Good places to look for asm fragments to use are gcc and glibc. 45 * gcc's longlong.h is useful. 46 */ 47 48 /* We need to know how to multiply and divide. If the host word size 49 * is >= 2*fracbits you can use FP_MUL_MEAT_n_imm(t,R,X,Y) which 50 * codes the multiply with whatever gcc does to 'a * b'. 51 * _FP_MUL_MEAT_n_wide(t,R,X,Y,f) is used when you have an asm 52 * function that can multiply two 1W values and get a 2W result. 53 * Otherwise you're stuck with _FP_MUL_MEAT_n_hard(t,R,X,Y) which 54 * does bitshifting to avoid overflow. 55 * For division there is FP_DIV_MEAT_n_imm(t,R,X,Y,f) for word size 56 * >= 2*fracbits, where f is either _FP_DIV_HELP_imm or 57 * _FP_DIV_HELP_ldiv (see op-1.h). 58 * _FP_DIV_MEAT_udiv() is if you have asm to do 2W/1W => (1W, 1W). 59 * [GCC and glibc have longlong.h which has the asm macro udiv_qrnnd 60 * to do this.] 61 * In general, 'n' is the number of words required to hold the type, 62 * and 't' is either S, D or Q for single/double/quad. 63 * -- PMM 64 */ 65 /* Example: SPARC64: 66 * #define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_imm(S,R,X,Y) 67 * #define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_1_wide(D,R,X,Y,umul_ppmm) 68 * #define _FP_MUL_MEAT_Q(R,X,Y) _FP_MUL_MEAT_2_wide(Q,R,X,Y,umul_ppmm) 69 * 70 * #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_imm(S,R,X,Y,_FP_DIV_HELP_imm) 71 * #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_1_udiv(D,R,X,Y) 72 * #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_2_udiv_64(Q,R,X,Y) 73 * 74 * Example: i386: 75 * #define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_wide(S,R,X,Y,_i386_mul_32_64) 76 * #define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_2_wide(D,R,X,Y,_i386_mul_32_64) 77 * 78 * #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y,_i386_div_64_32) 79 * #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv_64(D,R,X,Y) 80 */ 81 82 #define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm) 83 #define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm) 84 85 #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv_norm(S,R,X,Y) 86 #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv(D,R,X,Y) 87 88 /* These macros define what NaN looks like. They're supposed to expand to 89 * a comma-separated set of 32bit unsigned ints that encode NaN. 90 */ 91 #define _FP_NANFRAC_S ((_FP_QNANBIT_S << 1) - 1) 92 #define _FP_NANFRAC_D ((_FP_QNANBIT_D << 1) - 1), -1 93 #define _FP_NANFRAC_Q ((_FP_QNANBIT_Q << 1) - 1), -1, -1, -1 94 #define _FP_NANSIGN_S 0 95 #define _FP_NANSIGN_D 0 96 #define _FP_NANSIGN_Q 0 97 98 #define _FP_KEEPNANFRACP 1 99 100 #ifdef FP_EX_BOOKE_E500_SPE 101 #define FP_EX_INEXACT (1 << 21) 102 #define FP_EX_INVALID (1 << 20) 103 #define FP_EX_DIVZERO (1 << 19) 104 #define FP_EX_UNDERFLOW (1 << 18) 105 #define FP_EX_OVERFLOW (1 << 17) 106 #define FP_INHIBIT_RESULTS 0 107 108 #define __FPU_FPSCR (current->thread.spefscr) 109 #define __FPU_ENABLED_EXC \ 110 ({ \ 111 (__FPU_FPSCR >> 2) & 0x1f; \ 112 }) 113 #else 114 /* Exception flags. We use the bit positions of the appropriate bits 115 in the FPSCR, which also correspond to the FE_* bits. This makes 116 everything easier ;-). */ 117 #define FP_EX_INVALID (1 << (31 - 2)) 118 #define FP_EX_INVALID_SNAN EFLAG_VXSNAN 119 #define FP_EX_INVALID_ISI EFLAG_VXISI 120 #define FP_EX_INVALID_IDI EFLAG_VXIDI 121 #define FP_EX_INVALID_ZDZ EFLAG_VXZDZ 122 #define FP_EX_INVALID_IMZ EFLAG_VXIMZ 123 #define FP_EX_OVERFLOW (1 << (31 - 3)) 124 #define FP_EX_UNDERFLOW (1 << (31 - 4)) 125 #define FP_EX_DIVZERO (1 << (31 - 5)) 126 #define FP_EX_INEXACT (1 << (31 - 6)) 127 128 #define __FPU_FPSCR (current->thread.fp_state.fpscr) 129 130 /* We only actually write to the destination register 131 * if exceptions signalled (if any) will not trap. 132 */ 133 #define __FPU_ENABLED_EXC \ 134 ({ \ 135 (__FPU_FPSCR >> 3) & 0x1f; \ 136 }) 137 138 #endif 139 140 /* 141 * If one NaN is signaling and the other is not, 142 * we choose that one, otherwise we choose X. 143 */ 144 #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \ 145 do { \ 146 if ((_FP_FRAC_HIGH_RAW_##fs(Y) & _FP_QNANBIT_##fs) \ 147 && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \ 148 { \ 149 R##_s = X##_s; \ 150 _FP_FRAC_COPY_##wc(R,X); \ 151 } \ 152 else \ 153 { \ 154 R##_s = Y##_s; \ 155 _FP_FRAC_COPY_##wc(R,Y); \ 156 } \ 157 R##_c = FP_CLS_NAN; \ 158 } while (0) 159 160 161 #include <linux/kernel.h> 162 #include <linux/sched.h> 163 164 #define __FPU_TRAP_P(bits) \ 165 ((__FPU_ENABLED_EXC & (bits)) != 0) 166 167 #define __FP_PACK_S(val,X) \ 168 ({ int __exc = _FP_PACK_CANONICAL(S,1,X); \ 169 if(!__exc || !__FPU_TRAP_P(__exc)) \ 170 _FP_PACK_RAW_1_P(S,val,X); \ 171 __exc; \ 172 }) 173 174 #define __FP_PACK_D(val,X) \ 175 do { \ 176 _FP_PACK_CANONICAL(D, 2, X); \ 177 if (!FP_CUR_EXCEPTIONS || !__FPU_TRAP_P(FP_CUR_EXCEPTIONS)) \ 178 _FP_PACK_RAW_2_P(D, val, X); \ 179 } while (0) 180 181 #define __FP_PACK_DS(val,X) \ 182 do { \ 183 FP_DECL_S(__X); \ 184 FP_CONV(S, D, 1, 2, __X, X); \ 185 _FP_PACK_CANONICAL(S, 1, __X); \ 186 if (!FP_CUR_EXCEPTIONS || !__FPU_TRAP_P(FP_CUR_EXCEPTIONS)) { \ 187 _FP_UNPACK_CANONICAL(S, 1, __X); \ 188 FP_CONV(D, S, 2, 1, X, __X); \ 189 _FP_PACK_CANONICAL(D, 2, X); \ 190 if (!FP_CUR_EXCEPTIONS || !__FPU_TRAP_P(FP_CUR_EXCEPTIONS)) \ 191 _FP_PACK_RAW_2_P(D, val, X); \ 192 } \ 193 } while (0) 194 195 /* Obtain the current rounding mode. */ 196 #define FP_ROUNDMODE \ 197 ({ \ 198 __FPU_FPSCR & 0x3; \ 199 }) 200 201 /* the asm fragments go here: all these are taken from glibc-2.0.5's 202 * stdlib/longlong.h 203 */ 204 205 #include <linux/types.h> 206 #include <asm/byteorder.h> 207 208 /* add_ssaaaa is used in op-2.h and should be equivalent to 209 * #define add_ssaaaa(sh,sl,ah,al,bh,bl) (sh = ah+bh+ (( sl = al+bl) < al)) 210 * add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1, 211 * high_addend_2, low_addend_2) adds two UWtype integers, composed by 212 * HIGH_ADDEND_1 and LOW_ADDEND_1, and HIGH_ADDEND_2 and LOW_ADDEND_2 213 * respectively. The result is placed in HIGH_SUM and LOW_SUM. Overflow 214 * (i.e. carry out) is not stored anywhere, and is lost. 215 */ 216 #define add_ssaaaa(sh, sl, ah, al, bh, bl) \ 217 do { \ 218 if (__builtin_constant_p (bh) && (bh) == 0) \ 219 __asm__ ("{a%I4|add%I4c} %1,%3,%4\n\t{aze|addze} %0,%2" \ 220 : "=r" ((USItype)(sh)), \ 221 "=&r" ((USItype)(sl)) \ 222 : "%r" ((USItype)(ah)), \ 223 "%r" ((USItype)(al)), \ 224 "rI" ((USItype)(bl))); \ 225 else if (__builtin_constant_p (bh) && (bh) ==~(USItype) 0) \ 226 __asm__ ("{a%I4|add%I4c} %1,%3,%4\n\t{ame|addme} %0,%2" \ 227 : "=r" ((USItype)(sh)), \ 228 "=&r" ((USItype)(sl)) \ 229 : "%r" ((USItype)(ah)), \ 230 "%r" ((USItype)(al)), \ 231 "rI" ((USItype)(bl))); \ 232 else \ 233 __asm__ ("{a%I5|add%I5c} %1,%4,%5\n\t{ae|adde} %0,%2,%3" \ 234 : "=r" ((USItype)(sh)), \ 235 "=&r" ((USItype)(sl)) \ 236 : "%r" ((USItype)(ah)), \ 237 "r" ((USItype)(bh)), \ 238 "%r" ((USItype)(al)), \ 239 "rI" ((USItype)(bl))); \ 240 } while (0) 241 242 /* sub_ddmmss is used in op-2.h and udivmodti4.c and should be equivalent to 243 * #define sub_ddmmss(sh, sl, ah, al, bh, bl) (sh = ah-bh - ((sl = al-bl) > al)) 244 * sub_ddmmss(high_difference, low_difference, high_minuend, low_minuend, 245 * high_subtrahend, low_subtrahend) subtracts two two-word UWtype integers, 246 * composed by HIGH_MINUEND_1 and LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and 247 * LOW_SUBTRAHEND_2 respectively. The result is placed in HIGH_DIFFERENCE 248 * and LOW_DIFFERENCE. Overflow (i.e. carry out) is not stored anywhere, 249 * and is lost. 250 */ 251 #define sub_ddmmss(sh, sl, ah, al, bh, bl) \ 252 do { \ 253 if (__builtin_constant_p (ah) && (ah) == 0) \ 254 __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{sfze|subfze} %0,%2" \ 255 : "=r" ((USItype)(sh)), \ 256 "=&r" ((USItype)(sl)) \ 257 : "r" ((USItype)(bh)), \ 258 "rI" ((USItype)(al)), \ 259 "r" ((USItype)(bl))); \ 260 else if (__builtin_constant_p (ah) && (ah) ==~(USItype) 0) \ 261 __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{sfme|subfme} %0,%2" \ 262 : "=r" ((USItype)(sh)), \ 263 "=&r" ((USItype)(sl)) \ 264 : "r" ((USItype)(bh)), \ 265 "rI" ((USItype)(al)), \ 266 "r" ((USItype)(bl))); \ 267 else if (__builtin_constant_p (bh) && (bh) == 0) \ 268 __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{ame|addme} %0,%2" \ 269 : "=r" ((USItype)(sh)), \ 270 "=&r" ((USItype)(sl)) \ 271 : "r" ((USItype)(ah)), \ 272 "rI" ((USItype)(al)), \ 273 "r" ((USItype)(bl))); \ 274 else if (__builtin_constant_p (bh) && (bh) ==~(USItype) 0) \ 275 __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{aze|addze} %0,%2" \ 276 : "=r" ((USItype)(sh)), \ 277 "=&r" ((USItype)(sl)) \ 278 : "r" ((USItype)(ah)), \ 279 "rI" ((USItype)(al)), \ 280 "r" ((USItype)(bl))); \ 281 else \ 282 __asm__ ("{sf%I4|subf%I4c} %1,%5,%4\n\t{sfe|subfe} %0,%3,%2" \ 283 : "=r" ((USItype)(sh)), \ 284 "=&r" ((USItype)(sl)) \ 285 : "r" ((USItype)(ah)), \ 286 "r" ((USItype)(bh)), \ 287 "rI" ((USItype)(al)), \ 288 "r" ((USItype)(bl))); \ 289 } while (0) 290 291 /* asm fragments for mul and div */ 292 293 /* umul_ppmm(high_prod, low_prod, multipler, multiplicand) multiplies two 294 * UWtype integers MULTIPLER and MULTIPLICAND, and generates a two UWtype 295 * word product in HIGH_PROD and LOW_PROD. 296 */ 297 #define umul_ppmm(ph, pl, m0, m1) \ 298 do { \ 299 USItype __m0 = (m0), __m1 = (m1); \ 300 __asm__ ("mulhwu %0,%1,%2" \ 301 : "=r" ((USItype)(ph)) \ 302 : "%r" (__m0), \ 303 "r" (__m1)); \ 304 (pl) = __m0 * __m1; \ 305 } while (0) 306 307 /* udiv_qrnnd(quotient, remainder, high_numerator, low_numerator, 308 * denominator) divides a UDWtype, composed by the UWtype integers 309 * HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and places the quotient 310 * in QUOTIENT and the remainder in REMAINDER. HIGH_NUMERATOR must be less 311 * than DENOMINATOR for correct operation. If, in addition, the most 312 * significant bit of DENOMINATOR must be 1, then the pre-processor symbol 313 * UDIV_NEEDS_NORMALIZATION is defined to 1. 314 */ 315 #define udiv_qrnnd(q, r, n1, n0, d) \ 316 do { \ 317 UWtype __d1, __d0, __q1, __q0, __r1, __r0, __m; \ 318 __d1 = __ll_highpart (d); \ 319 __d0 = __ll_lowpart (d); \ 320 \ 321 __r1 = (n1) % __d1; \ 322 __q1 = (n1) / __d1; \ 323 __m = (UWtype) __q1 * __d0; \ 324 __r1 = __r1 * __ll_B | __ll_highpart (n0); \ 325 if (__r1 < __m) \ 326 { \ 327 __q1--, __r1 += (d); \ 328 if (__r1 >= (d)) /* we didn't get carry when adding to __r1 */ \ 329 if (__r1 < __m) \ 330 __q1--, __r1 += (d); \ 331 } \ 332 __r1 -= __m; \ 333 \ 334 __r0 = __r1 % __d1; \ 335 __q0 = __r1 / __d1; \ 336 __m = (UWtype) __q0 * __d0; \ 337 __r0 = __r0 * __ll_B | __ll_lowpart (n0); \ 338 if (__r0 < __m) \ 339 { \ 340 __q0--, __r0 += (d); \ 341 if (__r0 >= (d)) \ 342 if (__r0 < __m) \ 343 __q0--, __r0 += (d); \ 344 } \ 345 __r0 -= __m; \ 346 \ 347 (q) = (UWtype) __q1 * __ll_B | __q0; \ 348 (r) = __r0; \ 349 } while (0) 350 351 #define UDIV_NEEDS_NORMALIZATION 1 352 353 #define abort() \ 354 return 0 355 356 #ifdef __BIG_ENDIAN 357 #define __BYTE_ORDER __BIG_ENDIAN 358 #else 359 #define __BYTE_ORDER __LITTLE_ENDIAN 360 #endif 361 362 /* Exception flags. */ 363 #define EFLAG_INVALID (1 << (31 - 2)) 364 #define EFLAG_OVERFLOW (1 << (31 - 3)) 365 #define EFLAG_UNDERFLOW (1 << (31 - 4)) 366 #define EFLAG_DIVZERO (1 << (31 - 5)) 367 #define EFLAG_INEXACT (1 << (31 - 6)) 368 369 #define EFLAG_VXSNAN (1 << (31 - 7)) 370 #define EFLAG_VXISI (1 << (31 - 8)) 371 #define EFLAG_VXIDI (1 << (31 - 9)) 372 #define EFLAG_VXZDZ (1 << (31 - 10)) 373 #define EFLAG_VXIMZ (1 << (31 - 11)) 374 #define EFLAG_VXVC (1 << (31 - 12)) 375 #define EFLAG_VXSOFT (1 << (31 - 21)) 376 #define EFLAG_VXSQRT (1 << (31 - 22)) 377 #define EFLAG_VXCVI (1 << (31 - 23)) 378