xref: /openbmc/linux/arch/powerpc/include/asm/ppc_asm.h (revision b34e08d5)
1 /*
2  * Copyright (C) 1995-1999 Gary Thomas, Paul Mackerras, Cort Dougan.
3  */
4 #ifndef _ASM_POWERPC_PPC_ASM_H
5 #define _ASM_POWERPC_PPC_ASM_H
6 
7 #include <linux/stringify.h>
8 #include <asm/asm-compat.h>
9 #include <asm/processor.h>
10 #include <asm/ppc-opcode.h>
11 #include <asm/firmware.h>
12 
13 #ifndef __ASSEMBLY__
14 #error __FILE__ should only be used in assembler files
15 #else
16 
17 #define SZL			(BITS_PER_LONG/8)
18 
19 /*
20  * Stuff for accurate CPU time accounting.
21  * These macros handle transitions between user and system state
22  * in exception entry and exit and accumulate time to the
23  * user_time and system_time fields in the paca.
24  */
25 
26 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
27 #define ACCOUNT_CPU_USER_ENTRY(ra, rb)
28 #define ACCOUNT_CPU_USER_EXIT(ra, rb)
29 #define ACCOUNT_STOLEN_TIME
30 #else
31 #define ACCOUNT_CPU_USER_ENTRY(ra, rb)					\
32 	MFTB(ra);			/* get timebase */		\
33 	ld	rb,PACA_STARTTIME_USER(r13);				\
34 	std	ra,PACA_STARTTIME(r13);					\
35 	subf	rb,rb,ra;		/* subtract start value */	\
36 	ld	ra,PACA_USER_TIME(r13);					\
37 	add	ra,ra,rb;		/* add on to user time */	\
38 	std	ra,PACA_USER_TIME(r13);					\
39 
40 #define ACCOUNT_CPU_USER_EXIT(ra, rb)					\
41 	MFTB(ra);			/* get timebase */		\
42 	ld	rb,PACA_STARTTIME(r13);					\
43 	std	ra,PACA_STARTTIME_USER(r13);				\
44 	subf	rb,rb,ra;		/* subtract start value */	\
45 	ld	ra,PACA_SYSTEM_TIME(r13);				\
46 	add	ra,ra,rb;		/* add on to system time */	\
47 	std	ra,PACA_SYSTEM_TIME(r13)
48 
49 #ifdef CONFIG_PPC_SPLPAR
50 #define ACCOUNT_STOLEN_TIME						\
51 BEGIN_FW_FTR_SECTION;							\
52 	beq	33f;							\
53 	/* from user - see if there are any DTL entries to process */	\
54 	ld	r10,PACALPPACAPTR(r13);	/* get ptr to VPA */		\
55 	ld	r11,PACA_DTL_RIDX(r13);	/* get log read index */	\
56 	addi	r10,r10,LPPACA_DTLIDX;					\
57 	LDX_BE	r10,0,r10;		/* get log write index */	\
58 	cmpd	cr1,r11,r10;						\
59 	beq+	cr1,33f;						\
60 	bl	.accumulate_stolen_time;				\
61 	ld	r12,_MSR(r1);						\
62 	andi.	r10,r12,MSR_PR;		/* Restore cr0 (coming from user) */ \
63 33:									\
64 END_FW_FTR_SECTION_IFSET(FW_FEATURE_SPLPAR)
65 
66 #else  /* CONFIG_PPC_SPLPAR */
67 #define ACCOUNT_STOLEN_TIME
68 
69 #endif /* CONFIG_PPC_SPLPAR */
70 
71 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
72 
73 /*
74  * Macros for storing registers into and loading registers from
75  * exception frames.
76  */
77 #ifdef __powerpc64__
78 #define SAVE_GPR(n, base)	std	n,GPR0+8*(n)(base)
79 #define REST_GPR(n, base)	ld	n,GPR0+8*(n)(base)
80 #define SAVE_NVGPRS(base)	SAVE_8GPRS(14, base); SAVE_10GPRS(22, base)
81 #define REST_NVGPRS(base)	REST_8GPRS(14, base); REST_10GPRS(22, base)
82 #else
83 #define SAVE_GPR(n, base)	stw	n,GPR0+4*(n)(base)
84 #define REST_GPR(n, base)	lwz	n,GPR0+4*(n)(base)
85 #define SAVE_NVGPRS(base)	SAVE_GPR(13, base); SAVE_8GPRS(14, base); \
86 				SAVE_10GPRS(22, base)
87 #define REST_NVGPRS(base)	REST_GPR(13, base); REST_8GPRS(14, base); \
88 				REST_10GPRS(22, base)
89 #endif
90 
91 #define SAVE_2GPRS(n, base)	SAVE_GPR(n, base); SAVE_GPR(n+1, base)
92 #define SAVE_4GPRS(n, base)	SAVE_2GPRS(n, base); SAVE_2GPRS(n+2, base)
93 #define SAVE_8GPRS(n, base)	SAVE_4GPRS(n, base); SAVE_4GPRS(n+4, base)
94 #define SAVE_10GPRS(n, base)	SAVE_8GPRS(n, base); SAVE_2GPRS(n+8, base)
95 #define REST_2GPRS(n, base)	REST_GPR(n, base); REST_GPR(n+1, base)
96 #define REST_4GPRS(n, base)	REST_2GPRS(n, base); REST_2GPRS(n+2, base)
97 #define REST_8GPRS(n, base)	REST_4GPRS(n, base); REST_4GPRS(n+4, base)
98 #define REST_10GPRS(n, base)	REST_8GPRS(n, base); REST_2GPRS(n+8, base)
99 
100 #define SAVE_FPR(n, base)	stfd	n,8*TS_FPRWIDTH*(n)(base)
101 #define SAVE_2FPRS(n, base)	SAVE_FPR(n, base); SAVE_FPR(n+1, base)
102 #define SAVE_4FPRS(n, base)	SAVE_2FPRS(n, base); SAVE_2FPRS(n+2, base)
103 #define SAVE_8FPRS(n, base)	SAVE_4FPRS(n, base); SAVE_4FPRS(n+4, base)
104 #define SAVE_16FPRS(n, base)	SAVE_8FPRS(n, base); SAVE_8FPRS(n+8, base)
105 #define SAVE_32FPRS(n, base)	SAVE_16FPRS(n, base); SAVE_16FPRS(n+16, base)
106 #define REST_FPR(n, base)	lfd	n,8*TS_FPRWIDTH*(n)(base)
107 #define REST_2FPRS(n, base)	REST_FPR(n, base); REST_FPR(n+1, base)
108 #define REST_4FPRS(n, base)	REST_2FPRS(n, base); REST_2FPRS(n+2, base)
109 #define REST_8FPRS(n, base)	REST_4FPRS(n, base); REST_4FPRS(n+4, base)
110 #define REST_16FPRS(n, base)	REST_8FPRS(n, base); REST_8FPRS(n+8, base)
111 #define REST_32FPRS(n, base)	REST_16FPRS(n, base); REST_16FPRS(n+16, base)
112 
113 #define SAVE_VR(n,b,base)	li b,16*(n);  stvx n,base,b
114 #define SAVE_2VRS(n,b,base)	SAVE_VR(n,b,base); SAVE_VR(n+1,b,base)
115 #define SAVE_4VRS(n,b,base)	SAVE_2VRS(n,b,base); SAVE_2VRS(n+2,b,base)
116 #define SAVE_8VRS(n,b,base)	SAVE_4VRS(n,b,base); SAVE_4VRS(n+4,b,base)
117 #define SAVE_16VRS(n,b,base)	SAVE_8VRS(n,b,base); SAVE_8VRS(n+8,b,base)
118 #define SAVE_32VRS(n,b,base)	SAVE_16VRS(n,b,base); SAVE_16VRS(n+16,b,base)
119 #define REST_VR(n,b,base)	li b,16*(n); lvx n,base,b
120 #define REST_2VRS(n,b,base)	REST_VR(n,b,base); REST_VR(n+1,b,base)
121 #define REST_4VRS(n,b,base)	REST_2VRS(n,b,base); REST_2VRS(n+2,b,base)
122 #define REST_8VRS(n,b,base)	REST_4VRS(n,b,base); REST_4VRS(n+4,b,base)
123 #define REST_16VRS(n,b,base)	REST_8VRS(n,b,base); REST_8VRS(n+8,b,base)
124 #define REST_32VRS(n,b,base)	REST_16VRS(n,b,base); REST_16VRS(n+16,b,base)
125 
126 #ifdef __BIG_ENDIAN__
127 #define STXVD2X_ROT(n,b,base)		STXVD2X(n,b,base)
128 #define LXVD2X_ROT(n,b,base)		LXVD2X(n,b,base)
129 #else
130 #define STXVD2X_ROT(n,b,base)		XXSWAPD(n,n);		\
131 					STXVD2X(n,b,base);	\
132 					XXSWAPD(n,n)
133 
134 #define LXVD2X_ROT(n,b,base)		LXVD2X(n,b,base);	\
135 					XXSWAPD(n,n)
136 #endif
137 /* Save the lower 32 VSRs in the thread VSR region */
138 #define SAVE_VSR(n,b,base)	li b,16*(n);  STXVD2X_ROT(n,R##base,R##b)
139 #define SAVE_2VSRS(n,b,base)	SAVE_VSR(n,b,base); SAVE_VSR(n+1,b,base)
140 #define SAVE_4VSRS(n,b,base)	SAVE_2VSRS(n,b,base); SAVE_2VSRS(n+2,b,base)
141 #define SAVE_8VSRS(n,b,base)	SAVE_4VSRS(n,b,base); SAVE_4VSRS(n+4,b,base)
142 #define SAVE_16VSRS(n,b,base)	SAVE_8VSRS(n,b,base); SAVE_8VSRS(n+8,b,base)
143 #define SAVE_32VSRS(n,b,base)	SAVE_16VSRS(n,b,base); SAVE_16VSRS(n+16,b,base)
144 #define REST_VSR(n,b,base)	li b,16*(n); LXVD2X_ROT(n,R##base,R##b)
145 #define REST_2VSRS(n,b,base)	REST_VSR(n,b,base); REST_VSR(n+1,b,base)
146 #define REST_4VSRS(n,b,base)	REST_2VSRS(n,b,base); REST_2VSRS(n+2,b,base)
147 #define REST_8VSRS(n,b,base)	REST_4VSRS(n,b,base); REST_4VSRS(n+4,b,base)
148 #define REST_16VSRS(n,b,base)	REST_8VSRS(n,b,base); REST_8VSRS(n+8,b,base)
149 #define REST_32VSRS(n,b,base)	REST_16VSRS(n,b,base); REST_16VSRS(n+16,b,base)
150 
151 /*
152  * b = base register for addressing, o = base offset from register of 1st EVR
153  * n = first EVR, s = scratch
154  */
155 #define SAVE_EVR(n,s,b,o)	evmergehi s,s,n; stw s,o+4*(n)(b)
156 #define SAVE_2EVRS(n,s,b,o)	SAVE_EVR(n,s,b,o); SAVE_EVR(n+1,s,b,o)
157 #define SAVE_4EVRS(n,s,b,o)	SAVE_2EVRS(n,s,b,o); SAVE_2EVRS(n+2,s,b,o)
158 #define SAVE_8EVRS(n,s,b,o)	SAVE_4EVRS(n,s,b,o); SAVE_4EVRS(n+4,s,b,o)
159 #define SAVE_16EVRS(n,s,b,o)	SAVE_8EVRS(n,s,b,o); SAVE_8EVRS(n+8,s,b,o)
160 #define SAVE_32EVRS(n,s,b,o)	SAVE_16EVRS(n,s,b,o); SAVE_16EVRS(n+16,s,b,o)
161 #define REST_EVR(n,s,b,o)	lwz s,o+4*(n)(b); evmergelo n,s,n
162 #define REST_2EVRS(n,s,b,o)	REST_EVR(n,s,b,o); REST_EVR(n+1,s,b,o)
163 #define REST_4EVRS(n,s,b,o)	REST_2EVRS(n,s,b,o); REST_2EVRS(n+2,s,b,o)
164 #define REST_8EVRS(n,s,b,o)	REST_4EVRS(n,s,b,o); REST_4EVRS(n+4,s,b,o)
165 #define REST_16EVRS(n,s,b,o)	REST_8EVRS(n,s,b,o); REST_8EVRS(n+8,s,b,o)
166 #define REST_32EVRS(n,s,b,o)	REST_16EVRS(n,s,b,o); REST_16EVRS(n+16,s,b,o)
167 
168 /* Macros to adjust thread priority for hardware multithreading */
169 #define HMT_VERY_LOW	or	31,31,31	# very low priority
170 #define HMT_LOW		or	1,1,1
171 #define HMT_MEDIUM_LOW  or	6,6,6		# medium low priority
172 #define HMT_MEDIUM	or	2,2,2
173 #define HMT_MEDIUM_HIGH or	5,5,5		# medium high priority
174 #define HMT_HIGH	or	3,3,3
175 #define HMT_EXTRA_HIGH	or	7,7,7		# power7 only
176 
177 #ifdef CONFIG_PPC64
178 #define ULONG_SIZE 	8
179 #else
180 #define ULONG_SIZE	4
181 #endif
182 #define __VCPU_GPR(n)	(VCPU_GPRS + (n * ULONG_SIZE))
183 #define VCPU_GPR(n)	__VCPU_GPR(__REG_##n)
184 
185 #ifdef __KERNEL__
186 #ifdef CONFIG_PPC64
187 
188 #define STACKFRAMESIZE 256
189 #define __STK_REG(i)   (112 + ((i)-14)*8)
190 #define STK_REG(i)     __STK_REG(__REG_##i)
191 
192 #define __STK_PARAM(i)	(48 + ((i)-3)*8)
193 #define STK_PARAM(i)	__STK_PARAM(__REG_##i)
194 
195 #define XGLUE(a,b) a##b
196 #define GLUE(a,b) XGLUE(a,b)
197 
198 #define _GLOBAL(name) \
199 	.section ".text"; \
200 	.align 2 ; \
201 	.globl name; \
202 	.globl GLUE(.,name); \
203 	.section ".opd","aw"; \
204 name: \
205 	.quad GLUE(.,name); \
206 	.quad .TOC.@tocbase; \
207 	.quad 0; \
208 	.previous; \
209 	.type GLUE(.,name),@function; \
210 GLUE(.,name):
211 
212 #define _INIT_GLOBAL(name) \
213 	__REF; \
214 	.align 2 ; \
215 	.globl name; \
216 	.globl GLUE(.,name); \
217 	.section ".opd","aw"; \
218 name: \
219 	.quad GLUE(.,name); \
220 	.quad .TOC.@tocbase; \
221 	.quad 0; \
222 	.previous; \
223 	.type GLUE(.,name),@function; \
224 GLUE(.,name):
225 
226 #define _KPROBE(name) \
227 	.section ".kprobes.text","a"; \
228 	.align 2 ; \
229 	.globl name; \
230 	.globl GLUE(.,name); \
231 	.section ".opd","aw"; \
232 name: \
233 	.quad GLUE(.,name); \
234 	.quad .TOC.@tocbase; \
235 	.quad 0; \
236 	.previous; \
237 	.type GLUE(.,name),@function; \
238 GLUE(.,name):
239 
240 #define _STATIC(name) \
241 	.section ".text"; \
242 	.align 2 ; \
243 	.section ".opd","aw"; \
244 name: \
245 	.quad GLUE(.,name); \
246 	.quad .TOC.@tocbase; \
247 	.quad 0; \
248 	.previous; \
249 	.type GLUE(.,name),@function; \
250 GLUE(.,name):
251 
252 #define _INIT_STATIC(name) \
253 	__REF; \
254 	.align 2 ; \
255 	.section ".opd","aw"; \
256 name: \
257 	.quad GLUE(.,name); \
258 	.quad .TOC.@tocbase; \
259 	.quad 0; \
260 	.previous; \
261 	.type GLUE(.,name),@function; \
262 GLUE(.,name):
263 
264 #else /* 32-bit */
265 
266 #define _ENTRY(n)	\
267 	.globl n;	\
268 n:
269 
270 #define _GLOBAL(n)	\
271 	.text;		\
272 	.stabs __stringify(n:F-1),N_FUN,0,0,n;\
273 	.globl n;	\
274 n:
275 
276 #define _KPROBE(n)	\
277 	.section ".kprobes.text","a";	\
278 	.globl	n;	\
279 n:
280 
281 #endif
282 
283 /*
284  * LOAD_REG_IMMEDIATE(rn, expr)
285  *   Loads the value of the constant expression 'expr' into register 'rn'
286  *   using immediate instructions only.  Use this when it's important not
287  *   to reference other data (i.e. on ppc64 when the TOC pointer is not
288  *   valid) and when 'expr' is a constant or absolute address.
289  *
290  * LOAD_REG_ADDR(rn, name)
291  *   Loads the address of label 'name' into register 'rn'.  Use this when
292  *   you don't particularly need immediate instructions only, but you need
293  *   the whole address in one register (e.g. it's a structure address and
294  *   you want to access various offsets within it).  On ppc32 this is
295  *   identical to LOAD_REG_IMMEDIATE.
296  *
297  * LOAD_REG_ADDR_PIC(rn, name)
298  *   Loads the address of label 'name' into register 'run'. Use this when
299  *   the kernel doesn't run at the linked or relocated address. Please
300  *   note that this macro will clobber the lr register.
301  *
302  * LOAD_REG_ADDRBASE(rn, name)
303  * ADDROFF(name)
304  *   LOAD_REG_ADDRBASE loads part of the address of label 'name' into
305  *   register 'rn'.  ADDROFF(name) returns the remainder of the address as
306  *   a constant expression.  ADDROFF(name) is a signed expression < 16 bits
307  *   in size, so is suitable for use directly as an offset in load and store
308  *   instructions.  Use this when loading/storing a single word or less as:
309  *      LOAD_REG_ADDRBASE(rX, name)
310  *      ld	rY,ADDROFF(name)(rX)
311  */
312 
313 /* Be careful, this will clobber the lr register. */
314 #define LOAD_REG_ADDR_PIC(reg, name)		\
315 	bl	0f;				\
316 0:	mflr	reg;				\
317 	addis	reg,reg,(name - 0b)@ha;		\
318 	addi	reg,reg,(name - 0b)@l;
319 
320 #ifdef __powerpc64__
321 #define LOAD_REG_IMMEDIATE(reg,expr)		\
322 	lis     reg,(expr)@highest;		\
323 	ori     reg,reg,(expr)@higher;	\
324 	rldicr  reg,reg,32,31;		\
325 	oris    reg,reg,(expr)@h;		\
326 	ori     reg,reg,(expr)@l;
327 
328 #define LOAD_REG_ADDR(reg,name)			\
329 	ld	reg,name@got(r2)
330 
331 #define LOAD_REG_ADDRBASE(reg,name)	LOAD_REG_ADDR(reg,name)
332 #define ADDROFF(name)			0
333 
334 /* offsets for stack frame layout */
335 #define LRSAVE	16
336 
337 #else /* 32-bit */
338 
339 #define LOAD_REG_IMMEDIATE(reg,expr)		\
340 	lis	reg,(expr)@ha;		\
341 	addi	reg,reg,(expr)@l;
342 
343 #define LOAD_REG_ADDR(reg,name)		LOAD_REG_IMMEDIATE(reg, name)
344 
345 #define LOAD_REG_ADDRBASE(reg, name)	lis	reg,name@ha
346 #define ADDROFF(name)			name@l
347 
348 /* offsets for stack frame layout */
349 #define LRSAVE	4
350 
351 #endif
352 
353 /* various errata or part fixups */
354 #ifdef CONFIG_PPC601_SYNC_FIX
355 #define SYNC				\
356 BEGIN_FTR_SECTION			\
357 	sync;				\
358 	isync;				\
359 END_FTR_SECTION_IFSET(CPU_FTR_601)
360 #define SYNC_601			\
361 BEGIN_FTR_SECTION			\
362 	sync;				\
363 END_FTR_SECTION_IFSET(CPU_FTR_601)
364 #define ISYNC_601			\
365 BEGIN_FTR_SECTION			\
366 	isync;				\
367 END_FTR_SECTION_IFSET(CPU_FTR_601)
368 #else
369 #define	SYNC
370 #define SYNC_601
371 #define ISYNC_601
372 #endif
373 
374 #if defined(CONFIG_PPC_CELL) || defined(CONFIG_PPC_FSL_BOOK3E)
375 #define MFTB(dest)			\
376 90:	mfspr dest, SPRN_TBRL;		\
377 BEGIN_FTR_SECTION_NESTED(96);		\
378 	cmpwi dest,0;			\
379 	beq-  90b;			\
380 END_FTR_SECTION_NESTED(CPU_FTR_CELL_TB_BUG, CPU_FTR_CELL_TB_BUG, 96)
381 #elif defined(CONFIG_8xx)
382 #define MFTB(dest)			mftb dest
383 #else
384 #define MFTB(dest)			mfspr dest, SPRN_TBRL
385 #endif
386 
387 #ifndef CONFIG_SMP
388 #define TLBSYNC
389 #else /* CONFIG_SMP */
390 /* tlbsync is not implemented on 601 */
391 #define TLBSYNC				\
392 BEGIN_FTR_SECTION			\
393 	tlbsync;			\
394 	sync;				\
395 END_FTR_SECTION_IFCLR(CPU_FTR_601)
396 #endif
397 
398 #ifdef CONFIG_PPC64
399 #define MTOCRF(FXM, RS)			\
400 	BEGIN_FTR_SECTION_NESTED(848);	\
401 	mtcrf	(FXM), RS;		\
402 	FTR_SECTION_ELSE_NESTED(848);	\
403 	mtocrf (FXM), RS;		\
404 	ALT_FTR_SECTION_END_NESTED_IFCLR(CPU_FTR_NOEXECUTE, 848)
405 
406 /*
407  * PPR restore macros used in entry_64.S
408  * Used for P7 or later processors
409  */
410 #define HMT_MEDIUM_LOW_HAS_PPR						\
411 BEGIN_FTR_SECTION_NESTED(944)						\
412 	HMT_MEDIUM_LOW;							\
413 END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,944)
414 
415 #define SET_DEFAULT_THREAD_PPR(ra, rb)					\
416 BEGIN_FTR_SECTION_NESTED(945)						\
417 	lis	ra,INIT_PPR@highest;	/* default ppr=3 */		\
418 	ld	rb,PACACURRENT(r13);					\
419 	sldi	ra,ra,32;	/* 11- 13 bits are used for ppr */	\
420 	std	ra,TASKTHREADPPR(rb);					\
421 END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,945)
422 
423 #endif
424 
425 /*
426  * This instruction is not implemented on the PPC 603 or 601; however, on
427  * the 403GCX and 405GP tlbia IS defined and tlbie is not.
428  * All of these instructions exist in the 8xx, they have magical powers,
429  * and they must be used.
430  */
431 
432 #if !defined(CONFIG_4xx) && !defined(CONFIG_8xx)
433 #define tlbia					\
434 	li	r4,1024;			\
435 	mtctr	r4;				\
436 	lis	r4,KERNELBASE@h;		\
437 0:	tlbie	r4;				\
438 	addi	r4,r4,0x1000;			\
439 	bdnz	0b
440 #endif
441 
442 
443 #ifdef CONFIG_IBM440EP_ERR42
444 #define PPC440EP_ERR42 isync
445 #else
446 #define PPC440EP_ERR42
447 #endif
448 
449 /* The following stops all load and store data streams associated with stream
450  * ID (ie. streams created explicitly).  The embedded and server mnemonics for
451  * dcbt are different so we use machine "power4" here explicitly.
452  */
453 #define DCBT_STOP_ALL_STREAM_IDS(scratch)	\
454 .machine push ;					\
455 .machine "power4" ;				\
456        lis     scratch,0x60000000@h;		\
457        dcbt    r0,scratch,0b01010;		\
458 .machine pop
459 
460 /*
461  * toreal/fromreal/tophys/tovirt macros. 32-bit BookE makes them
462  * keep the address intact to be compatible with code shared with
463  * 32-bit classic.
464  *
465  * On the other hand, I find it useful to have them behave as expected
466  * by their name (ie always do the addition) on 64-bit BookE
467  */
468 #if defined(CONFIG_BOOKE) && !defined(CONFIG_PPC64)
469 #define toreal(rd)
470 #define fromreal(rd)
471 
472 /*
473  * We use addis to ensure compatibility with the "classic" ppc versions of
474  * these macros, which use rs = 0 to get the tophys offset in rd, rather than
475  * converting the address in r0, and so this version has to do that too
476  * (i.e. set register rd to 0 when rs == 0).
477  */
478 #define tophys(rd,rs)				\
479 	addis	rd,rs,0
480 
481 #define tovirt(rd,rs)				\
482 	addis	rd,rs,0
483 
484 #elif defined(CONFIG_PPC64)
485 #define toreal(rd)		/* we can access c000... in real mode */
486 #define fromreal(rd)
487 
488 #define tophys(rd,rs)                           \
489 	clrldi	rd,rs,2
490 
491 #define tovirt(rd,rs)                           \
492 	rotldi	rd,rs,16;			\
493 	ori	rd,rd,((KERNELBASE>>48)&0xFFFF);\
494 	rotldi	rd,rd,48
495 #else
496 /*
497  * On APUS (Amiga PowerPC cpu upgrade board), we don't know the
498  * physical base address of RAM at compile time.
499  */
500 #define toreal(rd)	tophys(rd,rd)
501 #define fromreal(rd)	tovirt(rd,rd)
502 
503 #define tophys(rd,rs)				\
504 0:	addis	rd,rs,-PAGE_OFFSET@h;		\
505 	.section ".vtop_fixup","aw";		\
506 	.align  1;				\
507 	.long   0b;				\
508 	.previous
509 
510 #define tovirt(rd,rs)				\
511 0:	addis	rd,rs,PAGE_OFFSET@h;		\
512 	.section ".ptov_fixup","aw";		\
513 	.align  1;				\
514 	.long   0b;				\
515 	.previous
516 #endif
517 
518 #ifdef CONFIG_PPC_BOOK3S_64
519 #define RFI		rfid
520 #define MTMSRD(r)	mtmsrd	r
521 #define MTMSR_EERI(reg)	mtmsrd	reg,1
522 #else
523 #define FIX_SRR1(ra, rb)
524 #ifndef CONFIG_40x
525 #define	RFI		rfi
526 #else
527 #define RFI		rfi; b .	/* Prevent prefetch past rfi */
528 #endif
529 #define MTMSRD(r)	mtmsr	r
530 #define MTMSR_EERI(reg)	mtmsr	reg
531 #define CLR_TOP32(r)
532 #endif
533 
534 #endif /* __KERNEL__ */
535 
536 /* The boring bits... */
537 
538 /* Condition Register Bit Fields */
539 
540 #define	cr0	0
541 #define	cr1	1
542 #define	cr2	2
543 #define	cr3	3
544 #define	cr4	4
545 #define	cr5	5
546 #define	cr6	6
547 #define	cr7	7
548 
549 
550 /*
551  * General Purpose Registers (GPRs)
552  *
553  * The lower case r0-r31 should be used in preference to the upper
554  * case R0-R31 as they provide more error checking in the assembler.
555  * Use R0-31 only when really nessesary.
556  */
557 
558 #define	r0	%r0
559 #define	r1	%r1
560 #define	r2	%r2
561 #define	r3	%r3
562 #define	r4	%r4
563 #define	r5	%r5
564 #define	r6	%r6
565 #define	r7	%r7
566 #define	r8	%r8
567 #define	r9	%r9
568 #define	r10	%r10
569 #define	r11	%r11
570 #define	r12	%r12
571 #define	r13	%r13
572 #define	r14	%r14
573 #define	r15	%r15
574 #define	r16	%r16
575 #define	r17	%r17
576 #define	r18	%r18
577 #define	r19	%r19
578 #define	r20	%r20
579 #define	r21	%r21
580 #define	r22	%r22
581 #define	r23	%r23
582 #define	r24	%r24
583 #define	r25	%r25
584 #define	r26	%r26
585 #define	r27	%r27
586 #define	r28	%r28
587 #define	r29	%r29
588 #define	r30	%r30
589 #define	r31	%r31
590 
591 
592 /* Floating Point Registers (FPRs) */
593 
594 #define	fr0	0
595 #define	fr1	1
596 #define	fr2	2
597 #define	fr3	3
598 #define	fr4	4
599 #define	fr5	5
600 #define	fr6	6
601 #define	fr7	7
602 #define	fr8	8
603 #define	fr9	9
604 #define	fr10	10
605 #define	fr11	11
606 #define	fr12	12
607 #define	fr13	13
608 #define	fr14	14
609 #define	fr15	15
610 #define	fr16	16
611 #define	fr17	17
612 #define	fr18	18
613 #define	fr19	19
614 #define	fr20	20
615 #define	fr21	21
616 #define	fr22	22
617 #define	fr23	23
618 #define	fr24	24
619 #define	fr25	25
620 #define	fr26	26
621 #define	fr27	27
622 #define	fr28	28
623 #define	fr29	29
624 #define	fr30	30
625 #define	fr31	31
626 
627 /* AltiVec Registers (VPRs) */
628 
629 #define	vr0	0
630 #define	vr1	1
631 #define	vr2	2
632 #define	vr3	3
633 #define	vr4	4
634 #define	vr5	5
635 #define	vr6	6
636 #define	vr7	7
637 #define	vr8	8
638 #define	vr9	9
639 #define	vr10	10
640 #define	vr11	11
641 #define	vr12	12
642 #define	vr13	13
643 #define	vr14	14
644 #define	vr15	15
645 #define	vr16	16
646 #define	vr17	17
647 #define	vr18	18
648 #define	vr19	19
649 #define	vr20	20
650 #define	vr21	21
651 #define	vr22	22
652 #define	vr23	23
653 #define	vr24	24
654 #define	vr25	25
655 #define	vr26	26
656 #define	vr27	27
657 #define	vr28	28
658 #define	vr29	29
659 #define	vr30	30
660 #define	vr31	31
661 
662 /* VSX Registers (VSRs) */
663 
664 #define	vsr0	0
665 #define	vsr1	1
666 #define	vsr2	2
667 #define	vsr3	3
668 #define	vsr4	4
669 #define	vsr5	5
670 #define	vsr6	6
671 #define	vsr7	7
672 #define	vsr8	8
673 #define	vsr9	9
674 #define	vsr10	10
675 #define	vsr11	11
676 #define	vsr12	12
677 #define	vsr13	13
678 #define	vsr14	14
679 #define	vsr15	15
680 #define	vsr16	16
681 #define	vsr17	17
682 #define	vsr18	18
683 #define	vsr19	19
684 #define	vsr20	20
685 #define	vsr21	21
686 #define	vsr22	22
687 #define	vsr23	23
688 #define	vsr24	24
689 #define	vsr25	25
690 #define	vsr26	26
691 #define	vsr27	27
692 #define	vsr28	28
693 #define	vsr29	29
694 #define	vsr30	30
695 #define	vsr31	31
696 #define	vsr32	32
697 #define	vsr33	33
698 #define	vsr34	34
699 #define	vsr35	35
700 #define	vsr36	36
701 #define	vsr37	37
702 #define	vsr38	38
703 #define	vsr39	39
704 #define	vsr40	40
705 #define	vsr41	41
706 #define	vsr42	42
707 #define	vsr43	43
708 #define	vsr44	44
709 #define	vsr45	45
710 #define	vsr46	46
711 #define	vsr47	47
712 #define	vsr48	48
713 #define	vsr49	49
714 #define	vsr50	50
715 #define	vsr51	51
716 #define	vsr52	52
717 #define	vsr53	53
718 #define	vsr54	54
719 #define	vsr55	55
720 #define	vsr56	56
721 #define	vsr57	57
722 #define	vsr58	58
723 #define	vsr59	59
724 #define	vsr60	60
725 #define	vsr61	61
726 #define	vsr62	62
727 #define	vsr63	63
728 
729 /* SPE Registers (EVPRs) */
730 
731 #define	evr0	0
732 #define	evr1	1
733 #define	evr2	2
734 #define	evr3	3
735 #define	evr4	4
736 #define	evr5	5
737 #define	evr6	6
738 #define	evr7	7
739 #define	evr8	8
740 #define	evr9	9
741 #define	evr10	10
742 #define	evr11	11
743 #define	evr12	12
744 #define	evr13	13
745 #define	evr14	14
746 #define	evr15	15
747 #define	evr16	16
748 #define	evr17	17
749 #define	evr18	18
750 #define	evr19	19
751 #define	evr20	20
752 #define	evr21	21
753 #define	evr22	22
754 #define	evr23	23
755 #define	evr24	24
756 #define	evr25	25
757 #define	evr26	26
758 #define	evr27	27
759 #define	evr28	28
760 #define	evr29	29
761 #define	evr30	30
762 #define	evr31	31
763 
764 /* some stab codes */
765 #define N_FUN	36
766 #define N_RSYM	64
767 #define N_SLINE	68
768 #define N_SO	100
769 
770 /*
771  * Create an endian fixup trampoline
772  *
773  * This starts with a "tdi 0,0,0x48" instruction which is
774  * essentially a "trap never", and thus akin to a nop.
775  *
776  * The opcode for this instruction read with the wrong endian
777  * however results in a b . + 8
778  *
779  * So essentially we use that trick to execute the following
780  * trampoline in "reverse endian" if we are running with the
781  * MSR_LE bit set the "wrong" way for whatever endianness the
782  * kernel is built for.
783  */
784 
785 #ifdef CONFIG_PPC_BOOK3E
786 #define FIXUP_ENDIAN
787 #else
788 #define FIXUP_ENDIAN						   \
789 	tdi   0,0,0x48;	  /* Reverse endian of b . + 8		*/ \
790 	b     $+36;	  /* Skip trampoline if endian is good	*/ \
791 	.long 0x05009f42; /* bcl 20,31,$+4			*/ \
792 	.long 0xa602487d; /* mflr r10				*/ \
793 	.long 0x1c004a39; /* addi r10,r10,28			*/ \
794 	.long 0xa600607d; /* mfmsr r11				*/ \
795 	.long 0x01006b69; /* xori r11,r11,1			*/ \
796 	.long 0xa6035a7d; /* mtsrr0 r10				*/ \
797 	.long 0xa6037b7d; /* mtsrr1 r11				*/ \
798 	.long 0x2400004c  /* rfid				*/
799 #endif /* !CONFIG_PPC_BOOK3E */
800 #endif /*  __ASSEMBLY__ */
801 #endif /* _ASM_POWERPC_PPC_ASM_H */
802