xref: /openbmc/linux/arch/powerpc/include/asm/ppc_asm.h (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 /*
2  * Copyright (C) 1995-1999 Gary Thomas, Paul Mackerras, Cort Dougan.
3  */
4 #ifndef _ASM_POWERPC_PPC_ASM_H
5 #define _ASM_POWERPC_PPC_ASM_H
6 
7 #include <linux/stringify.h>
8 #include <asm/asm-compat.h>
9 #include <asm/processor.h>
10 #include <asm/ppc-opcode.h>
11 #include <asm/firmware.h>
12 #include <asm/feature-fixups.h>
13 
14 #ifdef __ASSEMBLY__
15 
16 #define SZL			(BITS_PER_LONG/8)
17 
18 /*
19  * Stuff for accurate CPU time accounting.
20  * These macros handle transitions between user and system state
21  * in exception entry and exit and accumulate time to the
22  * user_time and system_time fields in the paca.
23  */
24 
25 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
26 #define ACCOUNT_CPU_USER_ENTRY(ptr, ra, rb)
27 #define ACCOUNT_CPU_USER_EXIT(ptr, ra, rb)
28 #else
29 #define ACCOUNT_CPU_USER_ENTRY(ptr, ra, rb)				\
30 	MFTB(ra);			/* get timebase */		\
31 	PPC_LL	rb, ACCOUNT_STARTTIME_USER(ptr);			\
32 	PPC_STL	ra, ACCOUNT_STARTTIME(ptr);				\
33 	subf	rb,rb,ra;		/* subtract start value */	\
34 	PPC_LL	ra, ACCOUNT_USER_TIME(ptr);				\
35 	add	ra,ra,rb;		/* add on to user time */	\
36 	PPC_STL	ra, ACCOUNT_USER_TIME(ptr);				\
37 
38 #define ACCOUNT_CPU_USER_EXIT(ptr, ra, rb)				\
39 	MFTB(ra);			/* get timebase */		\
40 	PPC_LL	rb, ACCOUNT_STARTTIME(ptr);				\
41 	PPC_STL	ra, ACCOUNT_STARTTIME_USER(ptr);			\
42 	subf	rb,rb,ra;		/* subtract start value */	\
43 	PPC_LL	ra, ACCOUNT_SYSTEM_TIME(ptr);				\
44 	add	ra,ra,rb;		/* add on to system time */	\
45 	PPC_STL	ra, ACCOUNT_SYSTEM_TIME(ptr)
46 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
47 
48 /*
49  * Macros for storing registers into and loading registers from
50  * exception frames.
51  */
52 #ifdef __powerpc64__
53 #define SAVE_GPR(n, base)	std	n,GPR0+8*(n)(base)
54 #define REST_GPR(n, base)	ld	n,GPR0+8*(n)(base)
55 #define SAVE_NVGPRS(base)	SAVE_8GPRS(14, base); SAVE_10GPRS(22, base)
56 #define REST_NVGPRS(base)	REST_8GPRS(14, base); REST_10GPRS(22, base)
57 #else
58 #define SAVE_GPR(n, base)	stw	n,GPR0+4*(n)(base)
59 #define REST_GPR(n, base)	lwz	n,GPR0+4*(n)(base)
60 #define SAVE_NVGPRS(base)	stmw	13, GPR0+4*13(base)
61 #define REST_NVGPRS(base)	lmw	13, GPR0+4*13(base)
62 #endif
63 
64 #define SAVE_2GPRS(n, base)	SAVE_GPR(n, base); SAVE_GPR(n+1, base)
65 #define SAVE_4GPRS(n, base)	SAVE_2GPRS(n, base); SAVE_2GPRS(n+2, base)
66 #define SAVE_8GPRS(n, base)	SAVE_4GPRS(n, base); SAVE_4GPRS(n+4, base)
67 #define SAVE_10GPRS(n, base)	SAVE_8GPRS(n, base); SAVE_2GPRS(n+8, base)
68 #define REST_2GPRS(n, base)	REST_GPR(n, base); REST_GPR(n+1, base)
69 #define REST_4GPRS(n, base)	REST_2GPRS(n, base); REST_2GPRS(n+2, base)
70 #define REST_8GPRS(n, base)	REST_4GPRS(n, base); REST_4GPRS(n+4, base)
71 #define REST_10GPRS(n, base)	REST_8GPRS(n, base); REST_2GPRS(n+8, base)
72 
73 #define SAVE_FPR(n, base)	stfd	n,8*TS_FPRWIDTH*(n)(base)
74 #define SAVE_2FPRS(n, base)	SAVE_FPR(n, base); SAVE_FPR(n+1, base)
75 #define SAVE_4FPRS(n, base)	SAVE_2FPRS(n, base); SAVE_2FPRS(n+2, base)
76 #define SAVE_8FPRS(n, base)	SAVE_4FPRS(n, base); SAVE_4FPRS(n+4, base)
77 #define SAVE_16FPRS(n, base)	SAVE_8FPRS(n, base); SAVE_8FPRS(n+8, base)
78 #define SAVE_32FPRS(n, base)	SAVE_16FPRS(n, base); SAVE_16FPRS(n+16, base)
79 #define REST_FPR(n, base)	lfd	n,8*TS_FPRWIDTH*(n)(base)
80 #define REST_2FPRS(n, base)	REST_FPR(n, base); REST_FPR(n+1, base)
81 #define REST_4FPRS(n, base)	REST_2FPRS(n, base); REST_2FPRS(n+2, base)
82 #define REST_8FPRS(n, base)	REST_4FPRS(n, base); REST_4FPRS(n+4, base)
83 #define REST_16FPRS(n, base)	REST_8FPRS(n, base); REST_8FPRS(n+8, base)
84 #define REST_32FPRS(n, base)	REST_16FPRS(n, base); REST_16FPRS(n+16, base)
85 
86 #define SAVE_VR(n,b,base)	li b,16*(n);  stvx n,base,b
87 #define SAVE_2VRS(n,b,base)	SAVE_VR(n,b,base); SAVE_VR(n+1,b,base)
88 #define SAVE_4VRS(n,b,base)	SAVE_2VRS(n,b,base); SAVE_2VRS(n+2,b,base)
89 #define SAVE_8VRS(n,b,base)	SAVE_4VRS(n,b,base); SAVE_4VRS(n+4,b,base)
90 #define SAVE_16VRS(n,b,base)	SAVE_8VRS(n,b,base); SAVE_8VRS(n+8,b,base)
91 #define SAVE_32VRS(n,b,base)	SAVE_16VRS(n,b,base); SAVE_16VRS(n+16,b,base)
92 #define REST_VR(n,b,base)	li b,16*(n); lvx n,base,b
93 #define REST_2VRS(n,b,base)	REST_VR(n,b,base); REST_VR(n+1,b,base)
94 #define REST_4VRS(n,b,base)	REST_2VRS(n,b,base); REST_2VRS(n+2,b,base)
95 #define REST_8VRS(n,b,base)	REST_4VRS(n,b,base); REST_4VRS(n+4,b,base)
96 #define REST_16VRS(n,b,base)	REST_8VRS(n,b,base); REST_8VRS(n+8,b,base)
97 #define REST_32VRS(n,b,base)	REST_16VRS(n,b,base); REST_16VRS(n+16,b,base)
98 
99 #ifdef __BIG_ENDIAN__
100 #define STXVD2X_ROT(n,b,base)		STXVD2X(n,b,base)
101 #define LXVD2X_ROT(n,b,base)		LXVD2X(n,b,base)
102 #else
103 #define STXVD2X_ROT(n,b,base)		XXSWAPD(n,n);		\
104 					STXVD2X(n,b,base);	\
105 					XXSWAPD(n,n)
106 
107 #define LXVD2X_ROT(n,b,base)		LXVD2X(n,b,base);	\
108 					XXSWAPD(n,n)
109 #endif
110 /* Save the lower 32 VSRs in the thread VSR region */
111 #define SAVE_VSR(n,b,base)	li b,16*(n);  STXVD2X_ROT(n,R##base,R##b)
112 #define SAVE_2VSRS(n,b,base)	SAVE_VSR(n,b,base); SAVE_VSR(n+1,b,base)
113 #define SAVE_4VSRS(n,b,base)	SAVE_2VSRS(n,b,base); SAVE_2VSRS(n+2,b,base)
114 #define SAVE_8VSRS(n,b,base)	SAVE_4VSRS(n,b,base); SAVE_4VSRS(n+4,b,base)
115 #define SAVE_16VSRS(n,b,base)	SAVE_8VSRS(n,b,base); SAVE_8VSRS(n+8,b,base)
116 #define SAVE_32VSRS(n,b,base)	SAVE_16VSRS(n,b,base); SAVE_16VSRS(n+16,b,base)
117 #define REST_VSR(n,b,base)	li b,16*(n); LXVD2X_ROT(n,R##base,R##b)
118 #define REST_2VSRS(n,b,base)	REST_VSR(n,b,base); REST_VSR(n+1,b,base)
119 #define REST_4VSRS(n,b,base)	REST_2VSRS(n,b,base); REST_2VSRS(n+2,b,base)
120 #define REST_8VSRS(n,b,base)	REST_4VSRS(n,b,base); REST_4VSRS(n+4,b,base)
121 #define REST_16VSRS(n,b,base)	REST_8VSRS(n,b,base); REST_8VSRS(n+8,b,base)
122 #define REST_32VSRS(n,b,base)	REST_16VSRS(n,b,base); REST_16VSRS(n+16,b,base)
123 
124 /*
125  * b = base register for addressing, o = base offset from register of 1st EVR
126  * n = first EVR, s = scratch
127  */
128 #define SAVE_EVR(n,s,b,o)	evmergehi s,s,n; stw s,o+4*(n)(b)
129 #define SAVE_2EVRS(n,s,b,o)	SAVE_EVR(n,s,b,o); SAVE_EVR(n+1,s,b,o)
130 #define SAVE_4EVRS(n,s,b,o)	SAVE_2EVRS(n,s,b,o); SAVE_2EVRS(n+2,s,b,o)
131 #define SAVE_8EVRS(n,s,b,o)	SAVE_4EVRS(n,s,b,o); SAVE_4EVRS(n+4,s,b,o)
132 #define SAVE_16EVRS(n,s,b,o)	SAVE_8EVRS(n,s,b,o); SAVE_8EVRS(n+8,s,b,o)
133 #define SAVE_32EVRS(n,s,b,o)	SAVE_16EVRS(n,s,b,o); SAVE_16EVRS(n+16,s,b,o)
134 #define REST_EVR(n,s,b,o)	lwz s,o+4*(n)(b); evmergelo n,s,n
135 #define REST_2EVRS(n,s,b,o)	REST_EVR(n,s,b,o); REST_EVR(n+1,s,b,o)
136 #define REST_4EVRS(n,s,b,o)	REST_2EVRS(n,s,b,o); REST_2EVRS(n+2,s,b,o)
137 #define REST_8EVRS(n,s,b,o)	REST_4EVRS(n,s,b,o); REST_4EVRS(n+4,s,b,o)
138 #define REST_16EVRS(n,s,b,o)	REST_8EVRS(n,s,b,o); REST_8EVRS(n+8,s,b,o)
139 #define REST_32EVRS(n,s,b,o)	REST_16EVRS(n,s,b,o); REST_16EVRS(n+16,s,b,o)
140 
141 /* Macros to adjust thread priority for hardware multithreading */
142 #define HMT_VERY_LOW	or	31,31,31	# very low priority
143 #define HMT_LOW		or	1,1,1
144 #define HMT_MEDIUM_LOW  or	6,6,6		# medium low priority
145 #define HMT_MEDIUM	or	2,2,2
146 #define HMT_MEDIUM_HIGH or	5,5,5		# medium high priority
147 #define HMT_HIGH	or	3,3,3
148 #define HMT_EXTRA_HIGH	or	7,7,7		# power7 only
149 
150 #ifdef CONFIG_PPC64
151 #define ULONG_SIZE 	8
152 #else
153 #define ULONG_SIZE	4
154 #endif
155 #define __VCPU_GPR(n)	(VCPU_GPRS + (n * ULONG_SIZE))
156 #define VCPU_GPR(n)	__VCPU_GPR(__REG_##n)
157 
158 #ifdef __KERNEL__
159 
160 /*
161  * We use __powerpc64__ here because we want the compat VDSO to use the 32-bit
162  * version below in the else case of the ifdef.
163  */
164 #ifdef __powerpc64__
165 
166 #define STACKFRAMESIZE 256
167 #define __STK_REG(i)   (112 + ((i)-14)*8)
168 #define STK_REG(i)     __STK_REG(__REG_##i)
169 
170 #ifdef PPC64_ELF_ABI_v2
171 #define STK_GOT		24
172 #define __STK_PARAM(i)	(32 + ((i)-3)*8)
173 #else
174 #define STK_GOT		40
175 #define __STK_PARAM(i)	(48 + ((i)-3)*8)
176 #endif
177 #define STK_PARAM(i)	__STK_PARAM(__REG_##i)
178 
179 #ifdef PPC64_ELF_ABI_v2
180 
181 #define _GLOBAL(name) \
182 	.align 2 ; \
183 	.type name,@function; \
184 	.globl name; \
185 name:
186 
187 #define _GLOBAL_TOC(name) \
188 	.align 2 ; \
189 	.type name,@function; \
190 	.globl name; \
191 name: \
192 0:	addis r2,r12,(.TOC.-0b)@ha; \
193 	addi r2,r2,(.TOC.-0b)@l; \
194 	.localentry name,.-name
195 
196 #define DOTSYM(a)	a
197 
198 #else
199 
200 #define XGLUE(a,b) a##b
201 #define GLUE(a,b) XGLUE(a,b)
202 
203 #define _GLOBAL(name) \
204 	.align 2 ; \
205 	.globl name; \
206 	.globl GLUE(.,name); \
207 	.pushsection ".opd","aw"; \
208 name: \
209 	.quad GLUE(.,name); \
210 	.quad .TOC.@tocbase; \
211 	.quad 0; \
212 	.popsection; \
213 	.type GLUE(.,name),@function; \
214 GLUE(.,name):
215 
216 #define _GLOBAL_TOC(name) _GLOBAL(name)
217 
218 #define DOTSYM(a)	GLUE(.,a)
219 
220 #endif
221 
222 #else /* 32-bit */
223 
224 #define _ENTRY(n)	\
225 	.globl n;	\
226 n:
227 
228 #define _GLOBAL(n)	\
229 	.stabs __stringify(n:F-1),N_FUN,0,0,n;\
230 	.globl n;	\
231 n:
232 
233 #define _GLOBAL_TOC(name) _GLOBAL(name)
234 
235 #define DOTSYM(a)	a
236 
237 #endif
238 
239 /*
240  * __kprobes (the C annotation) puts the symbol into the .kprobes.text
241  * section, which gets emitted at the end of regular text.
242  *
243  * _ASM_NOKPROBE_SYMBOL and NOKPROBE_SYMBOL just adds the symbol to
244  * a blacklist. The former is for core kprobe functions/data, the
245  * latter is for those that incdentially must be excluded from probing
246  * and allows them to be linked at more optimal location within text.
247  */
248 #ifdef CONFIG_KPROBES
249 #define _ASM_NOKPROBE_SYMBOL(entry)			\
250 	.pushsection "_kprobe_blacklist","aw";		\
251 	PPC_LONG (entry) ;				\
252 	.popsection
253 #else
254 #define _ASM_NOKPROBE_SYMBOL(entry)
255 #endif
256 
257 #define FUNC_START(name)	_GLOBAL(name)
258 #define FUNC_END(name)
259 
260 /*
261  * LOAD_REG_IMMEDIATE(rn, expr)
262  *   Loads the value of the constant expression 'expr' into register 'rn'
263  *   using immediate instructions only.  Use this when it's important not
264  *   to reference other data (i.e. on ppc64 when the TOC pointer is not
265  *   valid) and when 'expr' is a constant or absolute address.
266  *
267  * LOAD_REG_ADDR(rn, name)
268  *   Loads the address of label 'name' into register 'rn'.  Use this when
269  *   you don't particularly need immediate instructions only, but you need
270  *   the whole address in one register (e.g. it's a structure address and
271  *   you want to access various offsets within it).  On ppc32 this is
272  *   identical to LOAD_REG_IMMEDIATE.
273  *
274  * LOAD_REG_ADDR_PIC(rn, name)
275  *   Loads the address of label 'name' into register 'run'. Use this when
276  *   the kernel doesn't run at the linked or relocated address. Please
277  *   note that this macro will clobber the lr register.
278  *
279  * LOAD_REG_ADDRBASE(rn, name)
280  * ADDROFF(name)
281  *   LOAD_REG_ADDRBASE loads part of the address of label 'name' into
282  *   register 'rn'.  ADDROFF(name) returns the remainder of the address as
283  *   a constant expression.  ADDROFF(name) is a signed expression < 16 bits
284  *   in size, so is suitable for use directly as an offset in load and store
285  *   instructions.  Use this when loading/storing a single word or less as:
286  *      LOAD_REG_ADDRBASE(rX, name)
287  *      ld	rY,ADDROFF(name)(rX)
288  */
289 
290 /* Be careful, this will clobber the lr register. */
291 #define LOAD_REG_ADDR_PIC(reg, name)		\
292 	bl	0f;				\
293 0:	mflr	reg;				\
294 	addis	reg,reg,(name - 0b)@ha;		\
295 	addi	reg,reg,(name - 0b)@l;
296 
297 #if defined(__powerpc64__) && defined(HAVE_AS_ATHIGH)
298 #define __AS_ATHIGH high
299 #else
300 #define __AS_ATHIGH h
301 #endif
302 
303 .macro __LOAD_REG_IMMEDIATE_32 r, x
304 	.if (\x) >= 0x8000 || (\x) < -0x8000
305 		lis \r, (\x)@__AS_ATHIGH
306 		.if (\x) & 0xffff != 0
307 			ori \r, \r, (\x)@l
308 		.endif
309 	.else
310 		li \r, (\x)@l
311 	.endif
312 .endm
313 
314 .macro __LOAD_REG_IMMEDIATE r, x
315 	.if (\x) >= 0x80000000 || (\x) < -0x80000000
316 		__LOAD_REG_IMMEDIATE_32 \r, (\x) >> 32
317 		sldi	\r, \r, 32
318 		.if (\x) & 0xffff0000 != 0
319 			oris \r, \r, (\x)@__AS_ATHIGH
320 		.endif
321 		.if (\x) & 0xffff != 0
322 			ori \r, \r, (\x)@l
323 		.endif
324 	.else
325 		__LOAD_REG_IMMEDIATE_32 \r, \x
326 	.endif
327 .endm
328 
329 #ifdef __powerpc64__
330 
331 #define LOAD_REG_IMMEDIATE(reg, expr) __LOAD_REG_IMMEDIATE reg, expr
332 
333 #define LOAD_REG_IMMEDIATE_SYM(reg, tmp, expr)	\
334 	lis	tmp, (expr)@highest;		\
335 	lis	reg, (expr)@__AS_ATHIGH;	\
336 	ori	tmp, tmp, (expr)@higher;	\
337 	ori	reg, reg, (expr)@l;		\
338 	rldimi	reg, tmp, 32, 0
339 
340 #define LOAD_REG_ADDR(reg,name)			\
341 	ld	reg,name@got(r2)
342 
343 #define LOAD_REG_ADDRBASE(reg,name)	LOAD_REG_ADDR(reg,name)
344 #define ADDROFF(name)			0
345 
346 /* offsets for stack frame layout */
347 #define LRSAVE	16
348 
349 #else /* 32-bit */
350 
351 #define LOAD_REG_IMMEDIATE(reg, expr) __LOAD_REG_IMMEDIATE_32 reg, expr
352 
353 #define LOAD_REG_IMMEDIATE_SYM(reg,expr)		\
354 	lis	reg,(expr)@ha;		\
355 	addi	reg,reg,(expr)@l;
356 
357 #define LOAD_REG_ADDR(reg,name)		LOAD_REG_IMMEDIATE_SYM(reg, name)
358 
359 #define LOAD_REG_ADDRBASE(reg, name)	lis	reg,name@ha
360 #define ADDROFF(name)			name@l
361 
362 /* offsets for stack frame layout */
363 #define LRSAVE	4
364 
365 #endif
366 
367 /* various errata or part fixups */
368 #if defined(CONFIG_PPC_CELL) || defined(CONFIG_PPC_FSL_BOOK3E)
369 #define MFTB(dest)			\
370 90:	mfspr dest, SPRN_TBRL;		\
371 BEGIN_FTR_SECTION_NESTED(96);		\
372 	cmpwi dest,0;			\
373 	beq-  90b;			\
374 END_FTR_SECTION_NESTED(CPU_FTR_CELL_TB_BUG, CPU_FTR_CELL_TB_BUG, 96)
375 #else
376 #define MFTB(dest)			MFTBL(dest)
377 #endif
378 
379 #ifdef CONFIG_PPC_8xx
380 #define MFTBL(dest)			mftb dest
381 #define MFTBU(dest)			mftbu dest
382 #else
383 #define MFTBL(dest)			mfspr dest, SPRN_TBRL
384 #define MFTBU(dest)			mfspr dest, SPRN_TBRU
385 #endif
386 
387 #ifndef CONFIG_SMP
388 #define TLBSYNC
389 #else
390 #define TLBSYNC		tlbsync; sync
391 #endif
392 
393 #ifdef CONFIG_PPC64
394 #define MTOCRF(FXM, RS)			\
395 	BEGIN_FTR_SECTION_NESTED(848);	\
396 	mtcrf	(FXM), RS;		\
397 	FTR_SECTION_ELSE_NESTED(848);	\
398 	mtocrf (FXM), RS;		\
399 	ALT_FTR_SECTION_END_NESTED_IFCLR(CPU_FTR_NOEXECUTE, 848)
400 #endif
401 
402 /*
403  * This instruction is not implemented on the PPC 603 or 601; however, on
404  * the 403GCX and 405GP tlbia IS defined and tlbie is not.
405  * All of these instructions exist in the 8xx, they have magical powers,
406  * and they must be used.
407  */
408 
409 #if !defined(CONFIG_4xx) && !defined(CONFIG_PPC_8xx)
410 #define tlbia					\
411 	li	r4,1024;			\
412 	mtctr	r4;				\
413 	lis	r4,KERNELBASE@h;		\
414 	.machine push;				\
415 	.machine "power4";			\
416 0:	tlbie	r4;				\
417 	.machine pop;				\
418 	addi	r4,r4,0x1000;			\
419 	bdnz	0b
420 #endif
421 
422 
423 #ifdef CONFIG_IBM440EP_ERR42
424 #define PPC440EP_ERR42 isync
425 #else
426 #define PPC440EP_ERR42
427 #endif
428 
429 /* The following stops all load and store data streams associated with stream
430  * ID (ie. streams created explicitly).  The embedded and server mnemonics for
431  * dcbt are different so this must only be used for server.
432  */
433 #define DCBT_BOOK3S_STOP_ALL_STREAM_IDS(scratch)	\
434        lis     scratch,0x60000000@h;			\
435        dcbt    0,scratch,0b01010
436 
437 /*
438  * toreal/fromreal/tophys/tovirt macros. 32-bit BookE makes them
439  * keep the address intact to be compatible with code shared with
440  * 32-bit classic.
441  *
442  * On the other hand, I find it useful to have them behave as expected
443  * by their name (ie always do the addition) on 64-bit BookE
444  */
445 #if defined(CONFIG_BOOKE) && !defined(CONFIG_PPC64)
446 #define toreal(rd)
447 #define fromreal(rd)
448 
449 /*
450  * We use addis to ensure compatibility with the "classic" ppc versions of
451  * these macros, which use rs = 0 to get the tophys offset in rd, rather than
452  * converting the address in r0, and so this version has to do that too
453  * (i.e. set register rd to 0 when rs == 0).
454  */
455 #define tophys(rd,rs)				\
456 	addis	rd,rs,0
457 
458 #define tovirt(rd,rs)				\
459 	addis	rd,rs,0
460 
461 #elif defined(CONFIG_PPC64)
462 #define toreal(rd)		/* we can access c000... in real mode */
463 #define fromreal(rd)
464 
465 #define tophys(rd,rs)                           \
466 	clrldi	rd,rs,2
467 
468 #define tovirt(rd,rs)                           \
469 	rotldi	rd,rs,16;			\
470 	ori	rd,rd,((KERNELBASE>>48)&0xFFFF);\
471 	rotldi	rd,rd,48
472 #else
473 #define toreal(rd)	tophys(rd,rd)
474 #define fromreal(rd)	tovirt(rd,rd)
475 
476 #define tophys(rd, rs)	addis	rd, rs, -PAGE_OFFSET@h
477 #define tovirt(rd, rs)	addis	rd, rs, PAGE_OFFSET@h
478 #endif
479 
480 #ifdef CONFIG_PPC_BOOK3S_64
481 #define MTMSRD(r)	mtmsrd	r
482 #define MTMSR_EERI(reg)	mtmsrd	reg,1
483 #else
484 #define MTMSRD(r)	mtmsr	r
485 #define MTMSR_EERI(reg)	mtmsr	reg
486 #endif
487 
488 #endif /* __KERNEL__ */
489 
490 /* The boring bits... */
491 
492 /* Condition Register Bit Fields */
493 
494 #define	cr0	0
495 #define	cr1	1
496 #define	cr2	2
497 #define	cr3	3
498 #define	cr4	4
499 #define	cr5	5
500 #define	cr6	6
501 #define	cr7	7
502 
503 
504 /*
505  * General Purpose Registers (GPRs)
506  *
507  * The lower case r0-r31 should be used in preference to the upper
508  * case R0-R31 as they provide more error checking in the assembler.
509  * Use R0-31 only when really nessesary.
510  */
511 
512 #define	r0	%r0
513 #define	r1	%r1
514 #define	r2	%r2
515 #define	r3	%r3
516 #define	r4	%r4
517 #define	r5	%r5
518 #define	r6	%r6
519 #define	r7	%r7
520 #define	r8	%r8
521 #define	r9	%r9
522 #define	r10	%r10
523 #define	r11	%r11
524 #define	r12	%r12
525 #define	r13	%r13
526 #define	r14	%r14
527 #define	r15	%r15
528 #define	r16	%r16
529 #define	r17	%r17
530 #define	r18	%r18
531 #define	r19	%r19
532 #define	r20	%r20
533 #define	r21	%r21
534 #define	r22	%r22
535 #define	r23	%r23
536 #define	r24	%r24
537 #define	r25	%r25
538 #define	r26	%r26
539 #define	r27	%r27
540 #define	r28	%r28
541 #define	r29	%r29
542 #define	r30	%r30
543 #define	r31	%r31
544 
545 
546 /* Floating Point Registers (FPRs) */
547 
548 #define	fr0	0
549 #define	fr1	1
550 #define	fr2	2
551 #define	fr3	3
552 #define	fr4	4
553 #define	fr5	5
554 #define	fr6	6
555 #define	fr7	7
556 #define	fr8	8
557 #define	fr9	9
558 #define	fr10	10
559 #define	fr11	11
560 #define	fr12	12
561 #define	fr13	13
562 #define	fr14	14
563 #define	fr15	15
564 #define	fr16	16
565 #define	fr17	17
566 #define	fr18	18
567 #define	fr19	19
568 #define	fr20	20
569 #define	fr21	21
570 #define	fr22	22
571 #define	fr23	23
572 #define	fr24	24
573 #define	fr25	25
574 #define	fr26	26
575 #define	fr27	27
576 #define	fr28	28
577 #define	fr29	29
578 #define	fr30	30
579 #define	fr31	31
580 
581 /* AltiVec Registers (VPRs) */
582 
583 #define	v0	0
584 #define	v1	1
585 #define	v2	2
586 #define	v3	3
587 #define	v4	4
588 #define	v5	5
589 #define	v6	6
590 #define	v7	7
591 #define	v8	8
592 #define	v9	9
593 #define	v10	10
594 #define	v11	11
595 #define	v12	12
596 #define	v13	13
597 #define	v14	14
598 #define	v15	15
599 #define	v16	16
600 #define	v17	17
601 #define	v18	18
602 #define	v19	19
603 #define	v20	20
604 #define	v21	21
605 #define	v22	22
606 #define	v23	23
607 #define	v24	24
608 #define	v25	25
609 #define	v26	26
610 #define	v27	27
611 #define	v28	28
612 #define	v29	29
613 #define	v30	30
614 #define	v31	31
615 
616 /* VSX Registers (VSRs) */
617 
618 #define	vs0	0
619 #define	vs1	1
620 #define	vs2	2
621 #define	vs3	3
622 #define	vs4	4
623 #define	vs5	5
624 #define	vs6	6
625 #define	vs7	7
626 #define	vs8	8
627 #define	vs9	9
628 #define	vs10	10
629 #define	vs11	11
630 #define	vs12	12
631 #define	vs13	13
632 #define	vs14	14
633 #define	vs15	15
634 #define	vs16	16
635 #define	vs17	17
636 #define	vs18	18
637 #define	vs19	19
638 #define	vs20	20
639 #define	vs21	21
640 #define	vs22	22
641 #define	vs23	23
642 #define	vs24	24
643 #define	vs25	25
644 #define	vs26	26
645 #define	vs27	27
646 #define	vs28	28
647 #define	vs29	29
648 #define	vs30	30
649 #define	vs31	31
650 #define	vs32	32
651 #define	vs33	33
652 #define	vs34	34
653 #define	vs35	35
654 #define	vs36	36
655 #define	vs37	37
656 #define	vs38	38
657 #define	vs39	39
658 #define	vs40	40
659 #define	vs41	41
660 #define	vs42	42
661 #define	vs43	43
662 #define	vs44	44
663 #define	vs45	45
664 #define	vs46	46
665 #define	vs47	47
666 #define	vs48	48
667 #define	vs49	49
668 #define	vs50	50
669 #define	vs51	51
670 #define	vs52	52
671 #define	vs53	53
672 #define	vs54	54
673 #define	vs55	55
674 #define	vs56	56
675 #define	vs57	57
676 #define	vs58	58
677 #define	vs59	59
678 #define	vs60	60
679 #define	vs61	61
680 #define	vs62	62
681 #define	vs63	63
682 
683 /* SPE Registers (EVPRs) */
684 
685 #define	evr0	0
686 #define	evr1	1
687 #define	evr2	2
688 #define	evr3	3
689 #define	evr4	4
690 #define	evr5	5
691 #define	evr6	6
692 #define	evr7	7
693 #define	evr8	8
694 #define	evr9	9
695 #define	evr10	10
696 #define	evr11	11
697 #define	evr12	12
698 #define	evr13	13
699 #define	evr14	14
700 #define	evr15	15
701 #define	evr16	16
702 #define	evr17	17
703 #define	evr18	18
704 #define	evr19	19
705 #define	evr20	20
706 #define	evr21	21
707 #define	evr22	22
708 #define	evr23	23
709 #define	evr24	24
710 #define	evr25	25
711 #define	evr26	26
712 #define	evr27	27
713 #define	evr28	28
714 #define	evr29	29
715 #define	evr30	30
716 #define	evr31	31
717 
718 /* some stab codes */
719 #define N_FUN	36
720 #define N_RSYM	64
721 #define N_SLINE	68
722 #define N_SO	100
723 
724 #define RFSCV	.long 0x4c0000a4
725 
726 /*
727  * Create an endian fixup trampoline
728  *
729  * This starts with a "tdi 0,0,0x48" instruction which is
730  * essentially a "trap never", and thus akin to a nop.
731  *
732  * The opcode for this instruction read with the wrong endian
733  * however results in a b . + 8
734  *
735  * So essentially we use that trick to execute the following
736  * trampoline in "reverse endian" if we are running with the
737  * MSR_LE bit set the "wrong" way for whatever endianness the
738  * kernel is built for.
739  */
740 
741 #ifdef CONFIG_PPC_BOOK3E
742 #define FIXUP_ENDIAN
743 #else
744 /*
745  * This version may be used in HV or non-HV context.
746  * MSR[EE] must be disabled.
747  */
748 #define FIXUP_ENDIAN						   \
749 	tdi   0,0,0x48;	  /* Reverse endian of b . + 8		*/ \
750 	b     191f;	  /* Skip trampoline if endian is good	*/ \
751 	.long 0xa600607d; /* mfmsr r11				*/ \
752 	.long 0x01006b69; /* xori r11,r11,1			*/ \
753 	.long 0x00004039; /* li r10,0				*/ \
754 	.long 0x6401417d; /* mtmsrd r10,1			*/ \
755 	.long 0x05009f42; /* bcl 20,31,$+4			*/ \
756 	.long 0xa602487d; /* mflr r10				*/ \
757 	.long 0x14004a39; /* addi r10,r10,20			*/ \
758 	.long 0xa6035a7d; /* mtsrr0 r10				*/ \
759 	.long 0xa6037b7d; /* mtsrr1 r11				*/ \
760 	.long 0x2400004c; /* rfid				*/ \
761 191:
762 
763 /*
764  * This version that may only be used with MSR[HV]=1
765  * - Does not clear MSR[RI], so more robust.
766  * - Slightly smaller and faster.
767  */
768 #define FIXUP_ENDIAN_HV						   \
769 	tdi   0,0,0x48;	  /* Reverse endian of b . + 8		*/ \
770 	b     191f;	  /* Skip trampoline if endian is good	*/ \
771 	.long 0xa600607d; /* mfmsr r11				*/ \
772 	.long 0x01006b69; /* xori r11,r11,1			*/ \
773 	.long 0x05009f42; /* bcl 20,31,$+4			*/ \
774 	.long 0xa602487d; /* mflr r10				*/ \
775 	.long 0x14004a39; /* addi r10,r10,20			*/ \
776 	.long 0xa64b5a7d; /* mthsrr0 r10			*/ \
777 	.long 0xa64b7b7d; /* mthsrr1 r11			*/ \
778 	.long 0x2402004c; /* hrfid				*/ \
779 191:
780 
781 #endif /* !CONFIG_PPC_BOOK3E */
782 
783 #endif /*  __ASSEMBLY__ */
784 
785 /*
786  * Helper macro for exception table entries
787  */
788 #define EX_TABLE(_fault, _target)		\
789 	stringify_in_c(.section __ex_table,"a";)\
790 	stringify_in_c(.balign 4;)		\
791 	stringify_in_c(.long (_fault) - . ;)	\
792 	stringify_in_c(.long (_target) - . ;)	\
793 	stringify_in_c(.previous)
794 
795 #ifdef CONFIG_PPC_FSL_BOOK3E
796 #define BTB_FLUSH(reg)			\
797 	lis reg,BUCSR_INIT@h;		\
798 	ori reg,reg,BUCSR_INIT@l;	\
799 	mtspr SPRN_BUCSR,reg;		\
800 	isync;
801 #else
802 #define BTB_FLUSH(reg)
803 #endif /* CONFIG_PPC_FSL_BOOK3E */
804 
805 #endif /* _ASM_POWERPC_PPC_ASM_H */
806