xref: /openbmc/linux/arch/powerpc/include/asm/ppc_asm.h (revision 726ccdba)
1 /*
2  * Copyright (C) 1995-1999 Gary Thomas, Paul Mackerras, Cort Dougan.
3  */
4 #ifndef _ASM_POWERPC_PPC_ASM_H
5 #define _ASM_POWERPC_PPC_ASM_H
6 
7 #include <linux/stringify.h>
8 #include <asm/asm-compat.h>
9 #include <asm/processor.h>
10 #include <asm/ppc-opcode.h>
11 #include <asm/firmware.h>
12 #include <asm/feature-fixups.h>
13 #include <asm/extable.h>
14 
15 #ifdef __ASSEMBLY__
16 
17 #define SZL			(BITS_PER_LONG/8)
18 
19 /*
20  * This expands to a sequence of operations with reg incrementing from
21  * start to end inclusive, of this form:
22  *
23  *   op  reg, (offset + (width * reg))(base)
24  *
25  * Note that offset is not the offset of the first operation unless start
26  * is zero (or width is zero).
27  */
28 .macro OP_REGS op, width, start, end, base, offset
29 	.Lreg=\start
30 	.rept (\end - \start + 1)
31 	\op	.Lreg, \offset + \width * .Lreg(\base)
32 	.Lreg=.Lreg+1
33 	.endr
34 .endm
35 
36 /*
37  * This expands to a sequence of register clears for regs start to end
38  * inclusive, of the form:
39  *
40  *   li rN, 0
41  */
42 .macro ZEROIZE_REGS start, end
43 	.Lreg=\start
44 	.rept (\end - \start + 1)
45 	li	.Lreg, 0
46 	.Lreg=.Lreg+1
47 	.endr
48 .endm
49 
50 /*
51  * Macros for storing registers into and loading registers from
52  * exception frames.
53  */
54 #ifdef __powerpc64__
55 #define SAVE_GPRS(start, end, base)	OP_REGS std, 8, start, end, base, GPR0
56 #define REST_GPRS(start, end, base)	OP_REGS ld, 8, start, end, base, GPR0
57 #define SAVE_NVGPRS(base)		SAVE_GPRS(14, 31, base)
58 #define REST_NVGPRS(base)		REST_GPRS(14, 31, base)
59 #else
60 #define SAVE_GPRS(start, end, base)	OP_REGS stw, 4, start, end, base, GPR0
61 #define REST_GPRS(start, end, base)	OP_REGS lwz, 4, start, end, base, GPR0
62 #define SAVE_NVGPRS(base)		SAVE_GPRS(13, 31, base)
63 #define REST_NVGPRS(base)		REST_GPRS(13, 31, base)
64 #endif
65 
66 #define	ZEROIZE_GPRS(start, end)	ZEROIZE_REGS start, end
67 #ifdef __powerpc64__
68 #define	ZEROIZE_NVGPRS()		ZEROIZE_GPRS(14, 31)
69 #else
70 #define	ZEROIZE_NVGPRS()		ZEROIZE_GPRS(13, 31)
71 #endif
72 #define	ZEROIZE_GPR(n)			ZEROIZE_GPRS(n, n)
73 
74 #define SAVE_GPR(n, base)		SAVE_GPRS(n, n, base)
75 #define REST_GPR(n, base)		REST_GPRS(n, n, base)
76 
77 /* macros for handling user register sanitisation */
78 #ifdef CONFIG_INTERRUPT_SANITIZE_REGISTERS
79 #define SANITIZE_SYSCALL_GPRS()			ZEROIZE_GPR(0);		\
80 						ZEROIZE_GPRS(5, 12);	\
81 						ZEROIZE_NVGPRS()
82 #define SANITIZE_GPR(n)				ZEROIZE_GPR(n)
83 #define SANITIZE_GPRS(start, end)		ZEROIZE_GPRS(start, end)
84 #define SANITIZE_NVGPRS()			ZEROIZE_NVGPRS()
85 #define SANITIZE_RESTORE_NVGPRS()		REST_NVGPRS(r1)
86 #define HANDLER_RESTORE_NVGPRS()
87 #else
88 #define SANITIZE_SYSCALL_GPRS()
89 #define SANITIZE_GPR(n)
90 #define SANITIZE_GPRS(start, end)
91 #define SANITIZE_NVGPRS()
92 #define SANITIZE_RESTORE_NVGPRS()
93 #define HANDLER_RESTORE_NVGPRS()		REST_NVGPRS(r1)
94 #endif /* CONFIG_INTERRUPT_SANITIZE_REGISTERS */
95 
96 #define SAVE_FPR(n, base)	stfd	n,8*TS_FPRWIDTH*(n)(base)
97 #define SAVE_2FPRS(n, base)	SAVE_FPR(n, base); SAVE_FPR(n+1, base)
98 #define SAVE_4FPRS(n, base)	SAVE_2FPRS(n, base); SAVE_2FPRS(n+2, base)
99 #define SAVE_8FPRS(n, base)	SAVE_4FPRS(n, base); SAVE_4FPRS(n+4, base)
100 #define SAVE_16FPRS(n, base)	SAVE_8FPRS(n, base); SAVE_8FPRS(n+8, base)
101 #define SAVE_32FPRS(n, base)	SAVE_16FPRS(n, base); SAVE_16FPRS(n+16, base)
102 #define REST_FPR(n, base)	lfd	n,8*TS_FPRWIDTH*(n)(base)
103 #define REST_2FPRS(n, base)	REST_FPR(n, base); REST_FPR(n+1, base)
104 #define REST_4FPRS(n, base)	REST_2FPRS(n, base); REST_2FPRS(n+2, base)
105 #define REST_8FPRS(n, base)	REST_4FPRS(n, base); REST_4FPRS(n+4, base)
106 #define REST_16FPRS(n, base)	REST_8FPRS(n, base); REST_8FPRS(n+8, base)
107 #define REST_32FPRS(n, base)	REST_16FPRS(n, base); REST_16FPRS(n+16, base)
108 
109 #define SAVE_VR(n,b,base)	li b,16*(n);  stvx n,base,b
110 #define SAVE_2VRS(n,b,base)	SAVE_VR(n,b,base); SAVE_VR(n+1,b,base)
111 #define SAVE_4VRS(n,b,base)	SAVE_2VRS(n,b,base); SAVE_2VRS(n+2,b,base)
112 #define SAVE_8VRS(n,b,base)	SAVE_4VRS(n,b,base); SAVE_4VRS(n+4,b,base)
113 #define SAVE_16VRS(n,b,base)	SAVE_8VRS(n,b,base); SAVE_8VRS(n+8,b,base)
114 #define SAVE_32VRS(n,b,base)	SAVE_16VRS(n,b,base); SAVE_16VRS(n+16,b,base)
115 #define REST_VR(n,b,base)	li b,16*(n); lvx n,base,b
116 #define REST_2VRS(n,b,base)	REST_VR(n,b,base); REST_VR(n+1,b,base)
117 #define REST_4VRS(n,b,base)	REST_2VRS(n,b,base); REST_2VRS(n+2,b,base)
118 #define REST_8VRS(n,b,base)	REST_4VRS(n,b,base); REST_4VRS(n+4,b,base)
119 #define REST_16VRS(n,b,base)	REST_8VRS(n,b,base); REST_8VRS(n+8,b,base)
120 #define REST_32VRS(n,b,base)	REST_16VRS(n,b,base); REST_16VRS(n+16,b,base)
121 
122 #ifdef __BIG_ENDIAN__
123 #define STXVD2X_ROT(n,b,base)		STXVD2X(n,b,base)
124 #define LXVD2X_ROT(n,b,base)		LXVD2X(n,b,base)
125 #else
126 #define STXVD2X_ROT(n,b,base)		XXSWAPD(n,n);		\
127 					STXVD2X(n,b,base);	\
128 					XXSWAPD(n,n)
129 
130 #define LXVD2X_ROT(n,b,base)		LXVD2X(n,b,base);	\
131 					XXSWAPD(n,n)
132 #endif
133 /* Save the lower 32 VSRs in the thread VSR region */
134 #define SAVE_VSR(n,b,base)	li b,16*(n);  STXVD2X_ROT(n,R##base,R##b)
135 #define SAVE_2VSRS(n,b,base)	SAVE_VSR(n,b,base); SAVE_VSR(n+1,b,base)
136 #define SAVE_4VSRS(n,b,base)	SAVE_2VSRS(n,b,base); SAVE_2VSRS(n+2,b,base)
137 #define SAVE_8VSRS(n,b,base)	SAVE_4VSRS(n,b,base); SAVE_4VSRS(n+4,b,base)
138 #define SAVE_16VSRS(n,b,base)	SAVE_8VSRS(n,b,base); SAVE_8VSRS(n+8,b,base)
139 #define SAVE_32VSRS(n,b,base)	SAVE_16VSRS(n,b,base); SAVE_16VSRS(n+16,b,base)
140 #define REST_VSR(n,b,base)	li b,16*(n); LXVD2X_ROT(n,R##base,R##b)
141 #define REST_2VSRS(n,b,base)	REST_VSR(n,b,base); REST_VSR(n+1,b,base)
142 #define REST_4VSRS(n,b,base)	REST_2VSRS(n,b,base); REST_2VSRS(n+2,b,base)
143 #define REST_8VSRS(n,b,base)	REST_4VSRS(n,b,base); REST_4VSRS(n+4,b,base)
144 #define REST_16VSRS(n,b,base)	REST_8VSRS(n,b,base); REST_8VSRS(n+8,b,base)
145 #define REST_32VSRS(n,b,base)	REST_16VSRS(n,b,base); REST_16VSRS(n+16,b,base)
146 
147 /*
148  * b = base register for addressing, o = base offset from register of 1st EVR
149  * n = first EVR, s = scratch
150  */
151 #define SAVE_EVR(n,s,b,o)	evmergehi s,s,n; stw s,o+4*(n)(b)
152 #define SAVE_2EVRS(n,s,b,o)	SAVE_EVR(n,s,b,o); SAVE_EVR(n+1,s,b,o)
153 #define SAVE_4EVRS(n,s,b,o)	SAVE_2EVRS(n,s,b,o); SAVE_2EVRS(n+2,s,b,o)
154 #define SAVE_8EVRS(n,s,b,o)	SAVE_4EVRS(n,s,b,o); SAVE_4EVRS(n+4,s,b,o)
155 #define SAVE_16EVRS(n,s,b,o)	SAVE_8EVRS(n,s,b,o); SAVE_8EVRS(n+8,s,b,o)
156 #define SAVE_32EVRS(n,s,b,o)	SAVE_16EVRS(n,s,b,o); SAVE_16EVRS(n+16,s,b,o)
157 #define REST_EVR(n,s,b,o)	lwz s,o+4*(n)(b); evmergelo n,s,n
158 #define REST_2EVRS(n,s,b,o)	REST_EVR(n,s,b,o); REST_EVR(n+1,s,b,o)
159 #define REST_4EVRS(n,s,b,o)	REST_2EVRS(n,s,b,o); REST_2EVRS(n+2,s,b,o)
160 #define REST_8EVRS(n,s,b,o)	REST_4EVRS(n,s,b,o); REST_4EVRS(n+4,s,b,o)
161 #define REST_16EVRS(n,s,b,o)	REST_8EVRS(n,s,b,o); REST_8EVRS(n+8,s,b,o)
162 #define REST_32EVRS(n,s,b,o)	REST_16EVRS(n,s,b,o); REST_16EVRS(n+16,s,b,o)
163 
164 /* Macros to adjust thread priority for hardware multithreading */
165 #define HMT_VERY_LOW	or	31,31,31	# very low priority
166 #define HMT_LOW		or	1,1,1
167 #define HMT_MEDIUM_LOW  or	6,6,6		# medium low priority
168 #define HMT_MEDIUM	or	2,2,2
169 #define HMT_MEDIUM_HIGH or	5,5,5		# medium high priority
170 #define HMT_HIGH	or	3,3,3
171 #define HMT_EXTRA_HIGH	or	7,7,7		# power7 only
172 
173 #ifdef CONFIG_PPC64
174 #define ULONG_SIZE 	8
175 #else
176 #define ULONG_SIZE	4
177 #endif
178 #define __VCPU_GPR(n)	(VCPU_GPRS + (n * ULONG_SIZE))
179 #define VCPU_GPR(n)	__VCPU_GPR(__REG_##n)
180 
181 #ifdef __KERNEL__
182 
183 /*
184  * Used to name C functions called from asm
185  */
186 #ifdef CONFIG_PPC_KERNEL_PCREL
187 #define CFUNC(name) name@notoc
188 #else
189 #define CFUNC(name) name
190 #endif
191 
192 /*
193  * We use __powerpc64__ here because we want the compat VDSO to use the 32-bit
194  * version below in the else case of the ifdef.
195  */
196 #ifdef __powerpc64__
197 
198 #define STACKFRAMESIZE 256
199 #define __STK_REG(i)   (112 + ((i)-14)*8)
200 #define STK_REG(i)     __STK_REG(__REG_##i)
201 
202 #ifdef CONFIG_PPC64_ELF_ABI_V2
203 #define STK_GOT		24
204 #define __STK_PARAM(i)	(32 + ((i)-3)*8)
205 #else
206 #define STK_GOT		40
207 #define __STK_PARAM(i)	(48 + ((i)-3)*8)
208 #endif
209 #define STK_PARAM(i)	__STK_PARAM(__REG_##i)
210 
211 #ifdef CONFIG_PPC64_ELF_ABI_V2
212 
213 #define _GLOBAL(name) \
214 	.align 2 ; \
215 	.type name,@function; \
216 	.globl name; \
217 name:
218 
219 #ifdef CONFIG_PPC_KERNEL_PCREL
220 #define _GLOBAL_TOC _GLOBAL
221 #else
222 #define _GLOBAL_TOC(name) \
223 	.align 2 ; \
224 	.type name,@function; \
225 	.globl name; \
226 name: \
227 0:	addis r2,r12,(.TOC.-0b)@ha; \
228 	addi r2,r2,(.TOC.-0b)@l; \
229 	.localentry name,.-name
230 #endif
231 
232 #define DOTSYM(a)	a
233 
234 #else
235 
236 #define XGLUE(a,b) a##b
237 #define GLUE(a,b) XGLUE(a,b)
238 
239 #define _GLOBAL(name) \
240 	.align 2 ; \
241 	.globl name; \
242 	.globl GLUE(.,name); \
243 	.pushsection ".opd","aw"; \
244 name: \
245 	.quad GLUE(.,name); \
246 	.quad .TOC.@tocbase; \
247 	.quad 0; \
248 	.popsection; \
249 	.type GLUE(.,name),@function; \
250 GLUE(.,name):
251 
252 #define _GLOBAL_TOC(name) _GLOBAL(name)
253 
254 #define DOTSYM(a)	GLUE(.,a)
255 
256 #endif
257 
258 #else /* 32-bit */
259 
260 #define _GLOBAL(n)	\
261 	.globl n;	\
262 n:
263 
264 #define _GLOBAL_TOC(name) _GLOBAL(name)
265 
266 #define DOTSYM(a)	a
267 
268 #endif
269 
270 /*
271  * __kprobes (the C annotation) puts the symbol into the .kprobes.text
272  * section, which gets emitted at the end of regular text.
273  *
274  * _ASM_NOKPROBE_SYMBOL and NOKPROBE_SYMBOL just adds the symbol to
275  * a blacklist. The former is for core kprobe functions/data, the
276  * latter is for those that incdentially must be excluded from probing
277  * and allows them to be linked at more optimal location within text.
278  */
279 #ifdef CONFIG_KPROBES
280 #define _ASM_NOKPROBE_SYMBOL(entry)			\
281 	.pushsection "_kprobe_blacklist","aw";		\
282 	PPC_LONG (entry) ;				\
283 	.popsection
284 #else
285 #define _ASM_NOKPROBE_SYMBOL(entry)
286 #endif
287 
288 #define FUNC_START(name)	_GLOBAL(name)
289 #define FUNC_END(name)
290 
291 /*
292  * LOAD_REG_IMMEDIATE(rn, expr)
293  *   Loads the value of the constant expression 'expr' into register 'rn'
294  *   using immediate instructions only.  Use this when it's important not
295  *   to reference other data (i.e. on ppc64 when the TOC pointer is not
296  *   valid) and when 'expr' is a constant or absolute address.
297  *
298  * LOAD_REG_ADDR(rn, name)
299  *   Loads the address of label 'name' into register 'rn'.  Use this when
300  *   you don't particularly need immediate instructions only, but you need
301  *   the whole address in one register (e.g. it's a structure address and
302  *   you want to access various offsets within it).  On ppc32 this is
303  *   identical to LOAD_REG_IMMEDIATE.
304  *
305  * LOAD_REG_ADDR_PIC(rn, name)
306  *   Loads the address of label 'name' into register 'run'. Use this when
307  *   the kernel doesn't run at the linked or relocated address. Please
308  *   note that this macro will clobber the lr register.
309  *
310  * LOAD_REG_ADDRBASE(rn, name)
311  * ADDROFF(name)
312  *   LOAD_REG_ADDRBASE loads part of the address of label 'name' into
313  *   register 'rn'.  ADDROFF(name) returns the remainder of the address as
314  *   a constant expression.  ADDROFF(name) is a signed expression < 16 bits
315  *   in size, so is suitable for use directly as an offset in load and store
316  *   instructions.  Use this when loading/storing a single word or less as:
317  *      LOAD_REG_ADDRBASE(rX, name)
318  *      ld	rY,ADDROFF(name)(rX)
319  */
320 
321 /* Be careful, this will clobber the lr register. */
322 #define LOAD_REG_ADDR_PIC(reg, name)		\
323 	bcl	20,31,$+4;			\
324 0:	mflr	reg;				\
325 	addis	reg,reg,(name - 0b)@ha;		\
326 	addi	reg,reg,(name - 0b)@l;
327 
328 #if defined(__powerpc64__) && defined(HAVE_AS_ATHIGH)
329 #define __AS_ATHIGH high
330 #else
331 #define __AS_ATHIGH h
332 #endif
333 
334 .macro __LOAD_REG_IMMEDIATE_32 r, x
335 	.if (\x) >= 0x8000 || (\x) < -0x8000
336 		lis \r, (\x)@__AS_ATHIGH
337 		.if (\x) & 0xffff != 0
338 			ori \r, \r, (\x)@l
339 		.endif
340 	.else
341 		li \r, (\x)@l
342 	.endif
343 .endm
344 
345 .macro __LOAD_REG_IMMEDIATE r, x
346 	.if (\x) >= 0x80000000 || (\x) < -0x80000000
347 		__LOAD_REG_IMMEDIATE_32 \r, (\x) >> 32
348 		sldi	\r, \r, 32
349 		.if (\x) & 0xffff0000 != 0
350 			oris \r, \r, (\x)@__AS_ATHIGH
351 		.endif
352 		.if (\x) & 0xffff != 0
353 			ori \r, \r, (\x)@l
354 		.endif
355 	.else
356 		__LOAD_REG_IMMEDIATE_32 \r, \x
357 	.endif
358 .endm
359 
360 #ifdef __powerpc64__
361 
362 #ifdef CONFIG_PPC_KERNEL_PCREL
363 #define __LOAD_PACA_TOC(reg)			\
364 	li	reg,-1
365 #else
366 #define __LOAD_PACA_TOC(reg)			\
367 	ld	reg,PACATOC(r13)
368 #endif
369 
370 #define LOAD_PACA_TOC()				\
371 	__LOAD_PACA_TOC(r2)
372 
373 #define LOAD_REG_IMMEDIATE(reg, expr) __LOAD_REG_IMMEDIATE reg, expr
374 
375 #define LOAD_REG_IMMEDIATE_SYM(reg, tmp, expr)	\
376 	lis	tmp, (expr)@highest;		\
377 	lis	reg, (expr)@__AS_ATHIGH;	\
378 	ori	tmp, tmp, (expr)@higher;	\
379 	ori	reg, reg, (expr)@l;		\
380 	rldimi	reg, tmp, 32, 0
381 
382 #ifdef CONFIG_PPC_KERNEL_PCREL
383 #define LOAD_REG_ADDR(reg,name)			\
384 	pla	reg,name@pcrel
385 
386 #else
387 #define LOAD_REG_ADDR(reg,name)			\
388 	addis	reg,r2,name@toc@ha;		\
389 	addi	reg,reg,name@toc@l
390 #endif
391 
392 #ifdef CONFIG_PPC_BOOK3E_64
393 /*
394  * This is used in register-constrained interrupt handlers. Not to be used
395  * by BOOK3S. ld complains with "got/toc optimization is not supported" if r2
396  * is not used for the TOC offset, so use @got(tocreg). If the interrupt
397  * handlers saved r2 instead, LOAD_REG_ADDR could be used.
398  */
399 #define LOAD_REG_ADDR_ALTTOC(reg,tocreg,name)	\
400 	ld	reg,name@got(tocreg)
401 #endif
402 
403 #define LOAD_REG_ADDRBASE(reg,name)	LOAD_REG_ADDR(reg,name)
404 #define ADDROFF(name)			0
405 
406 /* offsets for stack frame layout */
407 #define LRSAVE	16
408 
409 #else /* 32-bit */
410 
411 #define LOAD_REG_IMMEDIATE(reg, expr) __LOAD_REG_IMMEDIATE_32 reg, expr
412 
413 #define LOAD_REG_IMMEDIATE_SYM(reg,expr)		\
414 	lis	reg,(expr)@ha;		\
415 	addi	reg,reg,(expr)@l;
416 
417 #define LOAD_REG_ADDR(reg,name)		LOAD_REG_IMMEDIATE_SYM(reg, name)
418 
419 #define LOAD_REG_ADDRBASE(reg, name)	lis	reg,name@ha
420 #define ADDROFF(name)			name@l
421 
422 /* offsets for stack frame layout */
423 #define LRSAVE	4
424 
425 #endif
426 
427 /* various errata or part fixups */
428 #if defined(CONFIG_PPC_CELL) || defined(CONFIG_PPC_E500)
429 #define MFTB(dest)			\
430 90:	mfspr dest, SPRN_TBRL;		\
431 BEGIN_FTR_SECTION_NESTED(96);		\
432 	cmpwi dest,0;			\
433 	beq-  90b;			\
434 END_FTR_SECTION_NESTED(CPU_FTR_CELL_TB_BUG, CPU_FTR_CELL_TB_BUG, 96)
435 #else
436 #define MFTB(dest)			MFTBL(dest)
437 #endif
438 
439 #ifdef CONFIG_PPC_8xx
440 #define MFTBL(dest)			mftb dest
441 #define MFTBU(dest)			mftbu dest
442 #else
443 #define MFTBL(dest)			mfspr dest, SPRN_TBRL
444 #define MFTBU(dest)			mfspr dest, SPRN_TBRU
445 #endif
446 
447 #ifndef CONFIG_SMP
448 #define TLBSYNC
449 #else
450 #define TLBSYNC		tlbsync; sync
451 #endif
452 
453 #ifdef CONFIG_PPC64
454 #define MTOCRF(FXM, RS)			\
455 	BEGIN_FTR_SECTION_NESTED(848);	\
456 	mtcrf	(FXM), RS;		\
457 	FTR_SECTION_ELSE_NESTED(848);	\
458 	mtocrf (FXM), RS;		\
459 	ALT_FTR_SECTION_END_NESTED_IFCLR(CPU_FTR_NOEXECUTE, 848)
460 #endif
461 
462 /*
463  * This instruction is not implemented on the PPC 603 or 601; however, on
464  * the 403GCX and 405GP tlbia IS defined and tlbie is not.
465  * All of these instructions exist in the 8xx, they have magical powers,
466  * and they must be used.
467  */
468 
469 #if !defined(CONFIG_4xx) && !defined(CONFIG_PPC_8xx)
470 #define tlbia					\
471 	li	r4,1024;			\
472 	mtctr	r4;				\
473 	lis	r4,KERNELBASE@h;		\
474 	.machine push;				\
475 	.machine "power4";			\
476 0:	tlbie	r4;				\
477 	.machine pop;				\
478 	addi	r4,r4,0x1000;			\
479 	bdnz	0b
480 #endif
481 
482 
483 #ifdef CONFIG_IBM440EP_ERR42
484 #define PPC440EP_ERR42 isync
485 #else
486 #define PPC440EP_ERR42
487 #endif
488 
489 /* The following stops all load and store data streams associated with stream
490  * ID (ie. streams created explicitly).  The embedded and server mnemonics for
491  * dcbt are different so this must only be used for server.
492  */
493 #define DCBT_BOOK3S_STOP_ALL_STREAM_IDS(scratch)	\
494        lis     scratch,0x60000000@h;			\
495        dcbt    0,scratch,0b01010
496 
497 /*
498  * toreal/fromreal/tophys/tovirt macros. 32-bit BookE makes them
499  * keep the address intact to be compatible with code shared with
500  * 32-bit classic.
501  *
502  * On the other hand, I find it useful to have them behave as expected
503  * by their name (ie always do the addition) on 64-bit BookE
504  */
505 #if defined(CONFIG_BOOKE) && !defined(CONFIG_PPC64)
506 #define toreal(rd)
507 #define fromreal(rd)
508 
509 /*
510  * We use addis to ensure compatibility with the "classic" ppc versions of
511  * these macros, which use rs = 0 to get the tophys offset in rd, rather than
512  * converting the address in r0, and so this version has to do that too
513  * (i.e. set register rd to 0 when rs == 0).
514  */
515 #define tophys(rd,rs)				\
516 	addis	rd,rs,0
517 
518 #define tovirt(rd,rs)				\
519 	addis	rd,rs,0
520 
521 #elif defined(CONFIG_PPC64)
522 #define toreal(rd)		/* we can access c000... in real mode */
523 #define fromreal(rd)
524 
525 #define tophys(rd,rs)                           \
526 	clrldi	rd,rs,2
527 
528 #define tovirt(rd,rs)                           \
529 	rotldi	rd,rs,16;			\
530 	ori	rd,rd,((KERNELBASE>>48)&0xFFFF);\
531 	rotldi	rd,rd,48
532 #else
533 #define toreal(rd)	tophys(rd,rd)
534 #define fromreal(rd)	tovirt(rd,rd)
535 
536 #define tophys(rd, rs)	addis	rd, rs, -PAGE_OFFSET@h
537 #define tovirt(rd, rs)	addis	rd, rs, PAGE_OFFSET@h
538 #endif
539 
540 #ifdef CONFIG_PPC_BOOK3S_64
541 #define MTMSRD(r)	mtmsrd	r
542 #define MTMSR_EERI(reg)	mtmsrd	reg,1
543 #else
544 #define MTMSRD(r)	mtmsr	r
545 #define MTMSR_EERI(reg)	mtmsr	reg
546 #endif
547 
548 #endif /* __KERNEL__ */
549 
550 /* The boring bits... */
551 
552 /* Condition Register Bit Fields */
553 
554 #define	cr0	0
555 #define	cr1	1
556 #define	cr2	2
557 #define	cr3	3
558 #define	cr4	4
559 #define	cr5	5
560 #define	cr6	6
561 #define	cr7	7
562 
563 
564 /*
565  * General Purpose Registers (GPRs)
566  *
567  * The lower case r0-r31 should be used in preference to the upper
568  * case R0-R31 as they provide more error checking in the assembler.
569  * Use R0-31 only when really nessesary.
570  */
571 
572 #define	r0	%r0
573 #define	r1	%r1
574 #define	r2	%r2
575 #define	r3	%r3
576 #define	r4	%r4
577 #define	r5	%r5
578 #define	r6	%r6
579 #define	r7	%r7
580 #define	r8	%r8
581 #define	r9	%r9
582 #define	r10	%r10
583 #define	r11	%r11
584 #define	r12	%r12
585 #define	r13	%r13
586 #define	r14	%r14
587 #define	r15	%r15
588 #define	r16	%r16
589 #define	r17	%r17
590 #define	r18	%r18
591 #define	r19	%r19
592 #define	r20	%r20
593 #define	r21	%r21
594 #define	r22	%r22
595 #define	r23	%r23
596 #define	r24	%r24
597 #define	r25	%r25
598 #define	r26	%r26
599 #define	r27	%r27
600 #define	r28	%r28
601 #define	r29	%r29
602 #define	r30	%r30
603 #define	r31	%r31
604 
605 
606 /* Floating Point Registers (FPRs) */
607 
608 #define	fr0	0
609 #define	fr1	1
610 #define	fr2	2
611 #define	fr3	3
612 #define	fr4	4
613 #define	fr5	5
614 #define	fr6	6
615 #define	fr7	7
616 #define	fr8	8
617 #define	fr9	9
618 #define	fr10	10
619 #define	fr11	11
620 #define	fr12	12
621 #define	fr13	13
622 #define	fr14	14
623 #define	fr15	15
624 #define	fr16	16
625 #define	fr17	17
626 #define	fr18	18
627 #define	fr19	19
628 #define	fr20	20
629 #define	fr21	21
630 #define	fr22	22
631 #define	fr23	23
632 #define	fr24	24
633 #define	fr25	25
634 #define	fr26	26
635 #define	fr27	27
636 #define	fr28	28
637 #define	fr29	29
638 #define	fr30	30
639 #define	fr31	31
640 
641 /* AltiVec Registers (VPRs) */
642 
643 #define	v0	0
644 #define	v1	1
645 #define	v2	2
646 #define	v3	3
647 #define	v4	4
648 #define	v5	5
649 #define	v6	6
650 #define	v7	7
651 #define	v8	8
652 #define	v9	9
653 #define	v10	10
654 #define	v11	11
655 #define	v12	12
656 #define	v13	13
657 #define	v14	14
658 #define	v15	15
659 #define	v16	16
660 #define	v17	17
661 #define	v18	18
662 #define	v19	19
663 #define	v20	20
664 #define	v21	21
665 #define	v22	22
666 #define	v23	23
667 #define	v24	24
668 #define	v25	25
669 #define	v26	26
670 #define	v27	27
671 #define	v28	28
672 #define	v29	29
673 #define	v30	30
674 #define	v31	31
675 
676 /* VSX Registers (VSRs) */
677 
678 #define	vs0	0
679 #define	vs1	1
680 #define	vs2	2
681 #define	vs3	3
682 #define	vs4	4
683 #define	vs5	5
684 #define	vs6	6
685 #define	vs7	7
686 #define	vs8	8
687 #define	vs9	9
688 #define	vs10	10
689 #define	vs11	11
690 #define	vs12	12
691 #define	vs13	13
692 #define	vs14	14
693 #define	vs15	15
694 #define	vs16	16
695 #define	vs17	17
696 #define	vs18	18
697 #define	vs19	19
698 #define	vs20	20
699 #define	vs21	21
700 #define	vs22	22
701 #define	vs23	23
702 #define	vs24	24
703 #define	vs25	25
704 #define	vs26	26
705 #define	vs27	27
706 #define	vs28	28
707 #define	vs29	29
708 #define	vs30	30
709 #define	vs31	31
710 #define	vs32	32
711 #define	vs33	33
712 #define	vs34	34
713 #define	vs35	35
714 #define	vs36	36
715 #define	vs37	37
716 #define	vs38	38
717 #define	vs39	39
718 #define	vs40	40
719 #define	vs41	41
720 #define	vs42	42
721 #define	vs43	43
722 #define	vs44	44
723 #define	vs45	45
724 #define	vs46	46
725 #define	vs47	47
726 #define	vs48	48
727 #define	vs49	49
728 #define	vs50	50
729 #define	vs51	51
730 #define	vs52	52
731 #define	vs53	53
732 #define	vs54	54
733 #define	vs55	55
734 #define	vs56	56
735 #define	vs57	57
736 #define	vs58	58
737 #define	vs59	59
738 #define	vs60	60
739 #define	vs61	61
740 #define	vs62	62
741 #define	vs63	63
742 
743 /* SPE Registers (EVPRs) */
744 
745 #define	evr0	0
746 #define	evr1	1
747 #define	evr2	2
748 #define	evr3	3
749 #define	evr4	4
750 #define	evr5	5
751 #define	evr6	6
752 #define	evr7	7
753 #define	evr8	8
754 #define	evr9	9
755 #define	evr10	10
756 #define	evr11	11
757 #define	evr12	12
758 #define	evr13	13
759 #define	evr14	14
760 #define	evr15	15
761 #define	evr16	16
762 #define	evr17	17
763 #define	evr18	18
764 #define	evr19	19
765 #define	evr20	20
766 #define	evr21	21
767 #define	evr22	22
768 #define	evr23	23
769 #define	evr24	24
770 #define	evr25	25
771 #define	evr26	26
772 #define	evr27	27
773 #define	evr28	28
774 #define	evr29	29
775 #define	evr30	30
776 #define	evr31	31
777 
778 #define RFSCV	.long 0x4c0000a4
779 
780 /*
781  * Create an endian fixup trampoline
782  *
783  * This starts with a "tdi 0,0,0x48" instruction which is
784  * essentially a "trap never", and thus akin to a nop.
785  *
786  * The opcode for this instruction read with the wrong endian
787  * however results in a b . + 8
788  *
789  * So essentially we use that trick to execute the following
790  * trampoline in "reverse endian" if we are running with the
791  * MSR_LE bit set the "wrong" way for whatever endianness the
792  * kernel is built for.
793  */
794 
795 #ifdef CONFIG_PPC_BOOK3E_64
796 #define FIXUP_ENDIAN
797 #else
798 /*
799  * This version may be used in HV or non-HV context.
800  * MSR[EE] must be disabled.
801  */
802 #define FIXUP_ENDIAN						   \
803 	tdi   0,0,0x48;	  /* Reverse endian of b . + 8		*/ \
804 	b     191f;	  /* Skip trampoline if endian is good	*/ \
805 	.long 0xa600607d; /* mfmsr r11				*/ \
806 	.long 0x01006b69; /* xori r11,r11,1			*/ \
807 	.long 0x00004039; /* li r10,0				*/ \
808 	.long 0x6401417d; /* mtmsrd r10,1			*/ \
809 	.long 0x05009f42; /* bcl 20,31,$+4			*/ \
810 	.long 0xa602487d; /* mflr r10				*/ \
811 	.long 0x14004a39; /* addi r10,r10,20			*/ \
812 	.long 0xa6035a7d; /* mtsrr0 r10				*/ \
813 	.long 0xa6037b7d; /* mtsrr1 r11				*/ \
814 	.long 0x2400004c; /* rfid				*/ \
815 191:
816 
817 /*
818  * This version that may only be used with MSR[HV]=1
819  * - Does not clear MSR[RI], so more robust.
820  * - Slightly smaller and faster.
821  */
822 #define FIXUP_ENDIAN_HV						   \
823 	tdi   0,0,0x48;	  /* Reverse endian of b . + 8		*/ \
824 	b     191f;	  /* Skip trampoline if endian is good	*/ \
825 	.long 0xa600607d; /* mfmsr r11				*/ \
826 	.long 0x01006b69; /* xori r11,r11,1			*/ \
827 	.long 0x05009f42; /* bcl 20,31,$+4			*/ \
828 	.long 0xa602487d; /* mflr r10				*/ \
829 	.long 0x14004a39; /* addi r10,r10,20			*/ \
830 	.long 0xa64b5a7d; /* mthsrr0 r10			*/ \
831 	.long 0xa64b7b7d; /* mthsrr1 r11			*/ \
832 	.long 0x2402004c; /* hrfid				*/ \
833 191:
834 
835 #endif /* !CONFIG_PPC_BOOK3E_64 */
836 
837 #endif /*  __ASSEMBLY__ */
838 
839 #define SOFT_MASK_TABLE(_start, _end)		\
840 	stringify_in_c(.section __soft_mask_table,"a";)\
841 	stringify_in_c(.balign 8;)		\
842 	stringify_in_c(.llong (_start);)	\
843 	stringify_in_c(.llong (_end);)		\
844 	stringify_in_c(.previous)
845 
846 #define RESTART_TABLE(_start, _end, _target)	\
847 	stringify_in_c(.section __restart_table,"a";)\
848 	stringify_in_c(.balign 8;)		\
849 	stringify_in_c(.llong (_start);)	\
850 	stringify_in_c(.llong (_end);)		\
851 	stringify_in_c(.llong (_target);)	\
852 	stringify_in_c(.previous)
853 
854 #ifdef CONFIG_PPC_E500
855 #define BTB_FLUSH(reg)			\
856 	lis reg,BUCSR_INIT@h;		\
857 	ori reg,reg,BUCSR_INIT@l;	\
858 	mtspr SPRN_BUCSR,reg;		\
859 	isync;
860 #else
861 #define BTB_FLUSH(reg)
862 #endif /* CONFIG_PPC_E500 */
863 
864 #if defined(CONFIG_PPC64_ELF_ABI_V1)
865 #define STACK_FRAME_PARAMS 48
866 #elif defined(CONFIG_PPC64_ELF_ABI_V2)
867 #define STACK_FRAME_PARAMS 32
868 #elif defined(CONFIG_PPC32)
869 #define STACK_FRAME_PARAMS 8
870 #endif
871 
872 #endif /* _ASM_POWERPC_PPC_ASM_H */
873