xref: /openbmc/linux/arch/powerpc/include/asm/ppc_asm.h (revision 206a81c1)
1 /*
2  * Copyright (C) 1995-1999 Gary Thomas, Paul Mackerras, Cort Dougan.
3  */
4 #ifndef _ASM_POWERPC_PPC_ASM_H
5 #define _ASM_POWERPC_PPC_ASM_H
6 
7 #include <linux/stringify.h>
8 #include <asm/asm-compat.h>
9 #include <asm/processor.h>
10 #include <asm/ppc-opcode.h>
11 #include <asm/firmware.h>
12 
13 #ifndef __ASSEMBLY__
14 #error __FILE__ should only be used in assembler files
15 #else
16 
17 #define SZL			(BITS_PER_LONG/8)
18 
19 /*
20  * Stuff for accurate CPU time accounting.
21  * These macros handle transitions between user and system state
22  * in exception entry and exit and accumulate time to the
23  * user_time and system_time fields in the paca.
24  */
25 
26 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
27 #define ACCOUNT_CPU_USER_ENTRY(ra, rb)
28 #define ACCOUNT_CPU_USER_EXIT(ra, rb)
29 #define ACCOUNT_STOLEN_TIME
30 #else
31 #define ACCOUNT_CPU_USER_ENTRY(ra, rb)					\
32 	MFTB(ra);			/* get timebase */		\
33 	ld	rb,PACA_STARTTIME_USER(r13);				\
34 	std	ra,PACA_STARTTIME(r13);					\
35 	subf	rb,rb,ra;		/* subtract start value */	\
36 	ld	ra,PACA_USER_TIME(r13);					\
37 	add	ra,ra,rb;		/* add on to user time */	\
38 	std	ra,PACA_USER_TIME(r13);					\
39 
40 #define ACCOUNT_CPU_USER_EXIT(ra, rb)					\
41 	MFTB(ra);			/* get timebase */		\
42 	ld	rb,PACA_STARTTIME(r13);					\
43 	std	ra,PACA_STARTTIME_USER(r13);				\
44 	subf	rb,rb,ra;		/* subtract start value */	\
45 	ld	ra,PACA_SYSTEM_TIME(r13);				\
46 	add	ra,ra,rb;		/* add on to system time */	\
47 	std	ra,PACA_SYSTEM_TIME(r13)
48 
49 #ifdef CONFIG_PPC_SPLPAR
50 #define ACCOUNT_STOLEN_TIME						\
51 BEGIN_FW_FTR_SECTION;							\
52 	beq	33f;							\
53 	/* from user - see if there are any DTL entries to process */	\
54 	ld	r10,PACALPPACAPTR(r13);	/* get ptr to VPA */		\
55 	ld	r11,PACA_DTL_RIDX(r13);	/* get log read index */	\
56 	addi	r10,r10,LPPACA_DTLIDX;					\
57 	LDX_BE	r10,0,r10;		/* get log write index */	\
58 	cmpd	cr1,r11,r10;						\
59 	beq+	cr1,33f;						\
60 	bl	accumulate_stolen_time;				\
61 	ld	r12,_MSR(r1);						\
62 	andi.	r10,r12,MSR_PR;		/* Restore cr0 (coming from user) */ \
63 33:									\
64 END_FW_FTR_SECTION_IFSET(FW_FEATURE_SPLPAR)
65 
66 #else  /* CONFIG_PPC_SPLPAR */
67 #define ACCOUNT_STOLEN_TIME
68 
69 #endif /* CONFIG_PPC_SPLPAR */
70 
71 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
72 
73 /*
74  * Macros for storing registers into and loading registers from
75  * exception frames.
76  */
77 #ifdef __powerpc64__
78 #define SAVE_GPR(n, base)	std	n,GPR0+8*(n)(base)
79 #define REST_GPR(n, base)	ld	n,GPR0+8*(n)(base)
80 #define SAVE_NVGPRS(base)	SAVE_8GPRS(14, base); SAVE_10GPRS(22, base)
81 #define REST_NVGPRS(base)	REST_8GPRS(14, base); REST_10GPRS(22, base)
82 #else
83 #define SAVE_GPR(n, base)	stw	n,GPR0+4*(n)(base)
84 #define REST_GPR(n, base)	lwz	n,GPR0+4*(n)(base)
85 #define SAVE_NVGPRS(base)	SAVE_GPR(13, base); SAVE_8GPRS(14, base); \
86 				SAVE_10GPRS(22, base)
87 #define REST_NVGPRS(base)	REST_GPR(13, base); REST_8GPRS(14, base); \
88 				REST_10GPRS(22, base)
89 #endif
90 
91 #define SAVE_2GPRS(n, base)	SAVE_GPR(n, base); SAVE_GPR(n+1, base)
92 #define SAVE_4GPRS(n, base)	SAVE_2GPRS(n, base); SAVE_2GPRS(n+2, base)
93 #define SAVE_8GPRS(n, base)	SAVE_4GPRS(n, base); SAVE_4GPRS(n+4, base)
94 #define SAVE_10GPRS(n, base)	SAVE_8GPRS(n, base); SAVE_2GPRS(n+8, base)
95 #define REST_2GPRS(n, base)	REST_GPR(n, base); REST_GPR(n+1, base)
96 #define REST_4GPRS(n, base)	REST_2GPRS(n, base); REST_2GPRS(n+2, base)
97 #define REST_8GPRS(n, base)	REST_4GPRS(n, base); REST_4GPRS(n+4, base)
98 #define REST_10GPRS(n, base)	REST_8GPRS(n, base); REST_2GPRS(n+8, base)
99 
100 #define SAVE_FPR(n, base)	stfd	n,8*TS_FPRWIDTH*(n)(base)
101 #define SAVE_2FPRS(n, base)	SAVE_FPR(n, base); SAVE_FPR(n+1, base)
102 #define SAVE_4FPRS(n, base)	SAVE_2FPRS(n, base); SAVE_2FPRS(n+2, base)
103 #define SAVE_8FPRS(n, base)	SAVE_4FPRS(n, base); SAVE_4FPRS(n+4, base)
104 #define SAVE_16FPRS(n, base)	SAVE_8FPRS(n, base); SAVE_8FPRS(n+8, base)
105 #define SAVE_32FPRS(n, base)	SAVE_16FPRS(n, base); SAVE_16FPRS(n+16, base)
106 #define REST_FPR(n, base)	lfd	n,8*TS_FPRWIDTH*(n)(base)
107 #define REST_2FPRS(n, base)	REST_FPR(n, base); REST_FPR(n+1, base)
108 #define REST_4FPRS(n, base)	REST_2FPRS(n, base); REST_2FPRS(n+2, base)
109 #define REST_8FPRS(n, base)	REST_4FPRS(n, base); REST_4FPRS(n+4, base)
110 #define REST_16FPRS(n, base)	REST_8FPRS(n, base); REST_8FPRS(n+8, base)
111 #define REST_32FPRS(n, base)	REST_16FPRS(n, base); REST_16FPRS(n+16, base)
112 
113 #define SAVE_VR(n,b,base)	li b,16*(n);  stvx n,base,b
114 #define SAVE_2VRS(n,b,base)	SAVE_VR(n,b,base); SAVE_VR(n+1,b,base)
115 #define SAVE_4VRS(n,b,base)	SAVE_2VRS(n,b,base); SAVE_2VRS(n+2,b,base)
116 #define SAVE_8VRS(n,b,base)	SAVE_4VRS(n,b,base); SAVE_4VRS(n+4,b,base)
117 #define SAVE_16VRS(n,b,base)	SAVE_8VRS(n,b,base); SAVE_8VRS(n+8,b,base)
118 #define SAVE_32VRS(n,b,base)	SAVE_16VRS(n,b,base); SAVE_16VRS(n+16,b,base)
119 #define REST_VR(n,b,base)	li b,16*(n); lvx n,base,b
120 #define REST_2VRS(n,b,base)	REST_VR(n,b,base); REST_VR(n+1,b,base)
121 #define REST_4VRS(n,b,base)	REST_2VRS(n,b,base); REST_2VRS(n+2,b,base)
122 #define REST_8VRS(n,b,base)	REST_4VRS(n,b,base); REST_4VRS(n+4,b,base)
123 #define REST_16VRS(n,b,base)	REST_8VRS(n,b,base); REST_8VRS(n+8,b,base)
124 #define REST_32VRS(n,b,base)	REST_16VRS(n,b,base); REST_16VRS(n+16,b,base)
125 
126 #ifdef __BIG_ENDIAN__
127 #define STXVD2X_ROT(n,b,base)		STXVD2X(n,b,base)
128 #define LXVD2X_ROT(n,b,base)		LXVD2X(n,b,base)
129 #else
130 #define STXVD2X_ROT(n,b,base)		XXSWAPD(n,n);		\
131 					STXVD2X(n,b,base);	\
132 					XXSWAPD(n,n)
133 
134 #define LXVD2X_ROT(n,b,base)		LXVD2X(n,b,base);	\
135 					XXSWAPD(n,n)
136 #endif
137 /* Save the lower 32 VSRs in the thread VSR region */
138 #define SAVE_VSR(n,b,base)	li b,16*(n);  STXVD2X_ROT(n,R##base,R##b)
139 #define SAVE_2VSRS(n,b,base)	SAVE_VSR(n,b,base); SAVE_VSR(n+1,b,base)
140 #define SAVE_4VSRS(n,b,base)	SAVE_2VSRS(n,b,base); SAVE_2VSRS(n+2,b,base)
141 #define SAVE_8VSRS(n,b,base)	SAVE_4VSRS(n,b,base); SAVE_4VSRS(n+4,b,base)
142 #define SAVE_16VSRS(n,b,base)	SAVE_8VSRS(n,b,base); SAVE_8VSRS(n+8,b,base)
143 #define SAVE_32VSRS(n,b,base)	SAVE_16VSRS(n,b,base); SAVE_16VSRS(n+16,b,base)
144 #define REST_VSR(n,b,base)	li b,16*(n); LXVD2X_ROT(n,R##base,R##b)
145 #define REST_2VSRS(n,b,base)	REST_VSR(n,b,base); REST_VSR(n+1,b,base)
146 #define REST_4VSRS(n,b,base)	REST_2VSRS(n,b,base); REST_2VSRS(n+2,b,base)
147 #define REST_8VSRS(n,b,base)	REST_4VSRS(n,b,base); REST_4VSRS(n+4,b,base)
148 #define REST_16VSRS(n,b,base)	REST_8VSRS(n,b,base); REST_8VSRS(n+8,b,base)
149 #define REST_32VSRS(n,b,base)	REST_16VSRS(n,b,base); REST_16VSRS(n+16,b,base)
150 
151 /*
152  * b = base register for addressing, o = base offset from register of 1st EVR
153  * n = first EVR, s = scratch
154  */
155 #define SAVE_EVR(n,s,b,o)	evmergehi s,s,n; stw s,o+4*(n)(b)
156 #define SAVE_2EVRS(n,s,b,o)	SAVE_EVR(n,s,b,o); SAVE_EVR(n+1,s,b,o)
157 #define SAVE_4EVRS(n,s,b,o)	SAVE_2EVRS(n,s,b,o); SAVE_2EVRS(n+2,s,b,o)
158 #define SAVE_8EVRS(n,s,b,o)	SAVE_4EVRS(n,s,b,o); SAVE_4EVRS(n+4,s,b,o)
159 #define SAVE_16EVRS(n,s,b,o)	SAVE_8EVRS(n,s,b,o); SAVE_8EVRS(n+8,s,b,o)
160 #define SAVE_32EVRS(n,s,b,o)	SAVE_16EVRS(n,s,b,o); SAVE_16EVRS(n+16,s,b,o)
161 #define REST_EVR(n,s,b,o)	lwz s,o+4*(n)(b); evmergelo n,s,n
162 #define REST_2EVRS(n,s,b,o)	REST_EVR(n,s,b,o); REST_EVR(n+1,s,b,o)
163 #define REST_4EVRS(n,s,b,o)	REST_2EVRS(n,s,b,o); REST_2EVRS(n+2,s,b,o)
164 #define REST_8EVRS(n,s,b,o)	REST_4EVRS(n,s,b,o); REST_4EVRS(n+4,s,b,o)
165 #define REST_16EVRS(n,s,b,o)	REST_8EVRS(n,s,b,o); REST_8EVRS(n+8,s,b,o)
166 #define REST_32EVRS(n,s,b,o)	REST_16EVRS(n,s,b,o); REST_16EVRS(n+16,s,b,o)
167 
168 /* Macros to adjust thread priority for hardware multithreading */
169 #define HMT_VERY_LOW	or	31,31,31	# very low priority
170 #define HMT_LOW		or	1,1,1
171 #define HMT_MEDIUM_LOW  or	6,6,6		# medium low priority
172 #define HMT_MEDIUM	or	2,2,2
173 #define HMT_MEDIUM_HIGH or	5,5,5		# medium high priority
174 #define HMT_HIGH	or	3,3,3
175 #define HMT_EXTRA_HIGH	or	7,7,7		# power7 only
176 
177 #ifdef CONFIG_PPC64
178 #define ULONG_SIZE 	8
179 #else
180 #define ULONG_SIZE	4
181 #endif
182 #define __VCPU_GPR(n)	(VCPU_GPRS + (n * ULONG_SIZE))
183 #define VCPU_GPR(n)	__VCPU_GPR(__REG_##n)
184 
185 #ifdef __KERNEL__
186 #ifdef CONFIG_PPC64
187 
188 #define STACKFRAMESIZE 256
189 #define __STK_REG(i)   (112 + ((i)-14)*8)
190 #define STK_REG(i)     __STK_REG(__REG_##i)
191 
192 #if defined(_CALL_ELF) && _CALL_ELF == 2
193 #define STK_GOT		24
194 #define __STK_PARAM(i)	(32 + ((i)-3)*8)
195 #else
196 #define STK_GOT		40
197 #define __STK_PARAM(i)	(48 + ((i)-3)*8)
198 #endif
199 #define STK_PARAM(i)	__STK_PARAM(__REG_##i)
200 
201 #if defined(_CALL_ELF) && _CALL_ELF == 2
202 
203 #define _GLOBAL(name) \
204 	.section ".text"; \
205 	.align 2 ; \
206 	.type name,@function; \
207 	.globl name; \
208 name:
209 
210 #define _GLOBAL_TOC(name) \
211 	.section ".text"; \
212 	.align 2 ; \
213 	.type name,@function; \
214 	.globl name; \
215 name: \
216 0:	addis r2,r12,(.TOC.-0b)@ha; \
217 	addi r2,r2,(.TOC.-0b)@l; \
218 	.localentry name,.-name
219 
220 #define _KPROBE(name) \
221 	.section ".kprobes.text","a"; \
222 	.align 2 ; \
223 	.type name,@function; \
224 	.globl name; \
225 name:
226 
227 #define DOTSYM(a)	a
228 
229 #else
230 
231 #define XGLUE(a,b) a##b
232 #define GLUE(a,b) XGLUE(a,b)
233 
234 #define _GLOBAL(name) \
235 	.section ".text"; \
236 	.align 2 ; \
237 	.globl name; \
238 	.globl GLUE(.,name); \
239 	.section ".opd","aw"; \
240 name: \
241 	.quad GLUE(.,name); \
242 	.quad .TOC.@tocbase; \
243 	.quad 0; \
244 	.previous; \
245 	.type GLUE(.,name),@function; \
246 GLUE(.,name):
247 
248 #define _GLOBAL_TOC(name) _GLOBAL(name)
249 
250 #define _KPROBE(name) \
251 	.section ".kprobes.text","a"; \
252 	.align 2 ; \
253 	.globl name; \
254 	.globl GLUE(.,name); \
255 	.section ".opd","aw"; \
256 name: \
257 	.quad GLUE(.,name); \
258 	.quad .TOC.@tocbase; \
259 	.quad 0; \
260 	.previous; \
261 	.type GLUE(.,name),@function; \
262 GLUE(.,name):
263 
264 #define DOTSYM(a)	GLUE(.,a)
265 
266 #endif
267 
268 #else /* 32-bit */
269 
270 #define _ENTRY(n)	\
271 	.globl n;	\
272 n:
273 
274 #define _GLOBAL(n)	\
275 	.text;		\
276 	.stabs __stringify(n:F-1),N_FUN,0,0,n;\
277 	.globl n;	\
278 n:
279 
280 #define _KPROBE(n)	\
281 	.section ".kprobes.text","a";	\
282 	.globl	n;	\
283 n:
284 
285 #endif
286 
287 /*
288  * LOAD_REG_IMMEDIATE(rn, expr)
289  *   Loads the value of the constant expression 'expr' into register 'rn'
290  *   using immediate instructions only.  Use this when it's important not
291  *   to reference other data (i.e. on ppc64 when the TOC pointer is not
292  *   valid) and when 'expr' is a constant or absolute address.
293  *
294  * LOAD_REG_ADDR(rn, name)
295  *   Loads the address of label 'name' into register 'rn'.  Use this when
296  *   you don't particularly need immediate instructions only, but you need
297  *   the whole address in one register (e.g. it's a structure address and
298  *   you want to access various offsets within it).  On ppc32 this is
299  *   identical to LOAD_REG_IMMEDIATE.
300  *
301  * LOAD_REG_ADDR_PIC(rn, name)
302  *   Loads the address of label 'name' into register 'run'. Use this when
303  *   the kernel doesn't run at the linked or relocated address. Please
304  *   note that this macro will clobber the lr register.
305  *
306  * LOAD_REG_ADDRBASE(rn, name)
307  * ADDROFF(name)
308  *   LOAD_REG_ADDRBASE loads part of the address of label 'name' into
309  *   register 'rn'.  ADDROFF(name) returns the remainder of the address as
310  *   a constant expression.  ADDROFF(name) is a signed expression < 16 bits
311  *   in size, so is suitable for use directly as an offset in load and store
312  *   instructions.  Use this when loading/storing a single word or less as:
313  *      LOAD_REG_ADDRBASE(rX, name)
314  *      ld	rY,ADDROFF(name)(rX)
315  */
316 
317 /* Be careful, this will clobber the lr register. */
318 #define LOAD_REG_ADDR_PIC(reg, name)		\
319 	bl	0f;				\
320 0:	mflr	reg;				\
321 	addis	reg,reg,(name - 0b)@ha;		\
322 	addi	reg,reg,(name - 0b)@l;
323 
324 #ifdef __powerpc64__
325 #ifdef HAVE_AS_ATHIGH
326 #define __AS_ATHIGH high
327 #else
328 #define __AS_ATHIGH h
329 #endif
330 #define LOAD_REG_IMMEDIATE(reg,expr)		\
331 	lis     reg,(expr)@highest;		\
332 	ori     reg,reg,(expr)@higher;	\
333 	rldicr  reg,reg,32,31;		\
334 	oris    reg,reg,(expr)@__AS_ATHIGH;	\
335 	ori     reg,reg,(expr)@l;
336 
337 #define LOAD_REG_ADDR(reg,name)			\
338 	ld	reg,name@got(r2)
339 
340 #define LOAD_REG_ADDRBASE(reg,name)	LOAD_REG_ADDR(reg,name)
341 #define ADDROFF(name)			0
342 
343 /* offsets for stack frame layout */
344 #define LRSAVE	16
345 
346 #else /* 32-bit */
347 
348 #define LOAD_REG_IMMEDIATE(reg,expr)		\
349 	lis	reg,(expr)@ha;		\
350 	addi	reg,reg,(expr)@l;
351 
352 #define LOAD_REG_ADDR(reg,name)		LOAD_REG_IMMEDIATE(reg, name)
353 
354 #define LOAD_REG_ADDRBASE(reg, name)	lis	reg,name@ha
355 #define ADDROFF(name)			name@l
356 
357 /* offsets for stack frame layout */
358 #define LRSAVE	4
359 
360 #endif
361 
362 /* various errata or part fixups */
363 #ifdef CONFIG_PPC601_SYNC_FIX
364 #define SYNC				\
365 BEGIN_FTR_SECTION			\
366 	sync;				\
367 	isync;				\
368 END_FTR_SECTION_IFSET(CPU_FTR_601)
369 #define SYNC_601			\
370 BEGIN_FTR_SECTION			\
371 	sync;				\
372 END_FTR_SECTION_IFSET(CPU_FTR_601)
373 #define ISYNC_601			\
374 BEGIN_FTR_SECTION			\
375 	isync;				\
376 END_FTR_SECTION_IFSET(CPU_FTR_601)
377 #else
378 #define	SYNC
379 #define SYNC_601
380 #define ISYNC_601
381 #endif
382 
383 #if defined(CONFIG_PPC_CELL) || defined(CONFIG_PPC_FSL_BOOK3E)
384 #define MFTB(dest)			\
385 90:	mfspr dest, SPRN_TBRL;		\
386 BEGIN_FTR_SECTION_NESTED(96);		\
387 	cmpwi dest,0;			\
388 	beq-  90b;			\
389 END_FTR_SECTION_NESTED(CPU_FTR_CELL_TB_BUG, CPU_FTR_CELL_TB_BUG, 96)
390 #elif defined(CONFIG_8xx)
391 #define MFTB(dest)			mftb dest
392 #else
393 #define MFTB(dest)			mfspr dest, SPRN_TBRL
394 #endif
395 
396 #ifndef CONFIG_SMP
397 #define TLBSYNC
398 #else /* CONFIG_SMP */
399 /* tlbsync is not implemented on 601 */
400 #define TLBSYNC				\
401 BEGIN_FTR_SECTION			\
402 	tlbsync;			\
403 	sync;				\
404 END_FTR_SECTION_IFCLR(CPU_FTR_601)
405 #endif
406 
407 #ifdef CONFIG_PPC64
408 #define MTOCRF(FXM, RS)			\
409 	BEGIN_FTR_SECTION_NESTED(848);	\
410 	mtcrf	(FXM), RS;		\
411 	FTR_SECTION_ELSE_NESTED(848);	\
412 	mtocrf (FXM), RS;		\
413 	ALT_FTR_SECTION_END_NESTED_IFCLR(CPU_FTR_NOEXECUTE, 848)
414 
415 /*
416  * PPR restore macros used in entry_64.S
417  * Used for P7 or later processors
418  */
419 #define HMT_MEDIUM_LOW_HAS_PPR						\
420 BEGIN_FTR_SECTION_NESTED(944)						\
421 	HMT_MEDIUM_LOW;							\
422 END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,944)
423 
424 #define SET_DEFAULT_THREAD_PPR(ra, rb)					\
425 BEGIN_FTR_SECTION_NESTED(945)						\
426 	lis	ra,INIT_PPR@highest;	/* default ppr=3 */		\
427 	ld	rb,PACACURRENT(r13);					\
428 	sldi	ra,ra,32;	/* 11- 13 bits are used for ppr */	\
429 	std	ra,TASKTHREADPPR(rb);					\
430 END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,945)
431 
432 #endif
433 
434 /*
435  * This instruction is not implemented on the PPC 603 or 601; however, on
436  * the 403GCX and 405GP tlbia IS defined and tlbie is not.
437  * All of these instructions exist in the 8xx, they have magical powers,
438  * and they must be used.
439  */
440 
441 #if !defined(CONFIG_4xx) && !defined(CONFIG_8xx)
442 #define tlbia					\
443 	li	r4,1024;			\
444 	mtctr	r4;				\
445 	lis	r4,KERNELBASE@h;		\
446 0:	tlbie	r4;				\
447 	addi	r4,r4,0x1000;			\
448 	bdnz	0b
449 #endif
450 
451 
452 #ifdef CONFIG_IBM440EP_ERR42
453 #define PPC440EP_ERR42 isync
454 #else
455 #define PPC440EP_ERR42
456 #endif
457 
458 /* The following stops all load and store data streams associated with stream
459  * ID (ie. streams created explicitly).  The embedded and server mnemonics for
460  * dcbt are different so we use machine "power4" here explicitly.
461  */
462 #define DCBT_STOP_ALL_STREAM_IDS(scratch)	\
463 .machine push ;					\
464 .machine "power4" ;				\
465        lis     scratch,0x60000000@h;		\
466        dcbt    r0,scratch,0b01010;		\
467 .machine pop
468 
469 /*
470  * toreal/fromreal/tophys/tovirt macros. 32-bit BookE makes them
471  * keep the address intact to be compatible with code shared with
472  * 32-bit classic.
473  *
474  * On the other hand, I find it useful to have them behave as expected
475  * by their name (ie always do the addition) on 64-bit BookE
476  */
477 #if defined(CONFIG_BOOKE) && !defined(CONFIG_PPC64)
478 #define toreal(rd)
479 #define fromreal(rd)
480 
481 /*
482  * We use addis to ensure compatibility with the "classic" ppc versions of
483  * these macros, which use rs = 0 to get the tophys offset in rd, rather than
484  * converting the address in r0, and so this version has to do that too
485  * (i.e. set register rd to 0 when rs == 0).
486  */
487 #define tophys(rd,rs)				\
488 	addis	rd,rs,0
489 
490 #define tovirt(rd,rs)				\
491 	addis	rd,rs,0
492 
493 #elif defined(CONFIG_PPC64)
494 #define toreal(rd)		/* we can access c000... in real mode */
495 #define fromreal(rd)
496 
497 #define tophys(rd,rs)                           \
498 	clrldi	rd,rs,2
499 
500 #define tovirt(rd,rs)                           \
501 	rotldi	rd,rs,16;			\
502 	ori	rd,rd,((KERNELBASE>>48)&0xFFFF);\
503 	rotldi	rd,rd,48
504 #else
505 /*
506  * On APUS (Amiga PowerPC cpu upgrade board), we don't know the
507  * physical base address of RAM at compile time.
508  */
509 #define toreal(rd)	tophys(rd,rd)
510 #define fromreal(rd)	tovirt(rd,rd)
511 
512 #define tophys(rd,rs)				\
513 0:	addis	rd,rs,-PAGE_OFFSET@h;		\
514 	.section ".vtop_fixup","aw";		\
515 	.align  1;				\
516 	.long   0b;				\
517 	.previous
518 
519 #define tovirt(rd,rs)				\
520 0:	addis	rd,rs,PAGE_OFFSET@h;		\
521 	.section ".ptov_fixup","aw";		\
522 	.align  1;				\
523 	.long   0b;				\
524 	.previous
525 #endif
526 
527 #ifdef CONFIG_PPC_BOOK3S_64
528 #define RFI		rfid
529 #define MTMSRD(r)	mtmsrd	r
530 #define MTMSR_EERI(reg)	mtmsrd	reg,1
531 #else
532 #define FIX_SRR1(ra, rb)
533 #ifndef CONFIG_40x
534 #define	RFI		rfi
535 #else
536 #define RFI		rfi; b .	/* Prevent prefetch past rfi */
537 #endif
538 #define MTMSRD(r)	mtmsr	r
539 #define MTMSR_EERI(reg)	mtmsr	reg
540 #define CLR_TOP32(r)
541 #endif
542 
543 #endif /* __KERNEL__ */
544 
545 /* The boring bits... */
546 
547 /* Condition Register Bit Fields */
548 
549 #define	cr0	0
550 #define	cr1	1
551 #define	cr2	2
552 #define	cr3	3
553 #define	cr4	4
554 #define	cr5	5
555 #define	cr6	6
556 #define	cr7	7
557 
558 
559 /*
560  * General Purpose Registers (GPRs)
561  *
562  * The lower case r0-r31 should be used in preference to the upper
563  * case R0-R31 as they provide more error checking in the assembler.
564  * Use R0-31 only when really nessesary.
565  */
566 
567 #define	r0	%r0
568 #define	r1	%r1
569 #define	r2	%r2
570 #define	r3	%r3
571 #define	r4	%r4
572 #define	r5	%r5
573 #define	r6	%r6
574 #define	r7	%r7
575 #define	r8	%r8
576 #define	r9	%r9
577 #define	r10	%r10
578 #define	r11	%r11
579 #define	r12	%r12
580 #define	r13	%r13
581 #define	r14	%r14
582 #define	r15	%r15
583 #define	r16	%r16
584 #define	r17	%r17
585 #define	r18	%r18
586 #define	r19	%r19
587 #define	r20	%r20
588 #define	r21	%r21
589 #define	r22	%r22
590 #define	r23	%r23
591 #define	r24	%r24
592 #define	r25	%r25
593 #define	r26	%r26
594 #define	r27	%r27
595 #define	r28	%r28
596 #define	r29	%r29
597 #define	r30	%r30
598 #define	r31	%r31
599 
600 
601 /* Floating Point Registers (FPRs) */
602 
603 #define	fr0	0
604 #define	fr1	1
605 #define	fr2	2
606 #define	fr3	3
607 #define	fr4	4
608 #define	fr5	5
609 #define	fr6	6
610 #define	fr7	7
611 #define	fr8	8
612 #define	fr9	9
613 #define	fr10	10
614 #define	fr11	11
615 #define	fr12	12
616 #define	fr13	13
617 #define	fr14	14
618 #define	fr15	15
619 #define	fr16	16
620 #define	fr17	17
621 #define	fr18	18
622 #define	fr19	19
623 #define	fr20	20
624 #define	fr21	21
625 #define	fr22	22
626 #define	fr23	23
627 #define	fr24	24
628 #define	fr25	25
629 #define	fr26	26
630 #define	fr27	27
631 #define	fr28	28
632 #define	fr29	29
633 #define	fr30	30
634 #define	fr31	31
635 
636 /* AltiVec Registers (VPRs) */
637 
638 #define	vr0	0
639 #define	vr1	1
640 #define	vr2	2
641 #define	vr3	3
642 #define	vr4	4
643 #define	vr5	5
644 #define	vr6	6
645 #define	vr7	7
646 #define	vr8	8
647 #define	vr9	9
648 #define	vr10	10
649 #define	vr11	11
650 #define	vr12	12
651 #define	vr13	13
652 #define	vr14	14
653 #define	vr15	15
654 #define	vr16	16
655 #define	vr17	17
656 #define	vr18	18
657 #define	vr19	19
658 #define	vr20	20
659 #define	vr21	21
660 #define	vr22	22
661 #define	vr23	23
662 #define	vr24	24
663 #define	vr25	25
664 #define	vr26	26
665 #define	vr27	27
666 #define	vr28	28
667 #define	vr29	29
668 #define	vr30	30
669 #define	vr31	31
670 
671 /* VSX Registers (VSRs) */
672 
673 #define	vsr0	0
674 #define	vsr1	1
675 #define	vsr2	2
676 #define	vsr3	3
677 #define	vsr4	4
678 #define	vsr5	5
679 #define	vsr6	6
680 #define	vsr7	7
681 #define	vsr8	8
682 #define	vsr9	9
683 #define	vsr10	10
684 #define	vsr11	11
685 #define	vsr12	12
686 #define	vsr13	13
687 #define	vsr14	14
688 #define	vsr15	15
689 #define	vsr16	16
690 #define	vsr17	17
691 #define	vsr18	18
692 #define	vsr19	19
693 #define	vsr20	20
694 #define	vsr21	21
695 #define	vsr22	22
696 #define	vsr23	23
697 #define	vsr24	24
698 #define	vsr25	25
699 #define	vsr26	26
700 #define	vsr27	27
701 #define	vsr28	28
702 #define	vsr29	29
703 #define	vsr30	30
704 #define	vsr31	31
705 #define	vsr32	32
706 #define	vsr33	33
707 #define	vsr34	34
708 #define	vsr35	35
709 #define	vsr36	36
710 #define	vsr37	37
711 #define	vsr38	38
712 #define	vsr39	39
713 #define	vsr40	40
714 #define	vsr41	41
715 #define	vsr42	42
716 #define	vsr43	43
717 #define	vsr44	44
718 #define	vsr45	45
719 #define	vsr46	46
720 #define	vsr47	47
721 #define	vsr48	48
722 #define	vsr49	49
723 #define	vsr50	50
724 #define	vsr51	51
725 #define	vsr52	52
726 #define	vsr53	53
727 #define	vsr54	54
728 #define	vsr55	55
729 #define	vsr56	56
730 #define	vsr57	57
731 #define	vsr58	58
732 #define	vsr59	59
733 #define	vsr60	60
734 #define	vsr61	61
735 #define	vsr62	62
736 #define	vsr63	63
737 
738 /* SPE Registers (EVPRs) */
739 
740 #define	evr0	0
741 #define	evr1	1
742 #define	evr2	2
743 #define	evr3	3
744 #define	evr4	4
745 #define	evr5	5
746 #define	evr6	6
747 #define	evr7	7
748 #define	evr8	8
749 #define	evr9	9
750 #define	evr10	10
751 #define	evr11	11
752 #define	evr12	12
753 #define	evr13	13
754 #define	evr14	14
755 #define	evr15	15
756 #define	evr16	16
757 #define	evr17	17
758 #define	evr18	18
759 #define	evr19	19
760 #define	evr20	20
761 #define	evr21	21
762 #define	evr22	22
763 #define	evr23	23
764 #define	evr24	24
765 #define	evr25	25
766 #define	evr26	26
767 #define	evr27	27
768 #define	evr28	28
769 #define	evr29	29
770 #define	evr30	30
771 #define	evr31	31
772 
773 /* some stab codes */
774 #define N_FUN	36
775 #define N_RSYM	64
776 #define N_SLINE	68
777 #define N_SO	100
778 
779 /*
780  * Create an endian fixup trampoline
781  *
782  * This starts with a "tdi 0,0,0x48" instruction which is
783  * essentially a "trap never", and thus akin to a nop.
784  *
785  * The opcode for this instruction read with the wrong endian
786  * however results in a b . + 8
787  *
788  * So essentially we use that trick to execute the following
789  * trampoline in "reverse endian" if we are running with the
790  * MSR_LE bit set the "wrong" way for whatever endianness the
791  * kernel is built for.
792  */
793 
794 #ifdef CONFIG_PPC_BOOK3E
795 #define FIXUP_ENDIAN
796 #else
797 #define FIXUP_ENDIAN						   \
798 	tdi   0,0,0x48;	  /* Reverse endian of b . + 8		*/ \
799 	b     $+36;	  /* Skip trampoline if endian is good	*/ \
800 	.long 0x05009f42; /* bcl 20,31,$+4			*/ \
801 	.long 0xa602487d; /* mflr r10				*/ \
802 	.long 0x1c004a39; /* addi r10,r10,28			*/ \
803 	.long 0xa600607d; /* mfmsr r11				*/ \
804 	.long 0x01006b69; /* xori r11,r11,1			*/ \
805 	.long 0xa6035a7d; /* mtsrr0 r10				*/ \
806 	.long 0xa6037b7d; /* mtsrr1 r11				*/ \
807 	.long 0x2400004c  /* rfid				*/
808 #endif /* !CONFIG_PPC_BOOK3E */
809 #endif /*  __ASSEMBLY__ */
810 #endif /* _ASM_POWERPC_PPC_ASM_H */
811