xref: /openbmc/linux/arch/powerpc/include/asm/ppc_asm.h (revision 05bcf503)
1 /*
2  * Copyright (C) 1995-1999 Gary Thomas, Paul Mackerras, Cort Dougan.
3  */
4 #ifndef _ASM_POWERPC_PPC_ASM_H
5 #define _ASM_POWERPC_PPC_ASM_H
6 
7 #include <linux/init.h>
8 #include <linux/stringify.h>
9 #include <asm/asm-compat.h>
10 #include <asm/processor.h>
11 #include <asm/ppc-opcode.h>
12 #include <asm/firmware.h>
13 
14 #ifndef __ASSEMBLY__
15 #error __FILE__ should only be used in assembler files
16 #else
17 
18 #define SZL			(BITS_PER_LONG/8)
19 
20 /*
21  * Stuff for accurate CPU time accounting.
22  * These macros handle transitions between user and system state
23  * in exception entry and exit and accumulate time to the
24  * user_time and system_time fields in the paca.
25  */
26 
27 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
28 #define ACCOUNT_CPU_USER_ENTRY(ra, rb)
29 #define ACCOUNT_CPU_USER_EXIT(ra, rb)
30 #define ACCOUNT_STOLEN_TIME
31 #else
32 #define ACCOUNT_CPU_USER_ENTRY(ra, rb)					\
33 	beq	2f;			/* if from kernel mode */	\
34 	MFTB(ra);			/* get timebase */		\
35 	ld	rb,PACA_STARTTIME_USER(r13);				\
36 	std	ra,PACA_STARTTIME(r13);					\
37 	subf	rb,rb,ra;		/* subtract start value */	\
38 	ld	ra,PACA_USER_TIME(r13);					\
39 	add	ra,ra,rb;		/* add on to user time */	\
40 	std	ra,PACA_USER_TIME(r13);					\
41 2:
42 
43 #define ACCOUNT_CPU_USER_EXIT(ra, rb)					\
44 	MFTB(ra);			/* get timebase */		\
45 	ld	rb,PACA_STARTTIME(r13);					\
46 	std	ra,PACA_STARTTIME_USER(r13);				\
47 	subf	rb,rb,ra;		/* subtract start value */	\
48 	ld	ra,PACA_SYSTEM_TIME(r13);				\
49 	add	ra,ra,rb;		/* add on to system time */	\
50 	std	ra,PACA_SYSTEM_TIME(r13)
51 
52 #ifdef CONFIG_PPC_SPLPAR
53 #define ACCOUNT_STOLEN_TIME						\
54 BEGIN_FW_FTR_SECTION;							\
55 	beq	33f;							\
56 	/* from user - see if there are any DTL entries to process */	\
57 	ld	r10,PACALPPACAPTR(r13);	/* get ptr to VPA */		\
58 	ld	r11,PACA_DTL_RIDX(r13);	/* get log read index */	\
59 	ld	r10,LPPACA_DTLIDX(r10);	/* get log write index */	\
60 	cmpd	cr1,r11,r10;						\
61 	beq+	cr1,33f;						\
62 	bl	.accumulate_stolen_time;				\
63 	ld	r12,_MSR(r1);						\
64 	andi.	r10,r12,MSR_PR;		/* Restore cr0 (coming from user) */ \
65 33:									\
66 END_FW_FTR_SECTION_IFSET(FW_FEATURE_SPLPAR)
67 
68 #else  /* CONFIG_PPC_SPLPAR */
69 #define ACCOUNT_STOLEN_TIME
70 
71 #endif /* CONFIG_PPC_SPLPAR */
72 
73 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
74 
75 /*
76  * Macros for storing registers into and loading registers from
77  * exception frames.
78  */
79 #ifdef __powerpc64__
80 #define SAVE_GPR(n, base)	std	n,GPR0+8*(n)(base)
81 #define REST_GPR(n, base)	ld	n,GPR0+8*(n)(base)
82 #define SAVE_NVGPRS(base)	SAVE_8GPRS(14, base); SAVE_10GPRS(22, base)
83 #define REST_NVGPRS(base)	REST_8GPRS(14, base); REST_10GPRS(22, base)
84 #else
85 #define SAVE_GPR(n, base)	stw	n,GPR0+4*(n)(base)
86 #define REST_GPR(n, base)	lwz	n,GPR0+4*(n)(base)
87 #define SAVE_NVGPRS(base)	SAVE_GPR(13, base); SAVE_8GPRS(14, base); \
88 				SAVE_10GPRS(22, base)
89 #define REST_NVGPRS(base)	REST_GPR(13, base); REST_8GPRS(14, base); \
90 				REST_10GPRS(22, base)
91 #endif
92 
93 #define SAVE_2GPRS(n, base)	SAVE_GPR(n, base); SAVE_GPR(n+1, base)
94 #define SAVE_4GPRS(n, base)	SAVE_2GPRS(n, base); SAVE_2GPRS(n+2, base)
95 #define SAVE_8GPRS(n, base)	SAVE_4GPRS(n, base); SAVE_4GPRS(n+4, base)
96 #define SAVE_10GPRS(n, base)	SAVE_8GPRS(n, base); SAVE_2GPRS(n+8, base)
97 #define REST_2GPRS(n, base)	REST_GPR(n, base); REST_GPR(n+1, base)
98 #define REST_4GPRS(n, base)	REST_2GPRS(n, base); REST_2GPRS(n+2, base)
99 #define REST_8GPRS(n, base)	REST_4GPRS(n, base); REST_4GPRS(n+4, base)
100 #define REST_10GPRS(n, base)	REST_8GPRS(n, base); REST_2GPRS(n+8, base)
101 
102 #define SAVE_FPR(n, base)	stfd	n,THREAD_FPR0+8*TS_FPRWIDTH*(n)(base)
103 #define SAVE_2FPRS(n, base)	SAVE_FPR(n, base); SAVE_FPR(n+1, base)
104 #define SAVE_4FPRS(n, base)	SAVE_2FPRS(n, base); SAVE_2FPRS(n+2, base)
105 #define SAVE_8FPRS(n, base)	SAVE_4FPRS(n, base); SAVE_4FPRS(n+4, base)
106 #define SAVE_16FPRS(n, base)	SAVE_8FPRS(n, base); SAVE_8FPRS(n+8, base)
107 #define SAVE_32FPRS(n, base)	SAVE_16FPRS(n, base); SAVE_16FPRS(n+16, base)
108 #define REST_FPR(n, base)	lfd	n,THREAD_FPR0+8*TS_FPRWIDTH*(n)(base)
109 #define REST_2FPRS(n, base)	REST_FPR(n, base); REST_FPR(n+1, base)
110 #define REST_4FPRS(n, base)	REST_2FPRS(n, base); REST_2FPRS(n+2, base)
111 #define REST_8FPRS(n, base)	REST_4FPRS(n, base); REST_4FPRS(n+4, base)
112 #define REST_16FPRS(n, base)	REST_8FPRS(n, base); REST_8FPRS(n+8, base)
113 #define REST_32FPRS(n, base)	REST_16FPRS(n, base); REST_16FPRS(n+16, base)
114 
115 #define SAVE_VR(n,b,base)	li b,THREAD_VR0+(16*(n));  stvx n,base,b
116 #define SAVE_2VRS(n,b,base)	SAVE_VR(n,b,base); SAVE_VR(n+1,b,base)
117 #define SAVE_4VRS(n,b,base)	SAVE_2VRS(n,b,base); SAVE_2VRS(n+2,b,base)
118 #define SAVE_8VRS(n,b,base)	SAVE_4VRS(n,b,base); SAVE_4VRS(n+4,b,base)
119 #define SAVE_16VRS(n,b,base)	SAVE_8VRS(n,b,base); SAVE_8VRS(n+8,b,base)
120 #define SAVE_32VRS(n,b,base)	SAVE_16VRS(n,b,base); SAVE_16VRS(n+16,b,base)
121 #define REST_VR(n,b,base)	li b,THREAD_VR0+(16*(n)); lvx n,base,b
122 #define REST_2VRS(n,b,base)	REST_VR(n,b,base); REST_VR(n+1,b,base)
123 #define REST_4VRS(n,b,base)	REST_2VRS(n,b,base); REST_2VRS(n+2,b,base)
124 #define REST_8VRS(n,b,base)	REST_4VRS(n,b,base); REST_4VRS(n+4,b,base)
125 #define REST_16VRS(n,b,base)	REST_8VRS(n,b,base); REST_8VRS(n+8,b,base)
126 #define REST_32VRS(n,b,base)	REST_16VRS(n,b,base); REST_16VRS(n+16,b,base)
127 
128 /* Save the lower 32 VSRs in the thread VSR region */
129 #define SAVE_VSR(n,b,base)	li b,THREAD_VSR0+(16*(n));  STXVD2X(n,R##base,R##b)
130 #define SAVE_2VSRS(n,b,base)	SAVE_VSR(n,b,base); SAVE_VSR(n+1,b,base)
131 #define SAVE_4VSRS(n,b,base)	SAVE_2VSRS(n,b,base); SAVE_2VSRS(n+2,b,base)
132 #define SAVE_8VSRS(n,b,base)	SAVE_4VSRS(n,b,base); SAVE_4VSRS(n+4,b,base)
133 #define SAVE_16VSRS(n,b,base)	SAVE_8VSRS(n,b,base); SAVE_8VSRS(n+8,b,base)
134 #define SAVE_32VSRS(n,b,base)	SAVE_16VSRS(n,b,base); SAVE_16VSRS(n+16,b,base)
135 #define REST_VSR(n,b,base)	li b,THREAD_VSR0+(16*(n)); LXVD2X(n,R##base,R##b)
136 #define REST_2VSRS(n,b,base)	REST_VSR(n,b,base); REST_VSR(n+1,b,base)
137 #define REST_4VSRS(n,b,base)	REST_2VSRS(n,b,base); REST_2VSRS(n+2,b,base)
138 #define REST_8VSRS(n,b,base)	REST_4VSRS(n,b,base); REST_4VSRS(n+4,b,base)
139 #define REST_16VSRS(n,b,base)	REST_8VSRS(n,b,base); REST_8VSRS(n+8,b,base)
140 #define REST_32VSRS(n,b,base)	REST_16VSRS(n,b,base); REST_16VSRS(n+16,b,base)
141 /* Save the upper 32 VSRs (32-63) in the thread VSX region (0-31) */
142 #define SAVE_VSRU(n,b,base)	li b,THREAD_VR0+(16*(n));  STXVD2X(n+32,R##base,R##b)
143 #define SAVE_2VSRSU(n,b,base)	SAVE_VSRU(n,b,base); SAVE_VSRU(n+1,b,base)
144 #define SAVE_4VSRSU(n,b,base)	SAVE_2VSRSU(n,b,base); SAVE_2VSRSU(n+2,b,base)
145 #define SAVE_8VSRSU(n,b,base)	SAVE_4VSRSU(n,b,base); SAVE_4VSRSU(n+4,b,base)
146 #define SAVE_16VSRSU(n,b,base)	SAVE_8VSRSU(n,b,base); SAVE_8VSRSU(n+8,b,base)
147 #define SAVE_32VSRSU(n,b,base)	SAVE_16VSRSU(n,b,base); SAVE_16VSRSU(n+16,b,base)
148 #define REST_VSRU(n,b,base)	li b,THREAD_VR0+(16*(n)); LXVD2X(n+32,R##base,R##b)
149 #define REST_2VSRSU(n,b,base)	REST_VSRU(n,b,base); REST_VSRU(n+1,b,base)
150 #define REST_4VSRSU(n,b,base)	REST_2VSRSU(n,b,base); REST_2VSRSU(n+2,b,base)
151 #define REST_8VSRSU(n,b,base)	REST_4VSRSU(n,b,base); REST_4VSRSU(n+4,b,base)
152 #define REST_16VSRSU(n,b,base)	REST_8VSRSU(n,b,base); REST_8VSRSU(n+8,b,base)
153 #define REST_32VSRSU(n,b,base)	REST_16VSRSU(n,b,base); REST_16VSRSU(n+16,b,base)
154 
155 /*
156  * b = base register for addressing, o = base offset from register of 1st EVR
157  * n = first EVR, s = scratch
158  */
159 #define SAVE_EVR(n,s,b,o)	evmergehi s,s,n; stw s,o+4*(n)(b)
160 #define SAVE_2EVRS(n,s,b,o)	SAVE_EVR(n,s,b,o); SAVE_EVR(n+1,s,b,o)
161 #define SAVE_4EVRS(n,s,b,o)	SAVE_2EVRS(n,s,b,o); SAVE_2EVRS(n+2,s,b,o)
162 #define SAVE_8EVRS(n,s,b,o)	SAVE_4EVRS(n,s,b,o); SAVE_4EVRS(n+4,s,b,o)
163 #define SAVE_16EVRS(n,s,b,o)	SAVE_8EVRS(n,s,b,o); SAVE_8EVRS(n+8,s,b,o)
164 #define SAVE_32EVRS(n,s,b,o)	SAVE_16EVRS(n,s,b,o); SAVE_16EVRS(n+16,s,b,o)
165 #define REST_EVR(n,s,b,o)	lwz s,o+4*(n)(b); evmergelo n,s,n
166 #define REST_2EVRS(n,s,b,o)	REST_EVR(n,s,b,o); REST_EVR(n+1,s,b,o)
167 #define REST_4EVRS(n,s,b,o)	REST_2EVRS(n,s,b,o); REST_2EVRS(n+2,s,b,o)
168 #define REST_8EVRS(n,s,b,o)	REST_4EVRS(n,s,b,o); REST_4EVRS(n+4,s,b,o)
169 #define REST_16EVRS(n,s,b,o)	REST_8EVRS(n,s,b,o); REST_8EVRS(n+8,s,b,o)
170 #define REST_32EVRS(n,s,b,o)	REST_16EVRS(n,s,b,o); REST_16EVRS(n+16,s,b,o)
171 
172 /* Macros to adjust thread priority for hardware multithreading */
173 #define HMT_VERY_LOW	or	31,31,31	# very low priority
174 #define HMT_LOW		or	1,1,1
175 #define HMT_MEDIUM_LOW  or	6,6,6		# medium low priority
176 #define HMT_MEDIUM	or	2,2,2
177 #define HMT_MEDIUM_HIGH or	5,5,5		# medium high priority
178 #define HMT_HIGH	or	3,3,3
179 #define HMT_EXTRA_HIGH	or	7,7,7		# power7 only
180 
181 #ifdef CONFIG_PPC64
182 #define ULONG_SIZE 	8
183 #else
184 #define ULONG_SIZE	4
185 #endif
186 #define __VCPU_GPR(n)	(VCPU_GPRS + (n * ULONG_SIZE))
187 #define VCPU_GPR(n)	__VCPU_GPR(__REG_##n)
188 
189 #ifdef __KERNEL__
190 #ifdef CONFIG_PPC64
191 
192 #define STACKFRAMESIZE 256
193 #define __STK_REG(i)   (112 + ((i)-14)*8)
194 #define STK_REG(i)     __STK_REG(__REG_##i)
195 
196 #define __STK_PARAM(i)	(48 + ((i)-3)*8)
197 #define STK_PARAM(i)	__STK_PARAM(__REG_##i)
198 
199 #define XGLUE(a,b) a##b
200 #define GLUE(a,b) XGLUE(a,b)
201 
202 #define _GLOBAL(name) \
203 	.section ".text"; \
204 	.align 2 ; \
205 	.globl name; \
206 	.globl GLUE(.,name); \
207 	.section ".opd","aw"; \
208 name: \
209 	.quad GLUE(.,name); \
210 	.quad .TOC.@tocbase; \
211 	.quad 0; \
212 	.previous; \
213 	.type GLUE(.,name),@function; \
214 GLUE(.,name):
215 
216 #define _INIT_GLOBAL(name) \
217 	__REF; \
218 	.align 2 ; \
219 	.globl name; \
220 	.globl GLUE(.,name); \
221 	.section ".opd","aw"; \
222 name: \
223 	.quad GLUE(.,name); \
224 	.quad .TOC.@tocbase; \
225 	.quad 0; \
226 	.previous; \
227 	.type GLUE(.,name),@function; \
228 GLUE(.,name):
229 
230 #define _KPROBE(name) \
231 	.section ".kprobes.text","a"; \
232 	.align 2 ; \
233 	.globl name; \
234 	.globl GLUE(.,name); \
235 	.section ".opd","aw"; \
236 name: \
237 	.quad GLUE(.,name); \
238 	.quad .TOC.@tocbase; \
239 	.quad 0; \
240 	.previous; \
241 	.type GLUE(.,name),@function; \
242 GLUE(.,name):
243 
244 #define _STATIC(name) \
245 	.section ".text"; \
246 	.align 2 ; \
247 	.section ".opd","aw"; \
248 name: \
249 	.quad GLUE(.,name); \
250 	.quad .TOC.@tocbase; \
251 	.quad 0; \
252 	.previous; \
253 	.type GLUE(.,name),@function; \
254 GLUE(.,name):
255 
256 #define _INIT_STATIC(name) \
257 	__REF; \
258 	.align 2 ; \
259 	.section ".opd","aw"; \
260 name: \
261 	.quad GLUE(.,name); \
262 	.quad .TOC.@tocbase; \
263 	.quad 0; \
264 	.previous; \
265 	.type GLUE(.,name),@function; \
266 GLUE(.,name):
267 
268 #else /* 32-bit */
269 
270 #define _ENTRY(n)	\
271 	.globl n;	\
272 n:
273 
274 #define _GLOBAL(n)	\
275 	.text;		\
276 	.stabs __stringify(n:F-1),N_FUN,0,0,n;\
277 	.globl n;	\
278 n:
279 
280 #define _KPROBE(n)	\
281 	.section ".kprobes.text","a";	\
282 	.globl	n;	\
283 n:
284 
285 #endif
286 
287 /*
288  * LOAD_REG_IMMEDIATE(rn, expr)
289  *   Loads the value of the constant expression 'expr' into register 'rn'
290  *   using immediate instructions only.  Use this when it's important not
291  *   to reference other data (i.e. on ppc64 when the TOC pointer is not
292  *   valid) and when 'expr' is a constant or absolute address.
293  *
294  * LOAD_REG_ADDR(rn, name)
295  *   Loads the address of label 'name' into register 'rn'.  Use this when
296  *   you don't particularly need immediate instructions only, but you need
297  *   the whole address in one register (e.g. it's a structure address and
298  *   you want to access various offsets within it).  On ppc32 this is
299  *   identical to LOAD_REG_IMMEDIATE.
300  *
301  * LOAD_REG_ADDRBASE(rn, name)
302  * ADDROFF(name)
303  *   LOAD_REG_ADDRBASE loads part of the address of label 'name' into
304  *   register 'rn'.  ADDROFF(name) returns the remainder of the address as
305  *   a constant expression.  ADDROFF(name) is a signed expression < 16 bits
306  *   in size, so is suitable for use directly as an offset in load and store
307  *   instructions.  Use this when loading/storing a single word or less as:
308  *      LOAD_REG_ADDRBASE(rX, name)
309  *      ld	rY,ADDROFF(name)(rX)
310  */
311 #ifdef __powerpc64__
312 #define LOAD_REG_IMMEDIATE(reg,expr)		\
313 	lis     reg,(expr)@highest;		\
314 	ori     reg,reg,(expr)@higher;	\
315 	rldicr  reg,reg,32,31;		\
316 	oris    reg,reg,(expr)@h;		\
317 	ori     reg,reg,(expr)@l;
318 
319 #define LOAD_REG_ADDR(reg,name)			\
320 	ld	reg,name@got(r2)
321 
322 #define LOAD_REG_ADDRBASE(reg,name)	LOAD_REG_ADDR(reg,name)
323 #define ADDROFF(name)			0
324 
325 /* offsets for stack frame layout */
326 #define LRSAVE	16
327 
328 #else /* 32-bit */
329 
330 #define LOAD_REG_IMMEDIATE(reg,expr)		\
331 	lis	reg,(expr)@ha;		\
332 	addi	reg,reg,(expr)@l;
333 
334 #define LOAD_REG_ADDR(reg,name)		LOAD_REG_IMMEDIATE(reg, name)
335 
336 #define LOAD_REG_ADDRBASE(reg, name)	lis	reg,name@ha
337 #define ADDROFF(name)			name@l
338 
339 /* offsets for stack frame layout */
340 #define LRSAVE	4
341 
342 #endif
343 
344 /* various errata or part fixups */
345 #ifdef CONFIG_PPC601_SYNC_FIX
346 #define SYNC				\
347 BEGIN_FTR_SECTION			\
348 	sync;				\
349 	isync;				\
350 END_FTR_SECTION_IFSET(CPU_FTR_601)
351 #define SYNC_601			\
352 BEGIN_FTR_SECTION			\
353 	sync;				\
354 END_FTR_SECTION_IFSET(CPU_FTR_601)
355 #define ISYNC_601			\
356 BEGIN_FTR_SECTION			\
357 	isync;				\
358 END_FTR_SECTION_IFSET(CPU_FTR_601)
359 #else
360 #define	SYNC
361 #define SYNC_601
362 #define ISYNC_601
363 #endif
364 
365 #ifdef CONFIG_PPC_CELL
366 #define MFTB(dest)			\
367 90:	mftb  dest;			\
368 BEGIN_FTR_SECTION_NESTED(96);		\
369 	cmpwi dest,0;			\
370 	beq-  90b;			\
371 END_FTR_SECTION_NESTED(CPU_FTR_CELL_TB_BUG, CPU_FTR_CELL_TB_BUG, 96)
372 #else
373 #define MFTB(dest)			mftb dest
374 #endif
375 
376 #ifndef CONFIG_SMP
377 #define TLBSYNC
378 #else /* CONFIG_SMP */
379 /* tlbsync is not implemented on 601 */
380 #define TLBSYNC				\
381 BEGIN_FTR_SECTION			\
382 	tlbsync;			\
383 	sync;				\
384 END_FTR_SECTION_IFCLR(CPU_FTR_601)
385 #endif
386 
387 #ifdef CONFIG_PPC64
388 #define MTOCRF(FXM, RS)			\
389 	BEGIN_FTR_SECTION_NESTED(848);	\
390 	mtcrf	(FXM), RS;		\
391 	FTR_SECTION_ELSE_NESTED(848);	\
392 	mtocrf (FXM), RS;		\
393 	ALT_FTR_SECTION_END_NESTED_IFCLR(CPU_FTR_NOEXECUTE, 848)
394 #endif
395 
396 /*
397  * This instruction is not implemented on the PPC 603 or 601; however, on
398  * the 403GCX and 405GP tlbia IS defined and tlbie is not.
399  * All of these instructions exist in the 8xx, they have magical powers,
400  * and they must be used.
401  */
402 
403 #if !defined(CONFIG_4xx) && !defined(CONFIG_8xx)
404 #define tlbia					\
405 	li	r4,1024;			\
406 	mtctr	r4;				\
407 	lis	r4,KERNELBASE@h;		\
408 0:	tlbie	r4;				\
409 	addi	r4,r4,0x1000;			\
410 	bdnz	0b
411 #endif
412 
413 
414 #ifdef CONFIG_IBM440EP_ERR42
415 #define PPC440EP_ERR42 isync
416 #else
417 #define PPC440EP_ERR42
418 #endif
419 
420 /*
421  * toreal/fromreal/tophys/tovirt macros. 32-bit BookE makes them
422  * keep the address intact to be compatible with code shared with
423  * 32-bit classic.
424  *
425  * On the other hand, I find it useful to have them behave as expected
426  * by their name (ie always do the addition) on 64-bit BookE
427  */
428 #if defined(CONFIG_BOOKE) && !defined(CONFIG_PPC64)
429 #define toreal(rd)
430 #define fromreal(rd)
431 
432 /*
433  * We use addis to ensure compatibility with the "classic" ppc versions of
434  * these macros, which use rs = 0 to get the tophys offset in rd, rather than
435  * converting the address in r0, and so this version has to do that too
436  * (i.e. set register rd to 0 when rs == 0).
437  */
438 #define tophys(rd,rs)				\
439 	addis	rd,rs,0
440 
441 #define tovirt(rd,rs)				\
442 	addis	rd,rs,0
443 
444 #elif defined(CONFIG_PPC64)
445 #define toreal(rd)		/* we can access c000... in real mode */
446 #define fromreal(rd)
447 
448 #define tophys(rd,rs)                           \
449 	clrldi	rd,rs,2
450 
451 #define tovirt(rd,rs)                           \
452 	rotldi	rd,rs,16;			\
453 	ori	rd,rd,((KERNELBASE>>48)&0xFFFF);\
454 	rotldi	rd,rd,48
455 #else
456 /*
457  * On APUS (Amiga PowerPC cpu upgrade board), we don't know the
458  * physical base address of RAM at compile time.
459  */
460 #define toreal(rd)	tophys(rd,rd)
461 #define fromreal(rd)	tovirt(rd,rd)
462 
463 #define tophys(rd,rs)				\
464 0:	addis	rd,rs,-PAGE_OFFSET@h;		\
465 	.section ".vtop_fixup","aw";		\
466 	.align  1;				\
467 	.long   0b;				\
468 	.previous
469 
470 #define tovirt(rd,rs)				\
471 0:	addis	rd,rs,PAGE_OFFSET@h;		\
472 	.section ".ptov_fixup","aw";		\
473 	.align  1;				\
474 	.long   0b;				\
475 	.previous
476 #endif
477 
478 #ifdef CONFIG_PPC_BOOK3S_64
479 #define RFI		rfid
480 #define MTMSRD(r)	mtmsrd	r
481 #define MTMSR_EERI(reg)	mtmsrd	reg,1
482 #else
483 #define FIX_SRR1(ra, rb)
484 #ifndef CONFIG_40x
485 #define	RFI		rfi
486 #else
487 #define RFI		rfi; b .	/* Prevent prefetch past rfi */
488 #endif
489 #define MTMSRD(r)	mtmsr	r
490 #define MTMSR_EERI(reg)	mtmsr	reg
491 #define CLR_TOP32(r)
492 #endif
493 
494 #endif /* __KERNEL__ */
495 
496 /* The boring bits... */
497 
498 /* Condition Register Bit Fields */
499 
500 #define	cr0	0
501 #define	cr1	1
502 #define	cr2	2
503 #define	cr3	3
504 #define	cr4	4
505 #define	cr5	5
506 #define	cr6	6
507 #define	cr7	7
508 
509 
510 /*
511  * General Purpose Registers (GPRs)
512  *
513  * The lower case r0-r31 should be used in preference to the upper
514  * case R0-R31 as they provide more error checking in the assembler.
515  * Use R0-31 only when really nessesary.
516  */
517 
518 #define	r0	%r0
519 #define	r1	%r1
520 #define	r2	%r2
521 #define	r3	%r3
522 #define	r4	%r4
523 #define	r5	%r5
524 #define	r6	%r6
525 #define	r7	%r7
526 #define	r8	%r8
527 #define	r9	%r9
528 #define	r10	%r10
529 #define	r11	%r11
530 #define	r12	%r12
531 #define	r13	%r13
532 #define	r14	%r14
533 #define	r15	%r15
534 #define	r16	%r16
535 #define	r17	%r17
536 #define	r18	%r18
537 #define	r19	%r19
538 #define	r20	%r20
539 #define	r21	%r21
540 #define	r22	%r22
541 #define	r23	%r23
542 #define	r24	%r24
543 #define	r25	%r25
544 #define	r26	%r26
545 #define	r27	%r27
546 #define	r28	%r28
547 #define	r29	%r29
548 #define	r30	%r30
549 #define	r31	%r31
550 
551 
552 /* Floating Point Registers (FPRs) */
553 
554 #define	fr0	0
555 #define	fr1	1
556 #define	fr2	2
557 #define	fr3	3
558 #define	fr4	4
559 #define	fr5	5
560 #define	fr6	6
561 #define	fr7	7
562 #define	fr8	8
563 #define	fr9	9
564 #define	fr10	10
565 #define	fr11	11
566 #define	fr12	12
567 #define	fr13	13
568 #define	fr14	14
569 #define	fr15	15
570 #define	fr16	16
571 #define	fr17	17
572 #define	fr18	18
573 #define	fr19	19
574 #define	fr20	20
575 #define	fr21	21
576 #define	fr22	22
577 #define	fr23	23
578 #define	fr24	24
579 #define	fr25	25
580 #define	fr26	26
581 #define	fr27	27
582 #define	fr28	28
583 #define	fr29	29
584 #define	fr30	30
585 #define	fr31	31
586 
587 /* AltiVec Registers (VPRs) */
588 
589 #define	vr0	0
590 #define	vr1	1
591 #define	vr2	2
592 #define	vr3	3
593 #define	vr4	4
594 #define	vr5	5
595 #define	vr6	6
596 #define	vr7	7
597 #define	vr8	8
598 #define	vr9	9
599 #define	vr10	10
600 #define	vr11	11
601 #define	vr12	12
602 #define	vr13	13
603 #define	vr14	14
604 #define	vr15	15
605 #define	vr16	16
606 #define	vr17	17
607 #define	vr18	18
608 #define	vr19	19
609 #define	vr20	20
610 #define	vr21	21
611 #define	vr22	22
612 #define	vr23	23
613 #define	vr24	24
614 #define	vr25	25
615 #define	vr26	26
616 #define	vr27	27
617 #define	vr28	28
618 #define	vr29	29
619 #define	vr30	30
620 #define	vr31	31
621 
622 /* VSX Registers (VSRs) */
623 
624 #define	vsr0	0
625 #define	vsr1	1
626 #define	vsr2	2
627 #define	vsr3	3
628 #define	vsr4	4
629 #define	vsr5	5
630 #define	vsr6	6
631 #define	vsr7	7
632 #define	vsr8	8
633 #define	vsr9	9
634 #define	vsr10	10
635 #define	vsr11	11
636 #define	vsr12	12
637 #define	vsr13	13
638 #define	vsr14	14
639 #define	vsr15	15
640 #define	vsr16	16
641 #define	vsr17	17
642 #define	vsr18	18
643 #define	vsr19	19
644 #define	vsr20	20
645 #define	vsr21	21
646 #define	vsr22	22
647 #define	vsr23	23
648 #define	vsr24	24
649 #define	vsr25	25
650 #define	vsr26	26
651 #define	vsr27	27
652 #define	vsr28	28
653 #define	vsr29	29
654 #define	vsr30	30
655 #define	vsr31	31
656 #define	vsr32	32
657 #define	vsr33	33
658 #define	vsr34	34
659 #define	vsr35	35
660 #define	vsr36	36
661 #define	vsr37	37
662 #define	vsr38	38
663 #define	vsr39	39
664 #define	vsr40	40
665 #define	vsr41	41
666 #define	vsr42	42
667 #define	vsr43	43
668 #define	vsr44	44
669 #define	vsr45	45
670 #define	vsr46	46
671 #define	vsr47	47
672 #define	vsr48	48
673 #define	vsr49	49
674 #define	vsr50	50
675 #define	vsr51	51
676 #define	vsr52	52
677 #define	vsr53	53
678 #define	vsr54	54
679 #define	vsr55	55
680 #define	vsr56	56
681 #define	vsr57	57
682 #define	vsr58	58
683 #define	vsr59	59
684 #define	vsr60	60
685 #define	vsr61	61
686 #define	vsr62	62
687 #define	vsr63	63
688 
689 /* SPE Registers (EVPRs) */
690 
691 #define	evr0	0
692 #define	evr1	1
693 #define	evr2	2
694 #define	evr3	3
695 #define	evr4	4
696 #define	evr5	5
697 #define	evr6	6
698 #define	evr7	7
699 #define	evr8	8
700 #define	evr9	9
701 #define	evr10	10
702 #define	evr11	11
703 #define	evr12	12
704 #define	evr13	13
705 #define	evr14	14
706 #define	evr15	15
707 #define	evr16	16
708 #define	evr17	17
709 #define	evr18	18
710 #define	evr19	19
711 #define	evr20	20
712 #define	evr21	21
713 #define	evr22	22
714 #define	evr23	23
715 #define	evr24	24
716 #define	evr25	25
717 #define	evr26	26
718 #define	evr27	27
719 #define	evr28	28
720 #define	evr29	29
721 #define	evr30	30
722 #define	evr31	31
723 
724 /* some stab codes */
725 #define N_FUN	36
726 #define N_RSYM	64
727 #define N_SLINE	68
728 #define N_SO	100
729 
730 #endif /*  __ASSEMBLY__ */
731 
732 #endif /* _ASM_POWERPC_PPC_ASM_H */
733