xref: /openbmc/linux/arch/powerpc/include/asm/pgtable.h (revision c819e2cf)
1 #ifndef _ASM_POWERPC_PGTABLE_H
2 #define _ASM_POWERPC_PGTABLE_H
3 #ifdef __KERNEL__
4 
5 #ifndef __ASSEMBLY__
6 #include <linux/mmdebug.h>
7 #include <linux/mmzone.h>
8 #include <asm/processor.h>		/* For TASK_SIZE */
9 #include <asm/mmu.h>
10 #include <asm/page.h>
11 
12 struct mm_struct;
13 
14 #endif /* !__ASSEMBLY__ */
15 
16 #if defined(CONFIG_PPC64)
17 #  include <asm/pgtable-ppc64.h>
18 #else
19 #  include <asm/pgtable-ppc32.h>
20 #endif
21 
22 /*
23  * We save the slot number & secondary bit in the second half of the
24  * PTE page. We use the 8 bytes per each pte entry.
25  */
26 #define PTE_PAGE_HIDX_OFFSET (PTRS_PER_PTE * 8)
27 
28 #ifndef __ASSEMBLY__
29 
30 #include <asm/tlbflush.h>
31 
32 /* Generic accessors to PTE bits */
33 static inline int pte_write(pte_t pte)		{ return pte_val(pte) & _PAGE_RW; }
34 static inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
35 static inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }
36 static inline int pte_file(pte_t pte)		{ return pte_val(pte) & _PAGE_FILE; }
37 static inline int pte_special(pte_t pte)	{ return pte_val(pte) & _PAGE_SPECIAL; }
38 static inline int pte_none(pte_t pte)		{ return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
39 static inline pgprot_t pte_pgprot(pte_t pte)	{ return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
40 
41 #ifdef CONFIG_NUMA_BALANCING
42 static inline int pte_present(pte_t pte)
43 {
44 	return pte_val(pte) & _PAGE_NUMA_MASK;
45 }
46 
47 #define pte_present_nonuma pte_present_nonuma
48 static inline int pte_present_nonuma(pte_t pte)
49 {
50 	return pte_val(pte) & (_PAGE_PRESENT);
51 }
52 
53 #define ptep_set_numa ptep_set_numa
54 static inline void ptep_set_numa(struct mm_struct *mm, unsigned long addr,
55 				 pte_t *ptep)
56 {
57 	if ((pte_val(*ptep) & _PAGE_PRESENT) == 0)
58 		VM_BUG_ON(1);
59 
60 	pte_update(mm, addr, ptep, _PAGE_PRESENT, _PAGE_NUMA, 0);
61 	return;
62 }
63 
64 #define pmdp_set_numa pmdp_set_numa
65 static inline void pmdp_set_numa(struct mm_struct *mm, unsigned long addr,
66 				 pmd_t *pmdp)
67 {
68 	if ((pmd_val(*pmdp) & _PAGE_PRESENT) == 0)
69 		VM_BUG_ON(1);
70 
71 	pmd_hugepage_update(mm, addr, pmdp, _PAGE_PRESENT, _PAGE_NUMA);
72 	return;
73 }
74 
75 /*
76  * Generic NUMA pte helpers expect pteval_t and pmdval_t types to exist
77  * which was inherited from x86. For the purposes of powerpc pte_basic_t and
78  * pmd_t are equivalent
79  */
80 #define pteval_t pte_basic_t
81 #define pmdval_t pmd_t
82 static inline pteval_t ptenuma_flags(pte_t pte)
83 {
84 	return pte_val(pte) & _PAGE_NUMA_MASK;
85 }
86 
87 static inline pmdval_t pmdnuma_flags(pmd_t pmd)
88 {
89 	return pmd_val(pmd) & _PAGE_NUMA_MASK;
90 }
91 
92 # else
93 
94 static inline int pte_present(pte_t pte)
95 {
96 	return pte_val(pte) & _PAGE_PRESENT;
97 }
98 #endif /* CONFIG_NUMA_BALANCING */
99 
100 /* Conversion functions: convert a page and protection to a page entry,
101  * and a page entry and page directory to the page they refer to.
102  *
103  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
104  * long for now.
105  */
106 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
107 	return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
108 		     pgprot_val(pgprot)); }
109 static inline unsigned long pte_pfn(pte_t pte)	{
110 	return pte_val(pte) >> PTE_RPN_SHIFT; }
111 
112 /* Keep these as a macros to avoid include dependency mess */
113 #define pte_page(x)		pfn_to_page(pte_pfn(x))
114 #define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot))
115 
116 /* Generic modifiers for PTE bits */
117 static inline pte_t pte_wrprotect(pte_t pte) {
118 	pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
119 static inline pte_t pte_mkclean(pte_t pte) {
120 	pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
121 static inline pte_t pte_mkold(pte_t pte) {
122 	pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
123 static inline pte_t pte_mkwrite(pte_t pte) {
124 	pte_val(pte) |= _PAGE_RW; return pte; }
125 static inline pte_t pte_mkdirty(pte_t pte) {
126 	pte_val(pte) |= _PAGE_DIRTY; return pte; }
127 static inline pte_t pte_mkyoung(pte_t pte) {
128 	pte_val(pte) |= _PAGE_ACCESSED; return pte; }
129 static inline pte_t pte_mkspecial(pte_t pte) {
130 	pte_val(pte) |= _PAGE_SPECIAL; return pte; }
131 static inline pte_t pte_mkhuge(pte_t pte) {
132 	return pte; }
133 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
134 {
135 	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
136 	return pte;
137 }
138 
139 
140 /* Insert a PTE, top-level function is out of line. It uses an inline
141  * low level function in the respective pgtable-* files
142  */
143 extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
144 		       pte_t pte);
145 
146 /* This low level function performs the actual PTE insertion
147  * Setting the PTE depends on the MMU type and other factors. It's
148  * an horrible mess that I'm not going to try to clean up now but
149  * I'm keeping it in one place rather than spread around
150  */
151 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
152 				pte_t *ptep, pte_t pte, int percpu)
153 {
154 #if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
155 	/* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
156 	 * helper pte_update() which does an atomic update. We need to do that
157 	 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
158 	 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
159 	 * the hash bits instead (ie, same as the non-SMP case)
160 	 */
161 	if (percpu)
162 		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
163 			      | (pte_val(pte) & ~_PAGE_HASHPTE));
164 	else
165 		pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
166 
167 #elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
168 	/* Second case is 32-bit with 64-bit PTE.  In this case, we
169 	 * can just store as long as we do the two halves in the right order
170 	 * with a barrier in between. This is possible because we take care,
171 	 * in the hash code, to pre-invalidate if the PTE was already hashed,
172 	 * which synchronizes us with any concurrent invalidation.
173 	 * In the percpu case, we also fallback to the simple update preserving
174 	 * the hash bits
175 	 */
176 	if (percpu) {
177 		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
178 			      | (pte_val(pte) & ~_PAGE_HASHPTE));
179 		return;
180 	}
181 #if _PAGE_HASHPTE != 0
182 	if (pte_val(*ptep) & _PAGE_HASHPTE)
183 		flush_hash_entry(mm, ptep, addr);
184 #endif
185 	__asm__ __volatile__("\
186 		stw%U0%X0 %2,%0\n\
187 		eieio\n\
188 		stw%U0%X0 %L2,%1"
189 	: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
190 	: "r" (pte) : "memory");
191 
192 #elif defined(CONFIG_PPC_STD_MMU_32)
193 	/* Third case is 32-bit hash table in UP mode, we need to preserve
194 	 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
195 	 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
196 	 * and see we need to keep track that this PTE needs invalidating
197 	 */
198 	*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
199 		      | (pte_val(pte) & ~_PAGE_HASHPTE));
200 
201 #else
202 	/* Anything else just stores the PTE normally. That covers all 64-bit
203 	 * cases, and 32-bit non-hash with 32-bit PTEs.
204 	 */
205 	*ptep = pte;
206 #endif
207 }
208 
209 
210 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
211 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
212 				 pte_t *ptep, pte_t entry, int dirty);
213 
214 /*
215  * Macro to mark a page protection value as "uncacheable".
216  */
217 
218 #define _PAGE_CACHE_CTL	(_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
219 			 _PAGE_WRITETHRU)
220 
221 #define pgprot_noncached(prot)	  (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
222 				            _PAGE_NO_CACHE | _PAGE_GUARDED))
223 
224 #define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
225 				            _PAGE_NO_CACHE))
226 
227 #define pgprot_cached(prot)       (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
228 				            _PAGE_COHERENT))
229 
230 #define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
231 				            _PAGE_COHERENT | _PAGE_WRITETHRU))
232 
233 #define pgprot_cached_noncoherent(prot) \
234 		(__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
235 
236 #define pgprot_writecombine pgprot_noncached_wc
237 
238 struct file;
239 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
240 				     unsigned long size, pgprot_t vma_prot);
241 #define __HAVE_PHYS_MEM_ACCESS_PROT
242 
243 /*
244  * ZERO_PAGE is a global shared page that is always zero: used
245  * for zero-mapped memory areas etc..
246  */
247 extern unsigned long empty_zero_page[];
248 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
249 
250 extern pgd_t swapper_pg_dir[];
251 
252 void limit_zone_pfn(enum zone_type zone, unsigned long max_pfn);
253 int dma_pfn_limit_to_zone(u64 pfn_limit);
254 extern void paging_init(void);
255 
256 /*
257  * kern_addr_valid is intended to indicate whether an address is a valid
258  * kernel address.  Most 32-bit archs define it as always true (like this)
259  * but most 64-bit archs actually perform a test.  What should we do here?
260  */
261 #define kern_addr_valid(addr)	(1)
262 
263 #include <asm-generic/pgtable.h>
264 
265 
266 /*
267  * This gets called at the end of handling a page fault, when
268  * the kernel has put a new PTE into the page table for the process.
269  * We use it to ensure coherency between the i-cache and d-cache
270  * for the page which has just been mapped in.
271  * On machines which use an MMU hash table, we use this to put a
272  * corresponding HPTE into the hash table ahead of time, instead of
273  * waiting for the inevitable extra hash-table miss exception.
274  */
275 extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *);
276 
277 extern int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
278 		       unsigned long end, int write,
279 		       struct page **pages, int *nr);
280 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
281 #define pmd_large(pmd)		0
282 #define has_transparent_hugepage() 0
283 #endif
284 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
285 				 unsigned *shift);
286 
287 static inline pte_t *lookup_linux_ptep(pgd_t *pgdir, unsigned long hva,
288 				     unsigned long *pte_sizep)
289 {
290 	pte_t *ptep;
291 	unsigned long ps = *pte_sizep;
292 	unsigned int shift;
293 
294 	ptep = find_linux_pte_or_hugepte(pgdir, hva, &shift);
295 	if (!ptep)
296 		return NULL;
297 	if (shift)
298 		*pte_sizep = 1ul << shift;
299 	else
300 		*pte_sizep = PAGE_SIZE;
301 
302 	if (ps > *pte_sizep)
303 		return NULL;
304 
305 	return ptep;
306 }
307 #endif /* __ASSEMBLY__ */
308 
309 #endif /* __KERNEL__ */
310 #endif /* _ASM_POWERPC_PGTABLE_H */
311