xref: /openbmc/linux/arch/powerpc/include/asm/pgtable.h (revision 5f32c314)
1 #ifndef _ASM_POWERPC_PGTABLE_H
2 #define _ASM_POWERPC_PGTABLE_H
3 #ifdef __KERNEL__
4 
5 #ifndef __ASSEMBLY__
6 #include <linux/mmdebug.h>
7 #include <asm/processor.h>		/* For TASK_SIZE */
8 #include <asm/mmu.h>
9 #include <asm/page.h>
10 
11 struct mm_struct;
12 
13 #endif /* !__ASSEMBLY__ */
14 
15 #if defined(CONFIG_PPC64)
16 #  include <asm/pgtable-ppc64.h>
17 #else
18 #  include <asm/pgtable-ppc32.h>
19 #endif
20 
21 /*
22  * We save the slot number & secondary bit in the second half of the
23  * PTE page. We use the 8 bytes per each pte entry.
24  */
25 #define PTE_PAGE_HIDX_OFFSET (PTRS_PER_PTE * 8)
26 
27 #ifndef __ASSEMBLY__
28 
29 #include <asm/tlbflush.h>
30 
31 /* Generic accessors to PTE bits */
32 static inline int pte_write(pte_t pte)		{ return pte_val(pte) & _PAGE_RW; }
33 static inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
34 static inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }
35 static inline int pte_file(pte_t pte)		{ return pte_val(pte) & _PAGE_FILE; }
36 static inline int pte_special(pte_t pte)	{ return pte_val(pte) & _PAGE_SPECIAL; }
37 static inline int pte_none(pte_t pte)		{ return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
38 static inline pgprot_t pte_pgprot(pte_t pte)	{ return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
39 
40 #ifdef CONFIG_NUMA_BALANCING
41 
42 static inline int pte_present(pte_t pte)
43 {
44 	return pte_val(pte) & (_PAGE_PRESENT | _PAGE_NUMA);
45 }
46 
47 #define pte_numa pte_numa
48 static inline int pte_numa(pte_t pte)
49 {
50 	return (pte_val(pte) &
51 		(_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
52 }
53 
54 #define pte_mknonnuma pte_mknonnuma
55 static inline pte_t pte_mknonnuma(pte_t pte)
56 {
57 	pte_val(pte) &= ~_PAGE_NUMA;
58 	pte_val(pte) |=  _PAGE_PRESENT | _PAGE_ACCESSED;
59 	return pte;
60 }
61 
62 #define pte_mknuma pte_mknuma
63 static inline pte_t pte_mknuma(pte_t pte)
64 {
65 	/*
66 	 * We should not set _PAGE_NUMA on non present ptes. Also clear the
67 	 * present bit so that hash_page will return 1 and we collect this
68 	 * as numa fault.
69 	 */
70 	if (pte_present(pte)) {
71 		pte_val(pte) |= _PAGE_NUMA;
72 		pte_val(pte) &= ~_PAGE_PRESENT;
73 	} else
74 		VM_BUG_ON(1);
75 	return pte;
76 }
77 
78 #define pmd_numa pmd_numa
79 static inline int pmd_numa(pmd_t pmd)
80 {
81 	return pte_numa(pmd_pte(pmd));
82 }
83 
84 #define pmd_mknonnuma pmd_mknonnuma
85 static inline pmd_t pmd_mknonnuma(pmd_t pmd)
86 {
87 	return pte_pmd(pte_mknonnuma(pmd_pte(pmd)));
88 }
89 
90 #define pmd_mknuma pmd_mknuma
91 static inline pmd_t pmd_mknuma(pmd_t pmd)
92 {
93 	return pte_pmd(pte_mknuma(pmd_pte(pmd)));
94 }
95 
96 # else
97 
98 static inline int pte_present(pte_t pte)
99 {
100 	return pte_val(pte) & _PAGE_PRESENT;
101 }
102 #endif /* CONFIG_NUMA_BALANCING */
103 
104 /* Conversion functions: convert a page and protection to a page entry,
105  * and a page entry and page directory to the page they refer to.
106  *
107  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
108  * long for now.
109  */
110 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
111 	return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
112 		     pgprot_val(pgprot)); }
113 static inline unsigned long pte_pfn(pte_t pte)	{
114 	return pte_val(pte) >> PTE_RPN_SHIFT; }
115 
116 /* Keep these as a macros to avoid include dependency mess */
117 #define pte_page(x)		pfn_to_page(pte_pfn(x))
118 #define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot))
119 
120 /* Generic modifiers for PTE bits */
121 static inline pte_t pte_wrprotect(pte_t pte) {
122 	pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
123 static inline pte_t pte_mkclean(pte_t pte) {
124 	pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
125 static inline pte_t pte_mkold(pte_t pte) {
126 	pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
127 static inline pte_t pte_mkwrite(pte_t pte) {
128 	pte_val(pte) |= _PAGE_RW; return pte; }
129 static inline pte_t pte_mkdirty(pte_t pte) {
130 	pte_val(pte) |= _PAGE_DIRTY; return pte; }
131 static inline pte_t pte_mkyoung(pte_t pte) {
132 	pte_val(pte) |= _PAGE_ACCESSED; return pte; }
133 static inline pte_t pte_mkspecial(pte_t pte) {
134 	pte_val(pte) |= _PAGE_SPECIAL; return pte; }
135 static inline pte_t pte_mkhuge(pte_t pte) {
136 	return pte; }
137 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
138 {
139 	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
140 	return pte;
141 }
142 
143 
144 /* Insert a PTE, top-level function is out of line. It uses an inline
145  * low level function in the respective pgtable-* files
146  */
147 extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
148 		       pte_t pte);
149 
150 /* This low level function performs the actual PTE insertion
151  * Setting the PTE depends on the MMU type and other factors. It's
152  * an horrible mess that I'm not going to try to clean up now but
153  * I'm keeping it in one place rather than spread around
154  */
155 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
156 				pte_t *ptep, pte_t pte, int percpu)
157 {
158 #if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
159 	/* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
160 	 * helper pte_update() which does an atomic update. We need to do that
161 	 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
162 	 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
163 	 * the hash bits instead (ie, same as the non-SMP case)
164 	 */
165 	if (percpu)
166 		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
167 			      | (pte_val(pte) & ~_PAGE_HASHPTE));
168 	else
169 		pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
170 
171 #elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
172 	/* Second case is 32-bit with 64-bit PTE.  In this case, we
173 	 * can just store as long as we do the two halves in the right order
174 	 * with a barrier in between. This is possible because we take care,
175 	 * in the hash code, to pre-invalidate if the PTE was already hashed,
176 	 * which synchronizes us with any concurrent invalidation.
177 	 * In the percpu case, we also fallback to the simple update preserving
178 	 * the hash bits
179 	 */
180 	if (percpu) {
181 		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
182 			      | (pte_val(pte) & ~_PAGE_HASHPTE));
183 		return;
184 	}
185 #if _PAGE_HASHPTE != 0
186 	if (pte_val(*ptep) & _PAGE_HASHPTE)
187 		flush_hash_entry(mm, ptep, addr);
188 #endif
189 	__asm__ __volatile__("\
190 		stw%U0%X0 %2,%0\n\
191 		eieio\n\
192 		stw%U0%X0 %L2,%1"
193 	: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
194 	: "r" (pte) : "memory");
195 
196 #elif defined(CONFIG_PPC_STD_MMU_32)
197 	/* Third case is 32-bit hash table in UP mode, we need to preserve
198 	 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
199 	 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
200 	 * and see we need to keep track that this PTE needs invalidating
201 	 */
202 	*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
203 		      | (pte_val(pte) & ~_PAGE_HASHPTE));
204 
205 #else
206 	/* Anything else just stores the PTE normally. That covers all 64-bit
207 	 * cases, and 32-bit non-hash with 32-bit PTEs.
208 	 */
209 	*ptep = pte;
210 #endif
211 }
212 
213 
214 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
215 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
216 				 pte_t *ptep, pte_t entry, int dirty);
217 
218 /*
219  * Macro to mark a page protection value as "uncacheable".
220  */
221 
222 #define _PAGE_CACHE_CTL	(_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
223 			 _PAGE_WRITETHRU)
224 
225 #define pgprot_noncached(prot)	  (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
226 				            _PAGE_NO_CACHE | _PAGE_GUARDED))
227 
228 #define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
229 				            _PAGE_NO_CACHE))
230 
231 #define pgprot_cached(prot)       (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
232 				            _PAGE_COHERENT))
233 
234 #define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
235 				            _PAGE_COHERENT | _PAGE_WRITETHRU))
236 
237 #define pgprot_cached_noncoherent(prot) \
238 		(__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
239 
240 #define pgprot_writecombine pgprot_noncached_wc
241 
242 struct file;
243 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
244 				     unsigned long size, pgprot_t vma_prot);
245 #define __HAVE_PHYS_MEM_ACCESS_PROT
246 
247 /*
248  * ZERO_PAGE is a global shared page that is always zero: used
249  * for zero-mapped memory areas etc..
250  */
251 extern unsigned long empty_zero_page[];
252 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
253 
254 extern pgd_t swapper_pg_dir[];
255 
256 extern void paging_init(void);
257 
258 /*
259  * kern_addr_valid is intended to indicate whether an address is a valid
260  * kernel address.  Most 32-bit archs define it as always true (like this)
261  * but most 64-bit archs actually perform a test.  What should we do here?
262  */
263 #define kern_addr_valid(addr)	(1)
264 
265 #include <asm-generic/pgtable.h>
266 
267 
268 /*
269  * This gets called at the end of handling a page fault, when
270  * the kernel has put a new PTE into the page table for the process.
271  * We use it to ensure coherency between the i-cache and d-cache
272  * for the page which has just been mapped in.
273  * On machines which use an MMU hash table, we use this to put a
274  * corresponding HPTE into the hash table ahead of time, instead of
275  * waiting for the inevitable extra hash-table miss exception.
276  */
277 extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *);
278 
279 extern int gup_hugepd(hugepd_t *hugepd, unsigned pdshift, unsigned long addr,
280 		      unsigned long end, int write, struct page **pages, int *nr);
281 
282 extern int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
283 		       unsigned long end, int write, struct page **pages, int *nr);
284 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
285 #define pmd_large(pmd)		0
286 #define has_transparent_hugepage() 0
287 #endif
288 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
289 				 unsigned *shift);
290 
291 static inline pte_t *lookup_linux_ptep(pgd_t *pgdir, unsigned long hva,
292 				     unsigned long *pte_sizep)
293 {
294 	pte_t *ptep;
295 	unsigned long ps = *pte_sizep;
296 	unsigned int shift;
297 
298 	ptep = find_linux_pte_or_hugepte(pgdir, hva, &shift);
299 	if (!ptep)
300 		return NULL;
301 	if (shift)
302 		*pte_sizep = 1ul << shift;
303 	else
304 		*pte_sizep = PAGE_SIZE;
305 
306 	if (ps > *pte_sizep)
307 		return NULL;
308 
309 	return ptep;
310 }
311 #endif /* __ASSEMBLY__ */
312 
313 #endif /* __KERNEL__ */
314 #endif /* _ASM_POWERPC_PGTABLE_H */
315