1 #ifndef _ASM_POWERPC_PGTABLE_H 2 #define _ASM_POWERPC_PGTABLE_H 3 #ifdef __KERNEL__ 4 5 #ifndef __ASSEMBLY__ 6 #include <asm/processor.h> /* For TASK_SIZE */ 7 #include <asm/mmu.h> 8 #include <asm/page.h> 9 10 struct mm_struct; 11 12 #endif /* !__ASSEMBLY__ */ 13 14 #if defined(CONFIG_PPC64) 15 # include <asm/pgtable-ppc64.h> 16 #else 17 # include <asm/pgtable-ppc32.h> 18 #endif 19 20 /* 21 * We save the slot number & secondary bit in the second half of the 22 * PTE page. We use the 8 bytes per each pte entry. 23 */ 24 #define PTE_PAGE_HIDX_OFFSET (PTRS_PER_PTE * 8) 25 26 #ifndef __ASSEMBLY__ 27 28 #include <asm/tlbflush.h> 29 30 /* Generic accessors to PTE bits */ 31 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } 32 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 33 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 34 static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } 35 static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; } 36 static inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; } 37 static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; } 38 static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); } 39 40 /* Conversion functions: convert a page and protection to a page entry, 41 * and a page entry and page directory to the page they refer to. 42 * 43 * Even if PTEs can be unsigned long long, a PFN is always an unsigned 44 * long for now. 45 */ 46 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) { 47 return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) | 48 pgprot_val(pgprot)); } 49 static inline unsigned long pte_pfn(pte_t pte) { 50 return pte_val(pte) >> PTE_RPN_SHIFT; } 51 52 /* Keep these as a macros to avoid include dependency mess */ 53 #define pte_page(x) pfn_to_page(pte_pfn(x)) 54 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 55 56 /* Generic modifiers for PTE bits */ 57 static inline pte_t pte_wrprotect(pte_t pte) { 58 pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; } 59 static inline pte_t pte_mkclean(pte_t pte) { 60 pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; } 61 static inline pte_t pte_mkold(pte_t pte) { 62 pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 63 static inline pte_t pte_mkwrite(pte_t pte) { 64 pte_val(pte) |= _PAGE_RW; return pte; } 65 static inline pte_t pte_mkdirty(pte_t pte) { 66 pte_val(pte) |= _PAGE_DIRTY; return pte; } 67 static inline pte_t pte_mkyoung(pte_t pte) { 68 pte_val(pte) |= _PAGE_ACCESSED; return pte; } 69 static inline pte_t pte_mkspecial(pte_t pte) { 70 pte_val(pte) |= _PAGE_SPECIAL; return pte; } 71 static inline pte_t pte_mkhuge(pte_t pte) { 72 return pte; } 73 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 74 { 75 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); 76 return pte; 77 } 78 79 80 /* Insert a PTE, top-level function is out of line. It uses an inline 81 * low level function in the respective pgtable-* files 82 */ 83 extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, 84 pte_t pte); 85 86 /* This low level function performs the actual PTE insertion 87 * Setting the PTE depends on the MMU type and other factors. It's 88 * an horrible mess that I'm not going to try to clean up now but 89 * I'm keeping it in one place rather than spread around 90 */ 91 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, 92 pte_t *ptep, pte_t pte, int percpu) 93 { 94 #if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT) 95 /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the 96 * helper pte_update() which does an atomic update. We need to do that 97 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a 98 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving 99 * the hash bits instead (ie, same as the non-SMP case) 100 */ 101 if (percpu) 102 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 103 | (pte_val(pte) & ~_PAGE_HASHPTE)); 104 else 105 pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte)); 106 107 #elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT) 108 /* Second case is 32-bit with 64-bit PTE. In this case, we 109 * can just store as long as we do the two halves in the right order 110 * with a barrier in between. This is possible because we take care, 111 * in the hash code, to pre-invalidate if the PTE was already hashed, 112 * which synchronizes us with any concurrent invalidation. 113 * In the percpu case, we also fallback to the simple update preserving 114 * the hash bits 115 */ 116 if (percpu) { 117 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 118 | (pte_val(pte) & ~_PAGE_HASHPTE)); 119 return; 120 } 121 #if _PAGE_HASHPTE != 0 122 if (pte_val(*ptep) & _PAGE_HASHPTE) 123 flush_hash_entry(mm, ptep, addr); 124 #endif 125 __asm__ __volatile__("\ 126 stw%U0%X0 %2,%0\n\ 127 eieio\n\ 128 stw%U0%X0 %L2,%1" 129 : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) 130 : "r" (pte) : "memory"); 131 132 #elif defined(CONFIG_PPC_STD_MMU_32) 133 /* Third case is 32-bit hash table in UP mode, we need to preserve 134 * the _PAGE_HASHPTE bit since we may not have invalidated the previous 135 * translation in the hash yet (done in a subsequent flush_tlb_xxx()) 136 * and see we need to keep track that this PTE needs invalidating 137 */ 138 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 139 | (pte_val(pte) & ~_PAGE_HASHPTE)); 140 141 #else 142 /* Anything else just stores the PTE normally. That covers all 64-bit 143 * cases, and 32-bit non-hash with 32-bit PTEs. 144 */ 145 *ptep = pte; 146 #endif 147 } 148 149 150 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 151 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, 152 pte_t *ptep, pte_t entry, int dirty); 153 154 /* 155 * Macro to mark a page protection value as "uncacheable". 156 */ 157 158 #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \ 159 _PAGE_WRITETHRU) 160 161 #define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 162 _PAGE_NO_CACHE | _PAGE_GUARDED)) 163 164 #define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 165 _PAGE_NO_CACHE)) 166 167 #define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 168 _PAGE_COHERENT)) 169 170 #define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 171 _PAGE_COHERENT | _PAGE_WRITETHRU)) 172 173 #define pgprot_cached_noncoherent(prot) \ 174 (__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL)) 175 176 #define pgprot_writecombine pgprot_noncached_wc 177 178 struct file; 179 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 180 unsigned long size, pgprot_t vma_prot); 181 #define __HAVE_PHYS_MEM_ACCESS_PROT 182 183 /* 184 * ZERO_PAGE is a global shared page that is always zero: used 185 * for zero-mapped memory areas etc.. 186 */ 187 extern unsigned long empty_zero_page[]; 188 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 189 190 extern pgd_t swapper_pg_dir[]; 191 192 extern void paging_init(void); 193 194 /* 195 * kern_addr_valid is intended to indicate whether an address is a valid 196 * kernel address. Most 32-bit archs define it as always true (like this) 197 * but most 64-bit archs actually perform a test. What should we do here? 198 */ 199 #define kern_addr_valid(addr) (1) 200 201 #include <asm-generic/pgtable.h> 202 203 204 /* 205 * This gets called at the end of handling a page fault, when 206 * the kernel has put a new PTE into the page table for the process. 207 * We use it to ensure coherency between the i-cache and d-cache 208 * for the page which has just been mapped in. 209 * On machines which use an MMU hash table, we use this to put a 210 * corresponding HPTE into the hash table ahead of time, instead of 211 * waiting for the inevitable extra hash-table miss exception. 212 */ 213 extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *); 214 215 extern int gup_hugepd(hugepd_t *hugepd, unsigned pdshift, unsigned long addr, 216 unsigned long end, int write, struct page **pages, int *nr); 217 218 extern int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 219 unsigned long end, int write, struct page **pages, int *nr); 220 #ifndef CONFIG_TRANSPARENT_HUGEPAGE 221 #define pmd_large(pmd) 0 222 #define has_transparent_hugepage() 0 223 #endif 224 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, 225 unsigned *shift); 226 #endif /* __ASSEMBLY__ */ 227 228 #endif /* __KERNEL__ */ 229 #endif /* _ASM_POWERPC_PGTABLE_H */ 230