1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_NOHASH_PGTABLE_H
3 #define _ASM_POWERPC_NOHASH_PGTABLE_H
4 
5 #if defined(CONFIG_PPC64)
6 #include <asm/nohash/64/pgtable.h>
7 #else
8 #include <asm/nohash/32/pgtable.h>
9 #endif
10 
11 #ifndef __ASSEMBLY__
12 
13 /* Generic accessors to PTE bits */
14 static inline int pte_write(pte_t pte)
15 {
16 	return (pte_val(pte) & (_PAGE_RW | _PAGE_RO)) != _PAGE_RO;
17 }
18 static inline int pte_read(pte_t pte)		{ return 1; }
19 static inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
20 static inline int pte_special(pte_t pte)	{ return pte_val(pte) & _PAGE_SPECIAL; }
21 static inline int pte_none(pte_t pte)		{ return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
22 static inline pgprot_t pte_pgprot(pte_t pte)	{ return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
23 
24 #ifdef CONFIG_NUMA_BALANCING
25 /*
26  * These work without NUMA balancing but the kernel does not care. See the
27  * comment in include/asm-generic/pgtable.h . On powerpc, this will only
28  * work for user pages and always return true for kernel pages.
29  */
30 static inline int pte_protnone(pte_t pte)
31 {
32 	return (pte_val(pte) &
33 		(_PAGE_PRESENT | _PAGE_USER)) == _PAGE_PRESENT;
34 }
35 
36 static inline int pmd_protnone(pmd_t pmd)
37 {
38 	return pte_protnone(pmd_pte(pmd));
39 }
40 #endif /* CONFIG_NUMA_BALANCING */
41 
42 static inline int pte_present(pte_t pte)
43 {
44 	return pte_val(pte) & _PAGE_PRESENT;
45 }
46 
47 /*
48  * We only find page table entry in the last level
49  * Hence no need for other accessors
50  */
51 #define pte_access_permitted pte_access_permitted
52 static inline bool pte_access_permitted(pte_t pte, bool write)
53 {
54 	unsigned long pteval = pte_val(pte);
55 	/*
56 	 * A read-only access is controlled by _PAGE_USER bit.
57 	 * We have _PAGE_READ set for WRITE and EXECUTE
58 	 */
59 	unsigned long need_pte_bits = _PAGE_PRESENT | _PAGE_USER;
60 
61 	if (write)
62 		need_pte_bits |= _PAGE_WRITE;
63 
64 	if ((pteval & need_pte_bits) != need_pte_bits)
65 		return false;
66 
67 	return true;
68 }
69 
70 /* Conversion functions: convert a page and protection to a page entry,
71  * and a page entry and page directory to the page they refer to.
72  *
73  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
74  * long for now.
75  */
76 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
77 	return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
78 		     pgprot_val(pgprot)); }
79 static inline unsigned long pte_pfn(pte_t pte)	{
80 	return pte_val(pte) >> PTE_RPN_SHIFT; }
81 
82 /* Generic modifiers for PTE bits */
83 static inline pte_t pte_wrprotect(pte_t pte)
84 {
85 	pte_basic_t ptev;
86 
87 	ptev = pte_val(pte) & ~(_PAGE_RW | _PAGE_HWWRITE);
88 	ptev |= _PAGE_RO;
89 	return __pte(ptev);
90 }
91 
92 static inline pte_t pte_mkclean(pte_t pte)
93 {
94 	return __pte(pte_val(pte) & ~(_PAGE_DIRTY | _PAGE_HWWRITE));
95 }
96 
97 static inline pte_t pte_mkold(pte_t pte)
98 {
99 	return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
100 }
101 
102 static inline pte_t pte_mkwrite(pte_t pte)
103 {
104 	pte_basic_t ptev;
105 
106 	ptev = pte_val(pte) & ~_PAGE_RO;
107 	ptev |= _PAGE_RW;
108 	return __pte(ptev);
109 }
110 
111 static inline pte_t pte_mkdirty(pte_t pte)
112 {
113 	return __pte(pte_val(pte) | _PAGE_DIRTY);
114 }
115 
116 static inline pte_t pte_mkyoung(pte_t pte)
117 {
118 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
119 }
120 
121 static inline pte_t pte_mkspecial(pte_t pte)
122 {
123 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
124 }
125 
126 static inline pte_t pte_mkhuge(pte_t pte)
127 {
128 	return __pte(pte_val(pte) | _PAGE_HUGE);
129 }
130 
131 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
132 {
133 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
134 }
135 
136 /* Insert a PTE, top-level function is out of line. It uses an inline
137  * low level function in the respective pgtable-* files
138  */
139 extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
140 		       pte_t pte);
141 
142 /* This low level function performs the actual PTE insertion
143  * Setting the PTE depends on the MMU type and other factors. It's
144  * an horrible mess that I'm not going to try to clean up now but
145  * I'm keeping it in one place rather than spread around
146  */
147 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
148 				pte_t *ptep, pte_t pte, int percpu)
149 {
150 	/* Second case is 32-bit with 64-bit PTE.  In this case, we
151 	 * can just store as long as we do the two halves in the right order
152 	 * with a barrier in between.
153 	 * In the percpu case, we also fallback to the simple update
154 	 */
155 	if (IS_ENABLED(CONFIG_PPC32) && IS_ENABLED(CONFIG_PTE_64BIT) && !percpu) {
156 		__asm__ __volatile__("\
157 			stw%U0%X0 %2,%0\n\
158 			eieio\n\
159 			stw%U0%X0 %L2,%1"
160 		: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
161 		: "r" (pte) : "memory");
162 		return;
163 	}
164 	/* Anything else just stores the PTE normally. That covers all 64-bit
165 	 * cases, and 32-bit non-hash with 32-bit PTEs.
166 	 */
167 	*ptep = pte;
168 
169 	/*
170 	 * With hardware tablewalk, a sync is needed to ensure that
171 	 * subsequent accesses see the PTE we just wrote.  Unlike userspace
172 	 * mappings, we can't tolerate spurious faults, so make sure
173 	 * the new PTE will be seen the first time.
174 	 */
175 	if (IS_ENABLED(CONFIG_PPC_BOOK3E_64) && is_kernel_addr(addr))
176 		mb();
177 }
178 
179 
180 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
181 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
182 				 pte_t *ptep, pte_t entry, int dirty);
183 
184 /*
185  * Macro to mark a page protection value as "uncacheable".
186  */
187 
188 #define _PAGE_CACHE_CTL	(_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
189 			 _PAGE_WRITETHRU)
190 
191 #define pgprot_noncached(prot)	  (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
192 				            _PAGE_NO_CACHE | _PAGE_GUARDED))
193 
194 #define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
195 				            _PAGE_NO_CACHE))
196 
197 #define pgprot_cached(prot)       (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
198 				            _PAGE_COHERENT))
199 
200 #if _PAGE_WRITETHRU != 0
201 #define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
202 				            _PAGE_COHERENT | _PAGE_WRITETHRU))
203 #endif
204 
205 #define pgprot_cached_noncoherent(prot) \
206 		(__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
207 
208 #define pgprot_writecombine pgprot_noncached_wc
209 
210 struct file;
211 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
212 				     unsigned long size, pgprot_t vma_prot);
213 #define __HAVE_PHYS_MEM_ACCESS_PROT
214 
215 #ifdef CONFIG_HUGETLB_PAGE
216 static inline int hugepd_ok(hugepd_t hpd)
217 {
218 #ifdef CONFIG_PPC_8xx
219 	return ((hpd_val(hpd) & 0x4) != 0);
220 #else
221 	/* We clear the top bit to indicate hugepd */
222 	return (hpd_val(hpd) && (hpd_val(hpd) & PD_HUGE) == 0);
223 #endif
224 }
225 
226 static inline int pmd_huge(pmd_t pmd)
227 {
228 	return 0;
229 }
230 
231 static inline int pud_huge(pud_t pud)
232 {
233 	return 0;
234 }
235 
236 static inline int pgd_huge(pgd_t pgd)
237 {
238 	return 0;
239 }
240 #define pgd_huge		pgd_huge
241 
242 #define is_hugepd(hpd)		(hugepd_ok(hpd))
243 #endif
244 
245 #endif /* __ASSEMBLY__ */
246 #endif
247