1 #ifndef _ASM_POWERPC_NOHASH_PGTABLE_H
2 #define _ASM_POWERPC_NOHASH_PGTABLE_H
3 
4 #if defined(CONFIG_PPC64)
5 #include <asm/nohash/64/pgtable.h>
6 #else
7 #include <asm/nohash/32/pgtable.h>
8 #endif
9 
10 #ifndef __ASSEMBLY__
11 
12 /* Generic accessors to PTE bits */
13 static inline int pte_write(pte_t pte)
14 {
15 	return (pte_val(pte) & (_PAGE_RW | _PAGE_RO)) != _PAGE_RO;
16 }
17 static inline int pte_read(pte_t pte)		{ return 1; }
18 static inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
19 static inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }
20 static inline int pte_special(pte_t pte)	{ return pte_val(pte) & _PAGE_SPECIAL; }
21 static inline int pte_none(pte_t pte)		{ return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
22 static inline pgprot_t pte_pgprot(pte_t pte)	{ return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
23 
24 #ifdef CONFIG_NUMA_BALANCING
25 /*
26  * These work without NUMA balancing but the kernel does not care. See the
27  * comment in include/asm-generic/pgtable.h . On powerpc, this will only
28  * work for user pages and always return true for kernel pages.
29  */
30 static inline int pte_protnone(pte_t pte)
31 {
32 	return (pte_val(pte) &
33 		(_PAGE_PRESENT | _PAGE_USER)) == _PAGE_PRESENT;
34 }
35 
36 static inline int pmd_protnone(pmd_t pmd)
37 {
38 	return pte_protnone(pmd_pte(pmd));
39 }
40 #endif /* CONFIG_NUMA_BALANCING */
41 
42 static inline int pte_present(pte_t pte)
43 {
44 	return pte_val(pte) & _PAGE_PRESENT;
45 }
46 
47 /* Conversion functions: convert a page and protection to a page entry,
48  * and a page entry and page directory to the page they refer to.
49  *
50  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
51  * long for now.
52  */
53 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
54 	return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
55 		     pgprot_val(pgprot)); }
56 static inline unsigned long pte_pfn(pte_t pte)	{
57 	return pte_val(pte) >> PTE_RPN_SHIFT; }
58 
59 /* Generic modifiers for PTE bits */
60 static inline pte_t pte_wrprotect(pte_t pte)
61 {
62 	pte_basic_t ptev;
63 
64 	ptev = pte_val(pte) & ~(_PAGE_RW | _PAGE_HWWRITE);
65 	ptev |= _PAGE_RO;
66 	return __pte(ptev);
67 }
68 
69 static inline pte_t pte_mkclean(pte_t pte)
70 {
71 	return __pte(pte_val(pte) & ~(_PAGE_DIRTY | _PAGE_HWWRITE));
72 }
73 
74 static inline pte_t pte_mkold(pte_t pte)
75 {
76 	return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
77 }
78 
79 static inline pte_t pte_mkwrite(pte_t pte)
80 {
81 	pte_basic_t ptev;
82 
83 	ptev = pte_val(pte) & ~_PAGE_RO;
84 	ptev |= _PAGE_RW;
85 	return __pte(ptev);
86 }
87 
88 static inline pte_t pte_mkdirty(pte_t pte)
89 {
90 	return __pte(pte_val(pte) | _PAGE_DIRTY);
91 }
92 
93 static inline pte_t pte_mkyoung(pte_t pte)
94 {
95 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
96 }
97 
98 static inline pte_t pte_mkspecial(pte_t pte)
99 {
100 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
101 }
102 
103 static inline pte_t pte_mkhuge(pte_t pte)
104 {
105 	return pte;
106 }
107 
108 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
109 {
110 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
111 }
112 
113 /* Insert a PTE, top-level function is out of line. It uses an inline
114  * low level function in the respective pgtable-* files
115  */
116 extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
117 		       pte_t pte);
118 
119 /* This low level function performs the actual PTE insertion
120  * Setting the PTE depends on the MMU type and other factors. It's
121  * an horrible mess that I'm not going to try to clean up now but
122  * I'm keeping it in one place rather than spread around
123  */
124 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
125 				pte_t *ptep, pte_t pte, int percpu)
126 {
127 #if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
128 	/* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
129 	 * helper pte_update() which does an atomic update. We need to do that
130 	 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
131 	 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
132 	 * the hash bits instead (ie, same as the non-SMP case)
133 	 */
134 	if (percpu)
135 		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
136 			      | (pte_val(pte) & ~_PAGE_HASHPTE));
137 	else
138 		pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
139 
140 #elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
141 	/* Second case is 32-bit with 64-bit PTE.  In this case, we
142 	 * can just store as long as we do the two halves in the right order
143 	 * with a barrier in between. This is possible because we take care,
144 	 * in the hash code, to pre-invalidate if the PTE was already hashed,
145 	 * which synchronizes us with any concurrent invalidation.
146 	 * In the percpu case, we also fallback to the simple update preserving
147 	 * the hash bits
148 	 */
149 	if (percpu) {
150 		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
151 			      | (pte_val(pte) & ~_PAGE_HASHPTE));
152 		return;
153 	}
154 #if _PAGE_HASHPTE != 0
155 	if (pte_val(*ptep) & _PAGE_HASHPTE)
156 		flush_hash_entry(mm, ptep, addr);
157 #endif
158 	__asm__ __volatile__("\
159 		stw%U0%X0 %2,%0\n\
160 		eieio\n\
161 		stw%U0%X0 %L2,%1"
162 	: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
163 	: "r" (pte) : "memory");
164 
165 #elif defined(CONFIG_PPC_STD_MMU_32)
166 	/* Third case is 32-bit hash table in UP mode, we need to preserve
167 	 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
168 	 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
169 	 * and see we need to keep track that this PTE needs invalidating
170 	 */
171 	*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
172 		      | (pte_val(pte) & ~_PAGE_HASHPTE));
173 
174 #else
175 	/* Anything else just stores the PTE normally. That covers all 64-bit
176 	 * cases, and 32-bit non-hash with 32-bit PTEs.
177 	 */
178 	*ptep = pte;
179 
180 #ifdef CONFIG_PPC_BOOK3E_64
181 	/*
182 	 * With hardware tablewalk, a sync is needed to ensure that
183 	 * subsequent accesses see the PTE we just wrote.  Unlike userspace
184 	 * mappings, we can't tolerate spurious faults, so make sure
185 	 * the new PTE will be seen the first time.
186 	 */
187 	if (is_kernel_addr(addr))
188 		mb();
189 #endif
190 #endif
191 }
192 
193 
194 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
195 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
196 				 pte_t *ptep, pte_t entry, int dirty);
197 
198 /*
199  * Macro to mark a page protection value as "uncacheable".
200  */
201 
202 #define _PAGE_CACHE_CTL	(_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
203 			 _PAGE_WRITETHRU)
204 
205 #define pgprot_noncached(prot)	  (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
206 				            _PAGE_NO_CACHE | _PAGE_GUARDED))
207 
208 #define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
209 				            _PAGE_NO_CACHE))
210 
211 #define pgprot_cached(prot)       (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
212 				            _PAGE_COHERENT))
213 
214 #define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
215 				            _PAGE_COHERENT | _PAGE_WRITETHRU))
216 
217 #define pgprot_cached_noncoherent(prot) \
218 		(__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
219 
220 #define pgprot_writecombine pgprot_noncached_wc
221 
222 struct file;
223 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
224 				     unsigned long size, pgprot_t vma_prot);
225 #define __HAVE_PHYS_MEM_ACCESS_PROT
226 
227 #ifdef CONFIG_HUGETLB_PAGE
228 static inline int hugepd_ok(hugepd_t hpd)
229 {
230 #ifdef CONFIG_PPC_8xx
231 	return ((hpd_val(hpd) & 0x4) != 0);
232 #else
233 	/* We clear the top bit to indicate hugepd */
234 	return (hpd_val(hpd) && (hpd_val(hpd) & PD_HUGE) == 0);
235 #endif
236 }
237 
238 static inline int pmd_huge(pmd_t pmd)
239 {
240 	return 0;
241 }
242 
243 static inline int pud_huge(pud_t pud)
244 {
245 	return 0;
246 }
247 
248 static inline int pgd_huge(pgd_t pgd)
249 {
250 	return 0;
251 }
252 #define pgd_huge		pgd_huge
253 
254 #define is_hugepd(hpd)		(hugepd_ok(hpd))
255 #endif
256 
257 #endif /* __ASSEMBLY__ */
258 #endif
259