1 #ifndef _ASM_POWERPC_NOHASH_PGTABLE_H 2 #define _ASM_POWERPC_NOHASH_PGTABLE_H 3 4 #if defined(CONFIG_PPC64) 5 #include <asm/nohash/64/pgtable.h> 6 #else 7 #include <asm/nohash/32/pgtable.h> 8 #endif 9 10 #ifndef __ASSEMBLY__ 11 12 /* Generic accessors to PTE bits */ 13 static inline int pte_write(pte_t pte) 14 { 15 return (pte_val(pte) & (_PAGE_RW | _PAGE_RO)) != _PAGE_RO; 16 } 17 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 18 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 19 static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; } 20 static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; } 21 static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); } 22 23 #ifdef CONFIG_NUMA_BALANCING 24 /* 25 * These work without NUMA balancing but the kernel does not care. See the 26 * comment in include/asm-generic/pgtable.h . On powerpc, this will only 27 * work for user pages and always return true for kernel pages. 28 */ 29 static inline int pte_protnone(pte_t pte) 30 { 31 return (pte_val(pte) & 32 (_PAGE_PRESENT | _PAGE_USER)) == _PAGE_PRESENT; 33 } 34 35 static inline int pmd_protnone(pmd_t pmd) 36 { 37 return pte_protnone(pmd_pte(pmd)); 38 } 39 #endif /* CONFIG_NUMA_BALANCING */ 40 41 static inline int pte_present(pte_t pte) 42 { 43 return pte_val(pte) & _PAGE_PRESENT; 44 } 45 46 /* Conversion functions: convert a page and protection to a page entry, 47 * and a page entry and page directory to the page they refer to. 48 * 49 * Even if PTEs can be unsigned long long, a PFN is always an unsigned 50 * long for now. 51 */ 52 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) { 53 return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) | 54 pgprot_val(pgprot)); } 55 static inline unsigned long pte_pfn(pte_t pte) { 56 return pte_val(pte) >> PTE_RPN_SHIFT; } 57 58 /* Generic modifiers for PTE bits */ 59 static inline pte_t pte_wrprotect(pte_t pte) 60 { 61 pte_basic_t ptev; 62 63 ptev = pte_val(pte) & ~(_PAGE_RW | _PAGE_HWWRITE); 64 ptev |= _PAGE_RO; 65 return __pte(ptev); 66 } 67 68 static inline pte_t pte_mkclean(pte_t pte) 69 { 70 return __pte(pte_val(pte) & ~(_PAGE_DIRTY | _PAGE_HWWRITE)); 71 } 72 73 static inline pte_t pte_mkold(pte_t pte) 74 { 75 return __pte(pte_val(pte) & ~_PAGE_ACCESSED); 76 } 77 78 static inline pte_t pte_mkwrite(pte_t pte) 79 { 80 pte_basic_t ptev; 81 82 ptev = pte_val(pte) & ~_PAGE_RO; 83 ptev |= _PAGE_RW; 84 return __pte(ptev); 85 } 86 87 static inline pte_t pte_mkdirty(pte_t pte) 88 { 89 return __pte(pte_val(pte) | _PAGE_DIRTY); 90 } 91 92 static inline pte_t pte_mkyoung(pte_t pte) 93 { 94 return __pte(pte_val(pte) | _PAGE_ACCESSED); 95 } 96 97 static inline pte_t pte_mkspecial(pte_t pte) 98 { 99 return __pte(pte_val(pte) | _PAGE_SPECIAL); 100 } 101 102 static inline pte_t pte_mkhuge(pte_t pte) 103 { 104 return pte; 105 } 106 107 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 108 { 109 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); 110 } 111 112 /* Insert a PTE, top-level function is out of line. It uses an inline 113 * low level function in the respective pgtable-* files 114 */ 115 extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, 116 pte_t pte); 117 118 /* This low level function performs the actual PTE insertion 119 * Setting the PTE depends on the MMU type and other factors. It's 120 * an horrible mess that I'm not going to try to clean up now but 121 * I'm keeping it in one place rather than spread around 122 */ 123 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, 124 pte_t *ptep, pte_t pte, int percpu) 125 { 126 #if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT) 127 /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the 128 * helper pte_update() which does an atomic update. We need to do that 129 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a 130 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving 131 * the hash bits instead (ie, same as the non-SMP case) 132 */ 133 if (percpu) 134 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 135 | (pte_val(pte) & ~_PAGE_HASHPTE)); 136 else 137 pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte)); 138 139 #elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT) 140 /* Second case is 32-bit with 64-bit PTE. In this case, we 141 * can just store as long as we do the two halves in the right order 142 * with a barrier in between. This is possible because we take care, 143 * in the hash code, to pre-invalidate if the PTE was already hashed, 144 * which synchronizes us with any concurrent invalidation. 145 * In the percpu case, we also fallback to the simple update preserving 146 * the hash bits 147 */ 148 if (percpu) { 149 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 150 | (pte_val(pte) & ~_PAGE_HASHPTE)); 151 return; 152 } 153 #if _PAGE_HASHPTE != 0 154 if (pte_val(*ptep) & _PAGE_HASHPTE) 155 flush_hash_entry(mm, ptep, addr); 156 #endif 157 __asm__ __volatile__("\ 158 stw%U0%X0 %2,%0\n\ 159 eieio\n\ 160 stw%U0%X0 %L2,%1" 161 : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) 162 : "r" (pte) : "memory"); 163 164 #elif defined(CONFIG_PPC_STD_MMU_32) 165 /* Third case is 32-bit hash table in UP mode, we need to preserve 166 * the _PAGE_HASHPTE bit since we may not have invalidated the previous 167 * translation in the hash yet (done in a subsequent flush_tlb_xxx()) 168 * and see we need to keep track that this PTE needs invalidating 169 */ 170 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 171 | (pte_val(pte) & ~_PAGE_HASHPTE)); 172 173 #else 174 /* Anything else just stores the PTE normally. That covers all 64-bit 175 * cases, and 32-bit non-hash with 32-bit PTEs. 176 */ 177 *ptep = pte; 178 179 #ifdef CONFIG_PPC_BOOK3E_64 180 /* 181 * With hardware tablewalk, a sync is needed to ensure that 182 * subsequent accesses see the PTE we just wrote. Unlike userspace 183 * mappings, we can't tolerate spurious faults, so make sure 184 * the new PTE will be seen the first time. 185 */ 186 if (is_kernel_addr(addr)) 187 mb(); 188 #endif 189 #endif 190 } 191 192 193 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 194 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, 195 pte_t *ptep, pte_t entry, int dirty); 196 197 /* 198 * Macro to mark a page protection value as "uncacheable". 199 */ 200 201 #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \ 202 _PAGE_WRITETHRU) 203 204 #define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 205 _PAGE_NO_CACHE | _PAGE_GUARDED)) 206 207 #define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 208 _PAGE_NO_CACHE)) 209 210 #define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 211 _PAGE_COHERENT)) 212 213 #define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 214 _PAGE_COHERENT | _PAGE_WRITETHRU)) 215 216 #define pgprot_cached_noncoherent(prot) \ 217 (__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL)) 218 219 #define pgprot_writecombine pgprot_noncached_wc 220 221 struct file; 222 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 223 unsigned long size, pgprot_t vma_prot); 224 #define __HAVE_PHYS_MEM_ACCESS_PROT 225 226 #ifdef CONFIG_HUGETLB_PAGE 227 static inline int hugepd_ok(hugepd_t hpd) 228 { 229 #ifdef CONFIG_PPC_8xx 230 return ((hpd_val(hpd) & 0x4) != 0); 231 #else 232 /* We clear the top bit to indicate hugepd */ 233 return (hpd_val(hpd) && (hpd_val(hpd) & PD_HUGE) == 0); 234 #endif 235 } 236 237 static inline int pmd_huge(pmd_t pmd) 238 { 239 return 0; 240 } 241 242 static inline int pud_huge(pud_t pud) 243 { 244 return 0; 245 } 246 247 static inline int pgd_huge(pgd_t pgd) 248 { 249 return 0; 250 } 251 #define pgd_huge pgd_huge 252 253 #define is_hugepd(hpd) (hugepd_ok(hpd)) 254 #endif 255 256 #endif /* __ASSEMBLY__ */ 257 #endif 258