1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_POWERPC_NOHASH_64_PGTABLE_H 3 #define _ASM_POWERPC_NOHASH_64_PGTABLE_H 4 /* 5 * This file contains the functions and defines necessary to modify and use 6 * the ppc64 non-hashed page table. 7 */ 8 9 #include <asm/nohash/64/pgtable-4k.h> 10 #include <asm/barrier.h> 11 #include <asm/asm-const.h> 12 13 #define FIRST_USER_ADDRESS 0UL 14 15 /* 16 * Size of EA range mapped by our pagetables. 17 */ 18 #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \ 19 PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT) 20 #define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE) 21 22 #define PMD_CACHE_INDEX PMD_INDEX_SIZE 23 #define PUD_CACHE_INDEX PUD_INDEX_SIZE 24 25 /* 26 * Define the address range of the kernel non-linear virtual area 27 */ 28 #define KERN_VIRT_START ASM_CONST(0x8000000000000000) 29 #define KERN_VIRT_SIZE ASM_CONST(0x0000100000000000) 30 31 /* 32 * The vmalloc space starts at the beginning of that region, and 33 * occupies a quarter of it on Book3E 34 * (we keep a quarter for the virtual memmap) 35 */ 36 #define VMALLOC_START KERN_VIRT_START 37 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 2) 38 #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE) 39 40 /* 41 * The second half of the kernel virtual space is used for IO mappings, 42 * it's itself carved into the PIO region (ISA and PHB IO space) and 43 * the ioremap space 44 * 45 * ISA_IO_BASE = KERN_IO_START, 64K reserved area 46 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces 47 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE 48 */ 49 #define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1)) 50 #define FULL_IO_SIZE 0x80000000ul 51 #define ISA_IO_BASE (KERN_IO_START) 52 #define ISA_IO_END (KERN_IO_START + 0x10000ul) 53 #define PHB_IO_BASE (ISA_IO_END) 54 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE) 55 #define IOREMAP_BASE (PHB_IO_END) 56 #define IOREMAP_START (ioremap_bot) 57 #define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE) 58 59 60 /* 61 * Region IDs 62 */ 63 #define REGION_SHIFT 60UL 64 #define REGION_MASK (0xfUL << REGION_SHIFT) 65 #define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT) 66 67 #define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START)) 68 #define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET)) 69 #define USER_REGION_ID (0UL) 70 71 /* 72 * Defines the address of the vmemap area, in its own region on 73 * after the vmalloc space on Book3E 74 */ 75 #define VMEMMAP_BASE VMALLOC_END 76 #define VMEMMAP_END KERN_IO_START 77 #define vmemmap ((struct page *)VMEMMAP_BASE) 78 79 80 /* 81 * Include the PTE bits definitions 82 */ 83 #include <asm/nohash/pte-book3e.h> 84 85 #define _PAGE_SAO 0 86 87 #define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1)) 88 89 /* 90 * _PAGE_CHG_MASK masks of bits that are to be preserved across 91 * pgprot changes. 92 */ 93 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL) 94 95 #define H_PAGE_4K_PFN 0 96 97 #ifndef __ASSEMBLY__ 98 /* pte_clear moved to later in this file */ 99 100 static inline pte_t pte_mkwrite(pte_t pte) 101 { 102 return __pte(pte_val(pte) | _PAGE_RW); 103 } 104 105 static inline pte_t pte_mkdirty(pte_t pte) 106 { 107 return __pte(pte_val(pte) | _PAGE_DIRTY); 108 } 109 110 static inline pte_t pte_mkyoung(pte_t pte) 111 { 112 return __pte(pte_val(pte) | _PAGE_ACCESSED); 113 } 114 115 static inline pte_t pte_wrprotect(pte_t pte) 116 { 117 return __pte(pte_val(pte) & ~_PAGE_RW); 118 } 119 120 static inline pte_t pte_mkexec(pte_t pte) 121 { 122 return __pte(pte_val(pte) | _PAGE_EXEC); 123 } 124 125 #define PMD_BAD_BITS (PTE_TABLE_SIZE-1) 126 #define PUD_BAD_BITS (PMD_TABLE_SIZE-1) 127 128 static inline void pmd_set(pmd_t *pmdp, unsigned long val) 129 { 130 *pmdp = __pmd(val); 131 } 132 133 static inline void pmd_clear(pmd_t *pmdp) 134 { 135 *pmdp = __pmd(0); 136 } 137 138 static inline pte_t pmd_pte(pmd_t pmd) 139 { 140 return __pte(pmd_val(pmd)); 141 } 142 143 #define pmd_none(pmd) (!pmd_val(pmd)) 144 #define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \ 145 || (pmd_val(pmd) & PMD_BAD_BITS)) 146 #define pmd_present(pmd) (!pmd_none(pmd)) 147 #define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS) 148 extern struct page *pmd_page(pmd_t pmd); 149 150 static inline void pud_set(pud_t *pudp, unsigned long val) 151 { 152 *pudp = __pud(val); 153 } 154 155 static inline void pud_clear(pud_t *pudp) 156 { 157 *pudp = __pud(0); 158 } 159 160 #define pud_none(pud) (!pud_val(pud)) 161 #define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \ 162 || (pud_val(pud) & PUD_BAD_BITS)) 163 #define pud_present(pud) (pud_val(pud) != 0) 164 #define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS) 165 166 extern struct page *pud_page(pud_t pud); 167 168 static inline pte_t pud_pte(pud_t pud) 169 { 170 return __pte(pud_val(pud)); 171 } 172 173 static inline pud_t pte_pud(pte_t pte) 174 { 175 return __pud(pte_val(pte)); 176 } 177 #define pud_write(pud) pte_write(pud_pte(pud)) 178 #define p4d_write(pgd) pte_write(p4d_pte(p4d)) 179 180 static inline void p4d_set(p4d_t *p4dp, unsigned long val) 181 { 182 *p4dp = __p4d(val); 183 } 184 185 /* Atomic PTE updates */ 186 static inline unsigned long pte_update(struct mm_struct *mm, 187 unsigned long addr, 188 pte_t *ptep, unsigned long clr, 189 unsigned long set, 190 int huge) 191 { 192 unsigned long old = pte_val(*ptep); 193 *ptep = __pte((old & ~clr) | set); 194 195 /* huge pages use the old page table lock */ 196 if (!huge) 197 assert_pte_locked(mm, addr); 198 199 return old; 200 } 201 202 static inline int pte_young(pte_t pte) 203 { 204 return pte_val(pte) & _PAGE_ACCESSED; 205 } 206 207 static inline int __ptep_test_and_clear_young(struct mm_struct *mm, 208 unsigned long addr, pte_t *ptep) 209 { 210 unsigned long old; 211 212 if (pte_young(*ptep)) 213 return 0; 214 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0); 215 return (old & _PAGE_ACCESSED) != 0; 216 } 217 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 218 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ 219 ({ \ 220 int __r; \ 221 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ 222 __r; \ 223 }) 224 225 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 226 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, 227 pte_t *ptep) 228 { 229 230 if ((pte_val(*ptep) & _PAGE_RW) == 0) 231 return; 232 233 pte_update(mm, addr, ptep, _PAGE_RW, 0, 0); 234 } 235 236 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT 237 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm, 238 unsigned long addr, pte_t *ptep) 239 { 240 if ((pte_val(*ptep) & _PAGE_RW) == 0) 241 return; 242 243 pte_update(mm, addr, ptep, _PAGE_RW, 0, 1); 244 } 245 246 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 247 #define ptep_clear_flush_young(__vma, __address, __ptep) \ 248 ({ \ 249 int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \ 250 __ptep); \ 251 __young; \ 252 }) 253 254 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 255 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 256 unsigned long addr, pte_t *ptep) 257 { 258 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0); 259 return __pte(old); 260 } 261 262 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, 263 pte_t * ptep) 264 { 265 pte_update(mm, addr, ptep, ~0UL, 0, 0); 266 } 267 268 269 /* Set the dirty and/or accessed bits atomically in a linux PTE */ 270 static inline void __ptep_set_access_flags(struct vm_area_struct *vma, 271 pte_t *ptep, pte_t entry, 272 unsigned long address, 273 int psize) 274 { 275 unsigned long bits = pte_val(entry) & 276 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); 277 278 unsigned long old = pte_val(*ptep); 279 *ptep = __pte(old | bits); 280 281 flush_tlb_page(vma, address); 282 } 283 284 #define __HAVE_ARCH_PTE_SAME 285 #define pte_same(A,B) ((pte_val(A) ^ pte_val(B)) == 0) 286 287 #define pte_ERROR(e) \ 288 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 289 #define pmd_ERROR(e) \ 290 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) 291 #define pgd_ERROR(e) \ 292 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 293 294 /* Encode and de-code a swap entry */ 295 #define MAX_SWAPFILES_CHECK() do { \ 296 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \ 297 } while (0) 298 299 #define SWP_TYPE_BITS 5 300 #define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \ 301 & ((1UL << SWP_TYPE_BITS) - 1)) 302 #define __swp_offset(x) ((x).val >> PTE_RPN_SHIFT) 303 #define __swp_entry(type, offset) ((swp_entry_t) { \ 304 ((type) << _PAGE_BIT_SWAP_TYPE) \ 305 | ((offset) << PTE_RPN_SHIFT) }) 306 307 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) }) 308 #define __swp_entry_to_pte(x) __pte((x).val) 309 310 int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot); 311 extern int __meminit vmemmap_create_mapping(unsigned long start, 312 unsigned long page_size, 313 unsigned long phys); 314 extern void vmemmap_remove_mapping(unsigned long start, 315 unsigned long page_size); 316 #endif /* __ASSEMBLY__ */ 317 318 #endif /* _ASM_POWERPC_NOHASH_64_PGTABLE_H */ 319