1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_POWERPC_NOHASH_64_PGTABLE_H 3 #define _ASM_POWERPC_NOHASH_64_PGTABLE_H 4 /* 5 * This file contains the functions and defines necessary to modify and use 6 * the ppc64 non-hashed page table. 7 */ 8 9 #include <linux/sizes.h> 10 11 #include <asm/nohash/64/pgtable-4k.h> 12 #include <asm/barrier.h> 13 #include <asm/asm-const.h> 14 15 /* 16 * Size of EA range mapped by our pagetables. 17 */ 18 #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \ 19 PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT) 20 #define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE) 21 22 #define PMD_CACHE_INDEX PMD_INDEX_SIZE 23 #define PUD_CACHE_INDEX PUD_INDEX_SIZE 24 25 /* 26 * Define the address range of the kernel non-linear virtual area 27 */ 28 #define KERN_VIRT_START ASM_CONST(0x8000000000000000) 29 #define KERN_VIRT_SIZE ASM_CONST(0x0000100000000000) 30 31 /* 32 * The vmalloc space starts at the beginning of that region, and 33 * occupies a quarter of it on Book3E 34 * (we keep a quarter for the virtual memmap) 35 */ 36 #define VMALLOC_START KERN_VIRT_START 37 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 2) 38 #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE) 39 40 /* 41 * The second half of the kernel virtual space is used for IO mappings, 42 * it's itself carved into the PIO region (ISA and PHB IO space) and 43 * the ioremap space 44 * 45 * ISA_IO_BASE = KERN_IO_START, 64K reserved area 46 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces 47 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE 48 */ 49 #define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1)) 50 #define FULL_IO_SIZE 0x80000000ul 51 #define ISA_IO_BASE (KERN_IO_START) 52 #define ISA_IO_END (KERN_IO_START + 0x10000ul) 53 #define PHB_IO_BASE (ISA_IO_END) 54 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE) 55 #define IOREMAP_BASE (PHB_IO_END) 56 #define IOREMAP_START (ioremap_bot) 57 #define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE - FIXADDR_SIZE) 58 #define FIXADDR_SIZE SZ_32M 59 60 61 /* 62 * Region IDs 63 */ 64 #define REGION_SHIFT 60UL 65 #define REGION_MASK (0xfUL << REGION_SHIFT) 66 #define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT) 67 68 #define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START)) 69 #define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET)) 70 #define USER_REGION_ID (0UL) 71 72 /* 73 * Defines the address of the vmemap area, in its own region on 74 * after the vmalloc space on Book3E 75 */ 76 #define VMEMMAP_BASE VMALLOC_END 77 #define VMEMMAP_END KERN_IO_START 78 #define vmemmap ((struct page *)VMEMMAP_BASE) 79 80 81 /* 82 * Include the PTE bits definitions 83 */ 84 #include <asm/nohash/pte-book3e.h> 85 86 #define _PAGE_SAO 0 87 88 #define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1)) 89 90 /* 91 * _PAGE_CHG_MASK masks of bits that are to be preserved across 92 * pgprot changes. 93 */ 94 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL) 95 96 #define H_PAGE_4K_PFN 0 97 98 #ifndef __ASSEMBLY__ 99 /* pte_clear moved to later in this file */ 100 101 static inline pte_t pte_mkwrite(pte_t pte) 102 { 103 return __pte(pte_val(pte) | _PAGE_RW); 104 } 105 106 static inline pte_t pte_mkdirty(pte_t pte) 107 { 108 return __pte(pte_val(pte) | _PAGE_DIRTY); 109 } 110 111 static inline pte_t pte_mkyoung(pte_t pte) 112 { 113 return __pte(pte_val(pte) | _PAGE_ACCESSED); 114 } 115 116 static inline pte_t pte_wrprotect(pte_t pte) 117 { 118 return __pte(pte_val(pte) & ~_PAGE_RW); 119 } 120 121 #define PMD_BAD_BITS (PTE_TABLE_SIZE-1) 122 #define PUD_BAD_BITS (PMD_TABLE_SIZE-1) 123 124 static inline void pmd_set(pmd_t *pmdp, unsigned long val) 125 { 126 *pmdp = __pmd(val); 127 } 128 129 static inline void pmd_clear(pmd_t *pmdp) 130 { 131 *pmdp = __pmd(0); 132 } 133 134 static inline pte_t pmd_pte(pmd_t pmd) 135 { 136 return __pte(pmd_val(pmd)); 137 } 138 139 #define pmd_none(pmd) (!pmd_val(pmd)) 140 #define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \ 141 || (pmd_val(pmd) & PMD_BAD_BITS)) 142 #define pmd_present(pmd) (!pmd_none(pmd)) 143 #define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS) 144 extern struct page *pmd_page(pmd_t pmd); 145 146 static inline void pud_set(pud_t *pudp, unsigned long val) 147 { 148 *pudp = __pud(val); 149 } 150 151 static inline void pud_clear(pud_t *pudp) 152 { 153 *pudp = __pud(0); 154 } 155 156 #define pud_none(pud) (!pud_val(pud)) 157 #define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \ 158 || (pud_val(pud) & PUD_BAD_BITS)) 159 #define pud_present(pud) (pud_val(pud) != 0) 160 161 static inline pmd_t *pud_pgtable(pud_t pud) 162 { 163 return (pmd_t *)(pud_val(pud) & ~PUD_MASKED_BITS); 164 } 165 166 extern struct page *pud_page(pud_t pud); 167 168 static inline pte_t pud_pte(pud_t pud) 169 { 170 return __pte(pud_val(pud)); 171 } 172 173 static inline pud_t pte_pud(pte_t pte) 174 { 175 return __pud(pte_val(pte)); 176 } 177 #define pud_write(pud) pte_write(pud_pte(pud)) 178 #define p4d_write(pgd) pte_write(p4d_pte(p4d)) 179 180 static inline void p4d_set(p4d_t *p4dp, unsigned long val) 181 { 182 *p4dp = __p4d(val); 183 } 184 185 /* Atomic PTE updates */ 186 static inline unsigned long pte_update(struct mm_struct *mm, 187 unsigned long addr, 188 pte_t *ptep, unsigned long clr, 189 unsigned long set, 190 int huge) 191 { 192 unsigned long old = pte_val(*ptep); 193 *ptep = __pte((old & ~clr) | set); 194 195 /* huge pages use the old page table lock */ 196 if (!huge) 197 assert_pte_locked(mm, addr); 198 199 return old; 200 } 201 202 static inline int pte_young(pte_t pte) 203 { 204 return pte_val(pte) & _PAGE_ACCESSED; 205 } 206 207 static inline int __ptep_test_and_clear_young(struct mm_struct *mm, 208 unsigned long addr, pte_t *ptep) 209 { 210 unsigned long old; 211 212 if (pte_young(*ptep)) 213 return 0; 214 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0); 215 return (old & _PAGE_ACCESSED) != 0; 216 } 217 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 218 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ 219 ({ \ 220 int __r; \ 221 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ 222 __r; \ 223 }) 224 225 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 226 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, 227 pte_t *ptep) 228 { 229 230 if ((pte_val(*ptep) & _PAGE_RW) == 0) 231 return; 232 233 pte_update(mm, addr, ptep, _PAGE_RW, 0, 0); 234 } 235 236 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT 237 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm, 238 unsigned long addr, pte_t *ptep) 239 { 240 if ((pte_val(*ptep) & _PAGE_RW) == 0) 241 return; 242 243 pte_update(mm, addr, ptep, _PAGE_RW, 0, 1); 244 } 245 246 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 247 #define ptep_clear_flush_young(__vma, __address, __ptep) \ 248 ({ \ 249 int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \ 250 __ptep); \ 251 __young; \ 252 }) 253 254 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 255 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 256 unsigned long addr, pte_t *ptep) 257 { 258 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0); 259 return __pte(old); 260 } 261 262 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, 263 pte_t * ptep) 264 { 265 pte_update(mm, addr, ptep, ~0UL, 0, 0); 266 } 267 268 269 /* Set the dirty and/or accessed bits atomically in a linux PTE */ 270 static inline void __ptep_set_access_flags(struct vm_area_struct *vma, 271 pte_t *ptep, pte_t entry, 272 unsigned long address, 273 int psize) 274 { 275 unsigned long bits = pte_val(entry) & 276 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); 277 278 unsigned long old = pte_val(*ptep); 279 *ptep = __pte(old | bits); 280 281 flush_tlb_page(vma, address); 282 } 283 284 #define __HAVE_ARCH_PTE_SAME 285 #define pte_same(A,B) ((pte_val(A) ^ pte_val(B)) == 0) 286 287 #define pte_ERROR(e) \ 288 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 289 #define pmd_ERROR(e) \ 290 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) 291 #define pgd_ERROR(e) \ 292 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 293 294 /* Encode and de-code a swap entry */ 295 #define MAX_SWAPFILES_CHECK() do { \ 296 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \ 297 } while (0) 298 299 #define SWP_TYPE_BITS 5 300 #define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \ 301 & ((1UL << SWP_TYPE_BITS) - 1)) 302 #define __swp_offset(x) ((x).val >> PTE_RPN_SHIFT) 303 #define __swp_entry(type, offset) ((swp_entry_t) { \ 304 ((type) << _PAGE_BIT_SWAP_TYPE) \ 305 | ((offset) << PTE_RPN_SHIFT) }) 306 307 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) }) 308 #define __swp_entry_to_pte(x) __pte((x).val) 309 310 int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot); 311 void unmap_kernel_page(unsigned long va); 312 extern int __meminit vmemmap_create_mapping(unsigned long start, 313 unsigned long page_size, 314 unsigned long phys); 315 extern void vmemmap_remove_mapping(unsigned long start, 316 unsigned long page_size); 317 void __patch_exception(int exc, unsigned long addr); 318 #define patch_exception(exc, name) do { \ 319 extern unsigned int name; \ 320 __patch_exception((exc), (unsigned long)&name); \ 321 } while (0) 322 323 #endif /* __ASSEMBLY__ */ 324 325 #endif /* _ASM_POWERPC_NOHASH_64_PGTABLE_H */ 326