1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_NOHASH_32_PGTABLE_H
3 #define _ASM_POWERPC_NOHASH_32_PGTABLE_H
4 
5 #define __ARCH_USE_5LEVEL_HACK
6 #include <asm-generic/pgtable-nopmd.h>
7 
8 #ifndef __ASSEMBLY__
9 #include <linux/sched.h>
10 #include <linux/threads.h>
11 #include <asm/io.h>			/* For sub-arch specific PPC_PIN_SIZE */
12 
13 extern unsigned long ioremap_bot;
14 
15 #ifdef CONFIG_44x
16 extern int icache_44x_need_flush;
17 #endif
18 
19 #endif /* __ASSEMBLY__ */
20 
21 #define PTE_INDEX_SIZE	PTE_SHIFT
22 #define PMD_INDEX_SIZE	0
23 #define PUD_INDEX_SIZE	0
24 #define PGD_INDEX_SIZE	(32 - PGDIR_SHIFT)
25 
26 #define PMD_CACHE_INDEX	PMD_INDEX_SIZE
27 #define PUD_CACHE_INDEX	PUD_INDEX_SIZE
28 
29 #ifndef __ASSEMBLY__
30 #define PTE_TABLE_SIZE	(sizeof(pte_t) << PTE_INDEX_SIZE)
31 #define PMD_TABLE_SIZE	0
32 #define PUD_TABLE_SIZE	0
33 #define PGD_TABLE_SIZE	(sizeof(pgd_t) << PGD_INDEX_SIZE)
34 #endif	/* __ASSEMBLY__ */
35 
36 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
37 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
38 
39 /*
40  * The normal case is that PTEs are 32-bits and we have a 1-page
41  * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
42  *
43  * For any >32-bit physical address platform, we can use the following
44  * two level page table layout where the pgdir is 8KB and the MS 13 bits
45  * are an index to the second level table.  The combined pgdir/pmd first
46  * level has 2048 entries and the second level has 512 64-bit PTE entries.
47  * -Matt
48  */
49 /* PGDIR_SHIFT determines what a top-level page table entry can map */
50 #define PGDIR_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
51 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
52 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
53 
54 /* Bits to mask out from a PGD to get to the PUD page */
55 #define PGD_MASKED_BITS		0
56 
57 #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
58 #define FIRST_USER_ADDRESS	0UL
59 
60 #define pte_ERROR(e) \
61 	pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
62 		(unsigned long long)pte_val(e))
63 #define pgd_ERROR(e) \
64 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
65 
66 /*
67  * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
68  * value (for now) on others, from where we can start layout kernel
69  * virtual space that goes below PKMAP and FIXMAP
70  */
71 #ifdef CONFIG_HIGHMEM
72 #define KVIRT_TOP	PKMAP_BASE
73 #else
74 #define KVIRT_TOP	(0xfe000000UL)	/* for now, could be FIXMAP_BASE ? */
75 #endif
76 
77 /*
78  * ioremap_bot starts at that address. Early ioremaps move down from there,
79  * until mem_init() at which point this becomes the top of the vmalloc
80  * and ioremap space
81  */
82 #ifdef CONFIG_NOT_COHERENT_CACHE
83 #define IOREMAP_TOP	((KVIRT_TOP - CONFIG_CONSISTENT_SIZE) & PAGE_MASK)
84 #else
85 #define IOREMAP_TOP	KVIRT_TOP
86 #endif
87 
88 /*
89  * Just any arbitrary offset to the start of the vmalloc VM area: the
90  * current 16MB value just means that there will be a 64MB "hole" after the
91  * physical memory until the kernel virtual memory starts.  That means that
92  * any out-of-bounds memory accesses will hopefully be caught.
93  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
94  * area for the same reason. ;)
95  *
96  * We no longer map larger than phys RAM with the BATs so we don't have
97  * to worry about the VMALLOC_OFFSET causing problems.  We do have to worry
98  * about clashes between our early calls to ioremap() that start growing down
99  * from IOREMAP_TOP being run into the VM area allocations (growing upwards
100  * from VMALLOC_START).  For this reason we have ioremap_bot to check when
101  * we actually run into our mappings setup in the early boot with the VM
102  * system.  This really does become a problem for machines with good amounts
103  * of RAM.  -- Cort
104  */
105 #define VMALLOC_OFFSET (0x1000000) /* 16M */
106 #ifdef PPC_PIN_SIZE
107 #define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
108 #else
109 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
110 #endif
111 #define VMALLOC_END	ioremap_bot
112 
113 /*
114  * Bits in a linux-style PTE.  These match the bits in the
115  * (hardware-defined) PowerPC PTE as closely as possible.
116  */
117 
118 #if defined(CONFIG_40x)
119 #include <asm/nohash/32/pte-40x.h>
120 #elif defined(CONFIG_44x)
121 #include <asm/nohash/32/pte-44x.h>
122 #elif defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT)
123 #include <asm/nohash/pte-book3e.h>
124 #elif defined(CONFIG_FSL_BOOKE)
125 #include <asm/nohash/32/pte-fsl-booke.h>
126 #elif defined(CONFIG_PPC_8xx)
127 #include <asm/nohash/32/pte-8xx.h>
128 #endif
129 
130 /* And here we include common definitions */
131 #include <asm/pte-common.h>
132 
133 #ifndef __ASSEMBLY__
134 
135 #define pte_clear(mm, addr, ptep) \
136 	do { pte_update(ptep, ~0, 0); } while (0)
137 
138 #define pmd_none(pmd)		(!pmd_val(pmd))
139 #define	pmd_bad(pmd)		(pmd_val(pmd) & _PMD_BAD)
140 #define	pmd_present(pmd)	(pmd_val(pmd) & _PMD_PRESENT_MASK)
141 static inline void pmd_clear(pmd_t *pmdp)
142 {
143 	*pmdp = __pmd(0);
144 }
145 
146 
147 
148 /*
149  * PTE updates. This function is called whenever an existing
150  * valid PTE is updated. This does -not- include set_pte_at()
151  * which nowadays only sets a new PTE.
152  *
153  * Depending on the type of MMU, we may need to use atomic updates
154  * and the PTE may be either 32 or 64 bit wide. In the later case,
155  * when using atomic updates, only the low part of the PTE is
156  * accessed atomically.
157  *
158  * In addition, on 44x, we also maintain a global flag indicating
159  * that an executable user mapping was modified, which is needed
160  * to properly flush the virtually tagged instruction cache of
161  * those implementations.
162  */
163 #ifndef CONFIG_PTE_64BIT
164 static inline unsigned long pte_update(pte_t *p,
165 				       unsigned long clr,
166 				       unsigned long set)
167 {
168 #ifdef PTE_ATOMIC_UPDATES
169 	unsigned long old, tmp;
170 
171 	__asm__ __volatile__("\
172 1:	lwarx	%0,0,%3\n\
173 	andc	%1,%0,%4\n\
174 	or	%1,%1,%5\n"
175 	PPC405_ERR77(0,%3)
176 "	stwcx.	%1,0,%3\n\
177 	bne-	1b"
178 	: "=&r" (old), "=&r" (tmp), "=m" (*p)
179 	: "r" (p), "r" (clr), "r" (set), "m" (*p)
180 	: "cc" );
181 #else /* PTE_ATOMIC_UPDATES */
182 	unsigned long old = pte_val(*p);
183 	*p = __pte((old & ~clr) | set);
184 #endif /* !PTE_ATOMIC_UPDATES */
185 
186 #ifdef CONFIG_44x
187 	if ((old & _PAGE_USER) && (old & _PAGE_EXEC))
188 		icache_44x_need_flush = 1;
189 #endif
190 	return old;
191 }
192 #else /* CONFIG_PTE_64BIT */
193 static inline unsigned long long pte_update(pte_t *p,
194 					    unsigned long clr,
195 					    unsigned long set)
196 {
197 #ifdef PTE_ATOMIC_UPDATES
198 	unsigned long long old;
199 	unsigned long tmp;
200 
201 	__asm__ __volatile__("\
202 1:	lwarx	%L0,0,%4\n\
203 	lwzx	%0,0,%3\n\
204 	andc	%1,%L0,%5\n\
205 	or	%1,%1,%6\n"
206 	PPC405_ERR77(0,%3)
207 "	stwcx.	%1,0,%4\n\
208 	bne-	1b"
209 	: "=&r" (old), "=&r" (tmp), "=m" (*p)
210 	: "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
211 	: "cc" );
212 #else /* PTE_ATOMIC_UPDATES */
213 	unsigned long long old = pte_val(*p);
214 	*p = __pte((old & ~(unsigned long long)clr) | set);
215 #endif /* !PTE_ATOMIC_UPDATES */
216 
217 #ifdef CONFIG_44x
218 	if ((old & _PAGE_USER) && (old & _PAGE_EXEC))
219 		icache_44x_need_flush = 1;
220 #endif
221 	return old;
222 }
223 #endif /* CONFIG_PTE_64BIT */
224 
225 /*
226  * 2.6 calls this without flushing the TLB entry; this is wrong
227  * for our hash-based implementation, we fix that up here.
228  */
229 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
230 static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
231 {
232 	unsigned long old;
233 	old = pte_update(ptep, _PAGE_ACCESSED, 0);
234 	return (old & _PAGE_ACCESSED) != 0;
235 }
236 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
237 	__ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
238 
239 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
240 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
241 				       pte_t *ptep)
242 {
243 	return __pte(pte_update(ptep, ~0, 0));
244 }
245 
246 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
247 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
248 				      pte_t *ptep)
249 {
250 	pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), _PAGE_RO);
251 }
252 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
253 					   unsigned long addr, pte_t *ptep)
254 {
255 	ptep_set_wrprotect(mm, addr, ptep);
256 }
257 
258 
259 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
260 					   pte_t *ptep, pte_t entry,
261 					   unsigned long address,
262 					   int psize)
263 {
264 	unsigned long set = pte_val(entry) &
265 		(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
266 	unsigned long clr = ~pte_val(entry) & (_PAGE_RO | _PAGE_NA);
267 
268 	pte_update(ptep, clr, set);
269 
270 	flush_tlb_page(vma, address);
271 }
272 
273 static inline int pte_young(pte_t pte)
274 {
275 	return pte_val(pte) & _PAGE_ACCESSED;
276 }
277 
278 #define __HAVE_ARCH_PTE_SAME
279 #define pte_same(A,B)	((pte_val(A) ^ pte_val(B)) == 0)
280 
281 /*
282  * Note that on Book E processors, the pmd contains the kernel virtual
283  * (lowmem) address of the pte page.  The physical address is less useful
284  * because everything runs with translation enabled (even the TLB miss
285  * handler).  On everything else the pmd contains the physical address
286  * of the pte page.  -- paulus
287  */
288 #ifndef CONFIG_BOOKE
289 #define pmd_page_vaddr(pmd)	\
290 	((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
291 #define pmd_page(pmd)		\
292 	pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
293 #else
294 #define pmd_page_vaddr(pmd)	\
295 	((unsigned long) (pmd_val(pmd) & PAGE_MASK))
296 #define pmd_page(pmd)		\
297 	pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
298 #endif
299 
300 /* to find an entry in a kernel page-table-directory */
301 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
302 
303 /* to find an entry in a page-table-directory */
304 #define pgd_index(address)	 ((address) >> PGDIR_SHIFT)
305 #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
306 
307 /* Find an entry in the third-level page table.. */
308 #define pte_index(address)		\
309 	(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
310 #define pte_offset_kernel(dir, addr)	\
311 	(pmd_bad(*(dir)) ? NULL : (pte_t *)pmd_page_vaddr(*(dir)) + \
312 				  pte_index(addr))
313 #define pte_offset_map(dir, addr)		\
314 	((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr))
315 #define pte_unmap(pte)		kunmap_atomic(pte)
316 
317 /*
318  * Encode and decode a swap entry.
319  * Note that the bits we use in a PTE for representing a swap entry
320  * must not include the _PAGE_PRESENT bit.
321  *   -- paulus
322  */
323 #define __swp_type(entry)		((entry).val & 0x1f)
324 #define __swp_offset(entry)		((entry).val >> 5)
325 #define __swp_entry(type, offset)	((swp_entry_t) { (type) | ((offset) << 5) })
326 #define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) >> 3 })
327 #define __swp_entry_to_pte(x)		((pte_t) { (x).val << 3 })
328 
329 int map_kernel_page(unsigned long va, phys_addr_t pa, int flags);
330 
331 #endif /* !__ASSEMBLY__ */
332 
333 #endif /* __ASM_POWERPC_NOHASH_32_PGTABLE_H */
334