1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_POWERPC_MMU_8XX_H_ 3 #define _ASM_POWERPC_MMU_8XX_H_ 4 /* 5 * PPC8xx support 6 */ 7 8 /* Control/status registers for the MPC8xx. 9 * A write operation to these registers causes serialized access. 10 * During software tablewalk, the registers used perform mask/shift-add 11 * operations when written/read. A TLB entry is created when the Mx_RPN 12 * is written, and the contents of several registers are used to 13 * create the entry. 14 */ 15 #define SPRN_MI_CTR 784 /* Instruction TLB control register */ 16 #define MI_GPM 0x80000000 /* Set domain manager mode */ 17 #define MI_PPM 0x40000000 /* Set subpage protection */ 18 #define MI_CIDEF 0x20000000 /* Set cache inhibit when MMU dis */ 19 #define MI_RSV4I 0x08000000 /* Reserve 4 TLB entries */ 20 #define MI_PPCS 0x02000000 /* Use MI_RPN prob/priv state */ 21 #define MI_IDXMASK 0x00001f00 /* TLB index to be loaded */ 22 #define MI_RESETVAL 0x00000000 /* Value of register at reset */ 23 24 /* These are the Ks and Kp from the PowerPC books. For proper operation, 25 * Ks = 0, Kp = 1. 26 */ 27 #define SPRN_MI_AP 786 28 #define MI_Ks 0x80000000 /* Should not be set */ 29 #define MI_Kp 0x40000000 /* Should always be set */ 30 31 /* 32 * All pages' PP data bits are set to either 001 or 011 by copying _PAGE_EXEC 33 * into bit 21 in the ITLBmiss handler (bit 21 is the middle bit), which means 34 * respectively NA for All or X for Supervisor and no access for User. 35 * Then we use the APG to say whether accesses are according to Page rules or 36 * "all Supervisor" rules (Access to all) 37 * Therefore, we define 2 APG groups. lsb is _PMD_USER 38 * 0 => Kernel => 01 (all accesses performed according to page definition) 39 * 1 => User => 00 (all accesses performed as supervisor iaw page definition) 40 * 2-16 => NA => 11 (all accesses performed as user iaw page definition) 41 */ 42 #define MI_APG_INIT 0x4fffffff 43 44 /* 45 * 0 => Kernel => 01 (all accesses performed according to page definition) 46 * 1 => User => 10 (all accesses performed according to swaped page definition) 47 * 2-16 => NA => 11 (all accesses performed as user iaw page definition) 48 */ 49 #define MI_APG_KUEP 0x6fffffff 50 51 /* The effective page number register. When read, contains the information 52 * about the last instruction TLB miss. When MI_RPN is written, bits in 53 * this register are used to create the TLB entry. 54 */ 55 #define SPRN_MI_EPN 787 56 #define MI_EPNMASK 0xfffff000 /* Effective page number for entry */ 57 #define MI_EVALID 0x00000200 /* Entry is valid */ 58 #define MI_ASIDMASK 0x0000000f /* ASID match value */ 59 /* Reset value is undefined */ 60 61 /* A "level 1" or "segment" or whatever you want to call it register. 62 * For the instruction TLB, it contains bits that get loaded into the 63 * TLB entry when the MI_RPN is written. 64 */ 65 #define SPRN_MI_TWC 789 66 #define MI_APG 0x000001e0 /* Access protection group (0) */ 67 #define MI_GUARDED 0x00000010 /* Guarded storage */ 68 #define MI_PSMASK 0x0000000c /* Mask of page size bits */ 69 #define MI_PS8MEG 0x0000000c /* 8M page size */ 70 #define MI_PS512K 0x00000004 /* 512K page size */ 71 #define MI_PS4K_16K 0x00000000 /* 4K or 16K page size */ 72 #define MI_SVALID 0x00000001 /* Segment entry is valid */ 73 /* Reset value is undefined */ 74 75 /* Real page number. Defined by the pte. Writing this register 76 * causes a TLB entry to be created for the instruction TLB, using 77 * additional information from the MI_EPN, and MI_TWC registers. 78 */ 79 #define SPRN_MI_RPN 790 80 #define MI_SPS16K 0x00000008 /* Small page size (0 = 4k, 1 = 16k) */ 81 82 /* Define an RPN value for mapping kernel memory to large virtual 83 * pages for boot initialization. This has real page number of 0, 84 * large page size, shared page, cache enabled, and valid. 85 * Also mark all subpages valid and write access. 86 */ 87 #define MI_BOOTINIT 0x000001fd 88 89 #define SPRN_MD_CTR 792 /* Data TLB control register */ 90 #define MD_GPM 0x80000000 /* Set domain manager mode */ 91 #define MD_PPM 0x40000000 /* Set subpage protection */ 92 #define MD_CIDEF 0x20000000 /* Set cache inhibit when MMU dis */ 93 #define MD_WTDEF 0x10000000 /* Set writethrough when MMU dis */ 94 #define MD_RSV4I 0x08000000 /* Reserve 4 TLB entries */ 95 #define MD_TWAM 0x04000000 /* Use 4K page hardware assist */ 96 #define MD_PPCS 0x02000000 /* Use MI_RPN prob/priv state */ 97 #define MD_IDXMASK 0x00001f00 /* TLB index to be loaded */ 98 #define MD_RESETVAL 0x04000000 /* Value of register at reset */ 99 100 #define SPRN_M_CASID 793 /* Address space ID (context) to match */ 101 #define MC_ASIDMASK 0x0000000f /* Bits used for ASID value */ 102 103 104 /* These are the Ks and Kp from the PowerPC books. For proper operation, 105 * Ks = 0, Kp = 1. 106 */ 107 #define SPRN_MD_AP 794 108 #define MD_Ks 0x80000000 /* Should not be set */ 109 #define MD_Kp 0x40000000 /* Should always be set */ 110 111 /* 112 * All pages' PP data bits are set to either 000 or 011 or 001, which means 113 * respectively RW for Supervisor and no access for User, or RO for 114 * Supervisor and no access for user and NA for ALL. 115 * Then we use the APG to say whether accesses are according to Page rules or 116 * "all Supervisor" rules (Access to all) 117 * Therefore, we define 2 APG groups. lsb is _PMD_USER 118 * 0 => Kernel => 01 (all accesses performed according to page definition) 119 * 1 => User => 00 (all accesses performed as supervisor iaw page definition) 120 * 2-16 => NA => 11 (all accesses performed as user iaw page definition) 121 */ 122 #define MD_APG_INIT 0x4fffffff 123 124 /* 125 * 0 => No user => 01 (all accesses performed according to page definition) 126 * 1 => User => 10 (all accesses performed according to swaped page definition) 127 * 2-16 => NA => 11 (all accesses performed as user iaw page definition) 128 */ 129 #define MD_APG_KUAP 0x6fffffff 130 131 /* The effective page number register. When read, contains the information 132 * about the last instruction TLB miss. When MD_RPN is written, bits in 133 * this register are used to create the TLB entry. 134 */ 135 #define SPRN_MD_EPN 795 136 #define MD_EPNMASK 0xfffff000 /* Effective page number for entry */ 137 #define MD_EVALID 0x00000200 /* Entry is valid */ 138 #define MD_ASIDMASK 0x0000000f /* ASID match value */ 139 /* Reset value is undefined */ 140 141 /* The pointer to the base address of the first level page table. 142 * During a software tablewalk, reading this register provides the address 143 * of the entry associated with MD_EPN. 144 */ 145 #define SPRN_M_TWB 796 146 #define M_L1TB 0xfffff000 /* Level 1 table base address */ 147 #define M_L1INDX 0x00000ffc /* Level 1 index, when read */ 148 /* Reset value is undefined */ 149 150 /* A "level 1" or "segment" or whatever you want to call it register. 151 * For the data TLB, it contains bits that get loaded into the TLB entry 152 * when the MD_RPN is written. It is also provides the hardware assist 153 * for finding the PTE address during software tablewalk. 154 */ 155 #define SPRN_MD_TWC 797 156 #define MD_L2TB 0xfffff000 /* Level 2 table base address */ 157 #define MD_L2INDX 0xfffffe00 /* Level 2 index (*pte), when read */ 158 #define MD_APG 0x000001e0 /* Access protection group (0) */ 159 #define MD_GUARDED 0x00000010 /* Guarded storage */ 160 #define MD_PSMASK 0x0000000c /* Mask of page size bits */ 161 #define MD_PS8MEG 0x0000000c /* 8M page size */ 162 #define MD_PS512K 0x00000004 /* 512K page size */ 163 #define MD_PS4K_16K 0x00000000 /* 4K or 16K page size */ 164 #define MD_WT 0x00000002 /* Use writethrough page attribute */ 165 #define MD_SVALID 0x00000001 /* Segment entry is valid */ 166 /* Reset value is undefined */ 167 168 169 /* Real page number. Defined by the pte. Writing this register 170 * causes a TLB entry to be created for the data TLB, using 171 * additional information from the MD_EPN, and MD_TWC registers. 172 */ 173 #define SPRN_MD_RPN 798 174 #define MD_SPS16K 0x00000008 /* Small page size (0 = 4k, 1 = 16k) */ 175 176 /* This is a temporary storage register that could be used to save 177 * a processor working register during a tablewalk. 178 */ 179 #define SPRN_M_TW 799 180 181 #ifdef CONFIG_PPC_MM_SLICES 182 #include <asm/nohash/32/slice.h> 183 #define SLICE_ARRAY_SIZE (1 << (32 - SLICE_LOW_SHIFT - 1)) 184 #define LOW_SLICE_ARRAY_SZ SLICE_ARRAY_SIZE 185 #endif 186 187 #if defined(CONFIG_PPC_4K_PAGES) 188 #define mmu_virtual_psize MMU_PAGE_4K 189 #elif defined(CONFIG_PPC_16K_PAGES) 190 #define mmu_virtual_psize MMU_PAGE_16K 191 #define PTE_FRAG_NR 4 192 #define PTE_FRAG_SIZE_SHIFT 12 193 #define PTE_FRAG_SIZE (1UL << 12) 194 #else 195 #error "Unsupported PAGE_SIZE" 196 #endif 197 198 #define mmu_linear_psize MMU_PAGE_8M 199 200 #ifndef __ASSEMBLY__ 201 202 #include <linux/mmdebug.h> 203 204 struct slice_mask { 205 u64 low_slices; 206 DECLARE_BITMAP(high_slices, 0); 207 }; 208 209 typedef struct { 210 unsigned int id; 211 unsigned int active; 212 unsigned long vdso_base; 213 #ifdef CONFIG_PPC_MM_SLICES 214 u16 user_psize; /* page size index */ 215 unsigned char low_slices_psize[SLICE_ARRAY_SIZE]; 216 unsigned char high_slices_psize[0]; 217 unsigned long slb_addr_limit; 218 struct slice_mask mask_base_psize; /* 4k or 16k */ 219 struct slice_mask mask_512k; 220 struct slice_mask mask_8m; 221 #endif 222 void *pte_frag; 223 } mm_context_t; 224 225 #ifdef CONFIG_PPC_MM_SLICES 226 static inline u16 mm_ctx_user_psize(mm_context_t *ctx) 227 { 228 return ctx->user_psize; 229 } 230 231 static inline void mm_ctx_set_user_psize(mm_context_t *ctx, u16 user_psize) 232 { 233 ctx->user_psize = user_psize; 234 } 235 236 static inline unsigned char *mm_ctx_low_slices(mm_context_t *ctx) 237 { 238 return ctx->low_slices_psize; 239 } 240 241 static inline unsigned char *mm_ctx_high_slices(mm_context_t *ctx) 242 { 243 return ctx->high_slices_psize; 244 } 245 246 static inline unsigned long mm_ctx_slb_addr_limit(mm_context_t *ctx) 247 { 248 return ctx->slb_addr_limit; 249 } 250 251 static inline void mm_ctx_set_slb_addr_limit(mm_context_t *ctx, unsigned long limit) 252 { 253 ctx->slb_addr_limit = limit; 254 } 255 256 static inline struct slice_mask *slice_mask_for_size(mm_context_t *ctx, int psize) 257 { 258 if (psize == MMU_PAGE_512K) 259 return &ctx->mask_512k; 260 if (psize == MMU_PAGE_8M) 261 return &ctx->mask_8m; 262 263 BUG_ON(psize != mmu_virtual_psize); 264 265 return &ctx->mask_base_psize; 266 } 267 #endif /* CONFIG_PPC_MM_SLICE */ 268 269 #define PHYS_IMMR_BASE (mfspr(SPRN_IMMR) & 0xfff80000) 270 #define VIRT_IMMR_BASE (__fix_to_virt(FIX_IMMR_BASE)) 271 272 /* Page size definitions, common between 32 and 64-bit 273 * 274 * shift : is the "PAGE_SHIFT" value for that page size 275 * penc : is the pte encoding mask 276 * 277 */ 278 struct mmu_psize_def { 279 unsigned int shift; /* number of bits */ 280 unsigned int enc; /* PTE encoding */ 281 unsigned int ind; /* Corresponding indirect page size shift */ 282 unsigned int flags; 283 #define MMU_PAGE_SIZE_DIRECT 0x1 /* Supported as a direct size */ 284 #define MMU_PAGE_SIZE_INDIRECT 0x2 /* Supported as an indirect size */ 285 }; 286 287 extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; 288 289 static inline int shift_to_mmu_psize(unsigned int shift) 290 { 291 int psize; 292 293 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) 294 if (mmu_psize_defs[psize].shift == shift) 295 return psize; 296 return -1; 297 } 298 299 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize) 300 { 301 if (mmu_psize_defs[mmu_psize].shift) 302 return mmu_psize_defs[mmu_psize].shift; 303 BUG(); 304 } 305 306 /* patch sites */ 307 extern s32 patch__itlbmiss_linmem_top, patch__itlbmiss_linmem_top8; 308 extern s32 patch__dtlbmiss_linmem_top, patch__dtlbmiss_immr_jmp; 309 extern s32 patch__fixupdar_linmem_top; 310 extern s32 patch__dtlbmiss_romem_top, patch__dtlbmiss_romem_top8; 311 312 extern s32 patch__itlbmiss_exit_1, patch__itlbmiss_exit_2; 313 extern s32 patch__dtlbmiss_exit_1, patch__dtlbmiss_exit_2, patch__dtlbmiss_exit_3; 314 extern s32 patch__itlbmiss_perf, patch__dtlbmiss_perf; 315 316 #endif /* !__ASSEMBLY__ */ 317 318 #endif /* _ASM_POWERPC_MMU_8XX_H_ */ 319