1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_MMU_8XX_H_
3 #define _ASM_POWERPC_MMU_8XX_H_
4 /*
5  * PPC8xx support
6  */
7 
8 /* Control/status registers for the MPC8xx.
9  * A write operation to these registers causes serialized access.
10  * During software tablewalk, the registers used perform mask/shift-add
11  * operations when written/read.  A TLB entry is created when the Mx_RPN
12  * is written, and the contents of several registers are used to
13  * create the entry.
14  */
15 #define SPRN_MI_CTR	784	/* Instruction TLB control register */
16 #define MI_GPM		0x80000000	/* Set domain manager mode */
17 #define MI_PPM		0x40000000	/* Set subpage protection */
18 #define MI_CIDEF	0x20000000	/* Set cache inhibit when MMU dis */
19 #define MI_RSV4I	0x08000000	/* Reserve 4 TLB entries */
20 #define MI_PPCS		0x02000000	/* Use MI_RPN prob/priv state */
21 #define MI_IDXMASK	0x00001f00	/* TLB index to be loaded */
22 #define MI_RESETVAL	0x00000000	/* Value of register at reset */
23 
24 /* These are the Ks and Kp from the PowerPC books.  For proper operation,
25  * Ks = 0, Kp = 1.
26  */
27 #define SPRN_MI_AP	786
28 #define MI_Ks		0x80000000	/* Should not be set */
29 #define MI_Kp		0x40000000	/* Should always be set */
30 
31 /*
32  * All pages' PP data bits are set to either 001 or 011 by copying _PAGE_EXEC
33  * into bit 21 in the ITLBmiss handler (bit 21 is the middle bit), which means
34  * respectively NA for All or X for Supervisor and no access for User.
35  * Then we use the APG to say whether accesses are according to Page rules or
36  * "all Supervisor" rules (Access to all)
37  * Therefore, we define 2 APG groups. lsb is _PMD_USER
38  * 0 => Kernel => 01 (all accesses performed according to page definition)
39  * 1 => User => 00 (all accesses performed as supervisor iaw page definition)
40  * 2-16 => NA => 11 (all accesses performed as user iaw page definition)
41  */
42 #define MI_APG_INIT	0x4fffffff
43 
44 /*
45  * 0 => Kernel => 01 (all accesses performed according to page definition)
46  * 1 => User => 10 (all accesses performed according to swaped page definition)
47  * 2-16 => NA => 11 (all accesses performed as user iaw page definition)
48  */
49 #define MI_APG_KUEP	0x6fffffff
50 
51 /* The effective page number register.  When read, contains the information
52  * about the last instruction TLB miss.  When MI_RPN is written, bits in
53  * this register are used to create the TLB entry.
54  */
55 #define SPRN_MI_EPN	787
56 #define MI_EPNMASK	0xfffff000	/* Effective page number for entry */
57 #define MI_EVALID	0x00000200	/* Entry is valid */
58 #define MI_ASIDMASK	0x0000000f	/* ASID match value */
59 					/* Reset value is undefined */
60 
61 /* A "level 1" or "segment" or whatever you want to call it register.
62  * For the instruction TLB, it contains bits that get loaded into the
63  * TLB entry when the MI_RPN is written.
64  */
65 #define SPRN_MI_TWC	789
66 #define MI_APG		0x000001e0	/* Access protection group (0) */
67 #define MI_GUARDED	0x00000010	/* Guarded storage */
68 #define MI_PSMASK	0x0000000c	/* Mask of page size bits */
69 #define MI_PS8MEG	0x0000000c	/* 8M page size */
70 #define MI_PS512K	0x00000004	/* 512K page size */
71 #define MI_PS4K_16K	0x00000000	/* 4K or 16K page size */
72 #define MI_SVALID	0x00000001	/* Segment entry is valid */
73 					/* Reset value is undefined */
74 
75 /* Real page number.  Defined by the pte.  Writing this register
76  * causes a TLB entry to be created for the instruction TLB, using
77  * additional information from the MI_EPN, and MI_TWC registers.
78  */
79 #define SPRN_MI_RPN	790
80 #define MI_SPS16K	0x00000008	/* Small page size (0 = 4k, 1 = 16k) */
81 
82 /* Define an RPN value for mapping kernel memory to large virtual
83  * pages for boot initialization.  This has real page number of 0,
84  * large page size, shared page, cache enabled, and valid.
85  * Also mark all subpages valid and write access.
86  */
87 #define MI_BOOTINIT	0x000001fd
88 
89 #define SPRN_MD_CTR	792	/* Data TLB control register */
90 #define MD_GPM		0x80000000	/* Set domain manager mode */
91 #define MD_PPM		0x40000000	/* Set subpage protection */
92 #define MD_CIDEF	0x20000000	/* Set cache inhibit when MMU dis */
93 #define MD_WTDEF	0x10000000	/* Set writethrough when MMU dis */
94 #define MD_RSV4I	0x08000000	/* Reserve 4 TLB entries */
95 #define MD_TWAM		0x04000000	/* Use 4K page hardware assist */
96 #define MD_PPCS		0x02000000	/* Use MI_RPN prob/priv state */
97 #define MD_IDXMASK	0x00001f00	/* TLB index to be loaded */
98 #define MD_RESETVAL	0x04000000	/* Value of register at reset */
99 
100 #define SPRN_M_CASID	793	/* Address space ID (context) to match */
101 #define MC_ASIDMASK	0x0000000f	/* Bits used for ASID value */
102 
103 
104 /* These are the Ks and Kp from the PowerPC books.  For proper operation,
105  * Ks = 0, Kp = 1.
106  */
107 #define SPRN_MD_AP	794
108 #define MD_Ks		0x80000000	/* Should not be set */
109 #define MD_Kp		0x40000000	/* Should always be set */
110 
111 /*
112  * All pages' PP data bits are set to either 000 or 011 or 001, which means
113  * respectively RW for Supervisor and no access for User, or RO for
114  * Supervisor and no access for user and NA for ALL.
115  * Then we use the APG to say whether accesses are according to Page rules or
116  * "all Supervisor" rules (Access to all)
117  * Therefore, we define 2 APG groups. lsb is _PMD_USER
118  * 0 => Kernel => 01 (all accesses performed according to page definition)
119  * 1 => User => 00 (all accesses performed as supervisor iaw page definition)
120  * 2-16 => NA => 11 (all accesses performed as user iaw page definition)
121  */
122 #define MD_APG_INIT	0x4fffffff
123 
124 /*
125  * 0 => No user => 01 (all accesses performed according to page definition)
126  * 1 => User => 10 (all accesses performed according to swaped page definition)
127  * 2-16 => NA => 11 (all accesses performed as user iaw page definition)
128  */
129 #define MD_APG_KUAP	0x6fffffff
130 
131 /* The effective page number register.  When read, contains the information
132  * about the last instruction TLB miss.  When MD_RPN is written, bits in
133  * this register are used to create the TLB entry.
134  */
135 #define SPRN_MD_EPN	795
136 #define MD_EPNMASK	0xfffff000	/* Effective page number for entry */
137 #define MD_EVALID	0x00000200	/* Entry is valid */
138 #define MD_ASIDMASK	0x0000000f	/* ASID match value */
139 					/* Reset value is undefined */
140 
141 /* The pointer to the base address of the first level page table.
142  * During a software tablewalk, reading this register provides the address
143  * of the entry associated with MD_EPN.
144  */
145 #define SPRN_M_TWB	796
146 #define	M_L1TB		0xfffff000	/* Level 1 table base address */
147 #define M_L1INDX	0x00000ffc	/* Level 1 index, when read */
148 					/* Reset value is undefined */
149 
150 /* A "level 1" or "segment" or whatever you want to call it register.
151  * For the data TLB, it contains bits that get loaded into the TLB entry
152  * when the MD_RPN is written.  It is also provides the hardware assist
153  * for finding the PTE address during software tablewalk.
154  */
155 #define SPRN_MD_TWC	797
156 #define MD_L2TB		0xfffff000	/* Level 2 table base address */
157 #define MD_L2INDX	0xfffffe00	/* Level 2 index (*pte), when read */
158 #define MD_APG		0x000001e0	/* Access protection group (0) */
159 #define MD_GUARDED	0x00000010	/* Guarded storage */
160 #define MD_PSMASK	0x0000000c	/* Mask of page size bits */
161 #define MD_PS8MEG	0x0000000c	/* 8M page size */
162 #define MD_PS512K	0x00000004	/* 512K page size */
163 #define MD_PS4K_16K	0x00000000	/* 4K or 16K page size */
164 #define MD_WT		0x00000002	/* Use writethrough page attribute */
165 #define MD_SVALID	0x00000001	/* Segment entry is valid */
166 					/* Reset value is undefined */
167 
168 
169 /* Real page number.  Defined by the pte.  Writing this register
170  * causes a TLB entry to be created for the data TLB, using
171  * additional information from the MD_EPN, and MD_TWC registers.
172  */
173 #define SPRN_MD_RPN	798
174 #define MD_SPS16K	0x00000008	/* Small page size (0 = 4k, 1 = 16k) */
175 
176 /* This is a temporary storage register that could be used to save
177  * a processor working register during a tablewalk.
178  */
179 #define SPRN_M_TW	799
180 
181 #ifdef CONFIG_PPC_MM_SLICES
182 #include <asm/nohash/32/slice.h>
183 #define SLICE_ARRAY_SIZE	(1 << (32 - SLICE_LOW_SHIFT - 1))
184 #define LOW_SLICE_ARRAY_SZ	SLICE_ARRAY_SIZE
185 #endif
186 
187 #if defined(CONFIG_PPC_4K_PAGES)
188 #define mmu_virtual_psize	MMU_PAGE_4K
189 #elif defined(CONFIG_PPC_16K_PAGES)
190 #define mmu_virtual_psize	MMU_PAGE_16K
191 #define PTE_FRAG_NR		4
192 #define PTE_FRAG_SIZE_SHIFT	12
193 #define PTE_FRAG_SIZE		(1UL << 12)
194 #else
195 #error "Unsupported PAGE_SIZE"
196 #endif
197 
198 #define mmu_linear_psize	MMU_PAGE_8M
199 
200 #ifndef __ASSEMBLY__
201 
202 #include <linux/mmdebug.h>
203 
204 struct slice_mask {
205 	u64 low_slices;
206 	DECLARE_BITMAP(high_slices, 0);
207 };
208 
209 typedef struct {
210 	unsigned int id;
211 	unsigned int active;
212 	unsigned long vdso_base;
213 #ifdef CONFIG_PPC_MM_SLICES
214 	u16 user_psize;		/* page size index */
215 	unsigned char low_slices_psize[SLICE_ARRAY_SIZE];
216 	unsigned char high_slices_psize[0];
217 	unsigned long slb_addr_limit;
218 	struct slice_mask mask_base_psize; /* 4k or 16k */
219 	struct slice_mask mask_512k;
220 	struct slice_mask mask_8m;
221 #endif
222 	void *pte_frag;
223 } mm_context_t;
224 
225 #ifdef CONFIG_PPC_MM_SLICES
226 static inline u16 mm_ctx_user_psize(mm_context_t *ctx)
227 {
228 	return ctx->user_psize;
229 }
230 
231 static inline void mm_ctx_set_user_psize(mm_context_t *ctx, u16 user_psize)
232 {
233 	ctx->user_psize = user_psize;
234 }
235 
236 static inline unsigned char *mm_ctx_low_slices(mm_context_t *ctx)
237 {
238 	return ctx->low_slices_psize;
239 }
240 
241 static inline unsigned char *mm_ctx_high_slices(mm_context_t *ctx)
242 {
243 	return ctx->high_slices_psize;
244 }
245 
246 static inline unsigned long mm_ctx_slb_addr_limit(mm_context_t *ctx)
247 {
248 	return ctx->slb_addr_limit;
249 }
250 
251 static inline void mm_ctx_set_slb_addr_limit(mm_context_t *ctx, unsigned long limit)
252 {
253 	ctx->slb_addr_limit = limit;
254 }
255 
256 static inline struct slice_mask *slice_mask_for_size(mm_context_t *ctx, int psize)
257 {
258 	if (psize == MMU_PAGE_512K)
259 		return &ctx->mask_512k;
260 	if (psize == MMU_PAGE_8M)
261 		return &ctx->mask_8m;
262 
263 	BUG_ON(psize != mmu_virtual_psize);
264 
265 	return &ctx->mask_base_psize;
266 }
267 #endif /* CONFIG_PPC_MM_SLICE */
268 
269 #define PHYS_IMMR_BASE (mfspr(SPRN_IMMR) & 0xfff80000)
270 #define VIRT_IMMR_BASE (__fix_to_virt(FIX_IMMR_BASE))
271 
272 /* Page size definitions, common between 32 and 64-bit
273  *
274  *    shift : is the "PAGE_SHIFT" value for that page size
275  *    penc  : is the pte encoding mask
276  *
277  */
278 struct mmu_psize_def {
279 	unsigned int	shift;	/* number of bits */
280 	unsigned int	enc;	/* PTE encoding */
281 	unsigned int    ind;    /* Corresponding indirect page size shift */
282 	unsigned int	flags;
283 #define MMU_PAGE_SIZE_DIRECT	0x1	/* Supported as a direct size */
284 #define MMU_PAGE_SIZE_INDIRECT	0x2	/* Supported as an indirect size */
285 };
286 
287 extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
288 
289 static inline int shift_to_mmu_psize(unsigned int shift)
290 {
291 	int psize;
292 
293 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
294 		if (mmu_psize_defs[psize].shift == shift)
295 			return psize;
296 	return -1;
297 }
298 
299 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
300 {
301 	if (mmu_psize_defs[mmu_psize].shift)
302 		return mmu_psize_defs[mmu_psize].shift;
303 	BUG();
304 }
305 
306 /* patch sites */
307 extern s32 patch__itlbmiss_linmem_top, patch__itlbmiss_linmem_top8;
308 extern s32 patch__dtlbmiss_linmem_top, patch__dtlbmiss_immr_jmp;
309 extern s32 patch__fixupdar_linmem_top;
310 extern s32 patch__dtlbmiss_romem_top, patch__dtlbmiss_romem_top8;
311 
312 extern s32 patch__itlbmiss_exit_1, patch__itlbmiss_exit_2;
313 extern s32 patch__dtlbmiss_exit_1, patch__dtlbmiss_exit_2, patch__dtlbmiss_exit_3;
314 extern s32 patch__itlbmiss_perf, patch__dtlbmiss_perf;
315 
316 #endif /* !__ASSEMBLY__ */
317 
318 #endif /* _ASM_POWERPC_MMU_8XX_H_ */
319