xref: /openbmc/linux/arch/powerpc/include/asm/lppaca.h (revision 4800cd83)
1 /*
2  * lppaca.h
3  * Copyright (C) 2001  Mike Corrigan IBM Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19 #ifndef _ASM_POWERPC_LPPACA_H
20 #define _ASM_POWERPC_LPPACA_H
21 #ifdef __KERNEL__
22 
23 /* These definitions relate to hypervisors that only exist when using
24  * a server type processor
25  */
26 #ifdef CONFIG_PPC_BOOK3S
27 
28 //=============================================================================
29 //
30 //	This control block contains the data that is shared between the
31 //	hypervisor (PLIC) and the OS.
32 //
33 //
34 //----------------------------------------------------------------------------
35 #include <linux/cache.h>
36 #include <linux/threads.h>
37 #include <asm/types.h>
38 #include <asm/mmu.h>
39 
40 /*
41  * We only have to have statically allocated lppaca structs on
42  * legacy iSeries, which supports at most 64 cpus.
43  */
44 #ifdef CONFIG_PPC_ISERIES
45 #if NR_CPUS < 64
46 #define NR_LPPACAS	NR_CPUS
47 #else
48 #define NR_LPPACAS	64
49 #endif
50 #else /* not iSeries */
51 #define NR_LPPACAS	1
52 #endif
53 
54 
55 /* The Hypervisor barfs if the lppaca crosses a page boundary.  A 1k
56  * alignment is sufficient to prevent this */
57 struct lppaca {
58 //=============================================================================
59 // CACHE_LINE_1 0x0000 - 0x007F Contains read-only data
60 // NOTE: The xDynXyz fields are fields that will be dynamically changed by
61 // PLIC when preparing to bring a processor online or when dispatching a
62 // virtual processor!
63 //=============================================================================
64 	u32	desc;			// Eye catcher 0xD397D781	x00-x03
65 	u16	size;			// Size of this struct		x04-x05
66 	u16	reserved1;		// Reserved			x06-x07
67 	u16	reserved2:14;		// Reserved			x08-x09
68 	u8	shared_proc:1;		// Shared processor indicator	...
69 	u8	secondary_thread:1;	// Secondary thread indicator	...
70 	volatile u8 dyn_proc_status:8;	// Dynamic Status of this proc	x0A-x0A
71 	u8	secondary_thread_count;	// Secondary thread count	x0B-x0B
72 	volatile u16 dyn_hv_phys_proc_index;// Dynamic HV Physical Proc Index0C-x0D
73 	volatile u16 dyn_hv_log_proc_index;// Dynamic HV Logical Proc Indexx0E-x0F
74 	u32	decr_val;   		// Value for Decr programming 	x10-x13
75 	u32	pmc_val;       		// Value for PMC regs         	x14-x17
76 	volatile u32 dyn_hw_node_id;	// Dynamic Hardware Node id	x18-x1B
77 	volatile u32 dyn_hw_proc_id;	// Dynamic Hardware Proc Id	x1C-x1F
78 	volatile u32 dyn_pir;		// Dynamic ProcIdReg value	x20-x23
79 	u32	dsei_data;           	// DSEI data                  	x24-x27
80 	u64	sprg3;               	// SPRG3 value                	x28-x2F
81 	u8	reserved3[40];		// Reserved			x30-x57
82 	volatile u8 vphn_assoc_counts[8]; // Virtual processor home node
83 					// associativity change counters x58-x5F
84 	u8	reserved4[32];		// Reserved			x60-x7F
85 
86 //=============================================================================
87 // CACHE_LINE_2 0x0080 - 0x00FF Contains local read-write data
88 //=============================================================================
89 	// This Dword contains a byte for each type of interrupt that can occur.
90 	// The IPI is a count while the others are just a binary 1 or 0.
91 	union {
92 		u64	any_int;
93 		struct {
94 			u16	reserved;	// Reserved - cleared by #mpasmbl
95 			u8	xirr_int;	// Indicates xXirrValue is valid or Immed IO
96 			u8	ipi_cnt;	// IPI Count
97 			u8	decr_int;	// DECR interrupt occurred
98 			u8	pdc_int;	// PDC interrupt occurred
99 			u8	quantum_int;	// Interrupt quantum reached
100 			u8	old_plic_deferred_ext_int;	// Old PLIC has a deferred XIRR pending
101 		} fields;
102 	} int_dword;
103 
104 	// Whenever any fields in this Dword are set then PLIC will defer the
105 	// processing of external interrupts.  Note that PLIC will store the
106 	// XIRR directly into the xXirrValue field so that another XIRR will
107 	// not be presented until this one clears.  The layout of the low
108 	// 4-bytes of this Dword is upto SLIC - PLIC just checks whether the
109 	// entire Dword is zero or not.  A non-zero value in the low order
110 	// 2-bytes will result in SLIC being granted the highest thread
111 	// priority upon return.  A 0 will return to SLIC as medium priority.
112 	u64	plic_defer_ints_area;	// Entire Dword
113 
114 	// Used to pass the real SRR0/1 from PLIC to SLIC as well as to
115 	// pass the target SRR0/1 from SLIC to PLIC on a SetAsrAndRfid.
116 	u64	saved_srr0;		// Saved SRR0                   x10-x17
117 	u64	saved_srr1;		// Saved SRR1                   x18-x1F
118 
119 	// Used to pass parms from the OS to PLIC for SetAsrAndRfid
120 	u64	saved_gpr3;		// Saved GPR3                   x20-x27
121 	u64	saved_gpr4;		// Saved GPR4                   x28-x2F
122 	union {
123 		u64	saved_gpr5;	/* Saved GPR5               x30-x37 */
124 		struct {
125 			u8	cede_latency_hint;  /*			x30 */
126 			u8	reserved[7];        /*		    x31-x36 */
127 		} fields;
128 	} gpr5_dword;
129 
130 
131 	u8	dtl_enable_mask;	// Dispatch Trace Log mask	x38-x38
132 	u8	donate_dedicated_cpu;	// Donate dedicated CPU cycles  x39-x39
133 	u8	fpregs_in_use;		// FP regs in use               x3A-x3A
134 	u8	pmcregs_in_use;		// PMC regs in use              x3B-x3B
135 	volatile u32 saved_decr;	// Saved Decr Value             x3C-x3F
136 	volatile u64 emulated_time_base;// Emulated TB for this thread  x40-x47
137 	volatile u64 cur_plic_latency;	// Unaccounted PLIC latency     x48-x4F
138 	u64	tot_plic_latency;	// Accumulated PLIC latency     x50-x57
139 	u64	wait_state_cycles;	// Wait cycles for this proc    x58-x5F
140 	u64	end_of_quantum;		// TB at end of quantum         x60-x67
141 	u64	pdc_saved_sprg1;	// Saved SPRG1 for PMC int      x68-x6F
142 	u64	pdc_saved_srr0;		// Saved SRR0 for PMC int       x70-x77
143 	volatile u32 virtual_decr;	// Virtual DECR for shared procsx78-x7B
144 	u16	slb_count;		// # of SLBs to maintain        x7C-x7D
145 	u8	idle;			// Indicate OS is idle          x7E
146 	u8	vmxregs_in_use;		// VMX registers in use         x7F
147 
148 
149 //=============================================================================
150 // CACHE_LINE_3 0x0100 - 0x017F: This line is shared with other processors
151 //=============================================================================
152 	// This is the yield_count.  An "odd" value (low bit on) means that
153 	// the processor is yielded (either because of an OS yield or a PLIC
154 	// preempt).  An even value implies that the processor is currently
155 	// executing.
156 	// NOTE: This value will ALWAYS be zero for dedicated processors and
157 	// will NEVER be zero for shared processors (ie, initialized to a 1).
158 	volatile u32 yield_count;	// PLIC increments each dispatchx00-x03
159 	volatile u32 dispersion_count;	// dispatch changed phys cpu    x04-x07
160 	volatile u64 cmo_faults;	// CMO page fault count         x08-x0F
161 	volatile u64 cmo_fault_time;	// CMO page fault time          x10-x17
162 	u8	reserved7[104];		// Reserved                     x18-x7F
163 
164 //=============================================================================
165 // CACHE_LINE_4-5 0x0180 - 0x027F Contains PMC interrupt data
166 //=============================================================================
167 	u32	page_ins;		// CMO Hint - # page ins by OS  x00-x03
168 	u8	reserved8[148];		// Reserved                     x04-x97
169 	volatile u64 dtl_idx;		// Dispatch Trace Log head idx	x98-x9F
170 	u8	reserved9[96];		// Reserved                     xA0-xFF
171 } __attribute__((__aligned__(0x400)));
172 
173 extern struct lppaca lppaca[];
174 
175 #define lppaca_of(cpu)	(*paca[cpu].lppaca_ptr)
176 
177 /*
178  * SLB shadow buffer structure as defined in the PAPR.  The save_area
179  * contains adjacent ESID and VSID pairs for each shadowed SLB.  The
180  * ESID is stored in the lower 64bits, then the VSID.
181  */
182 struct slb_shadow {
183 	u32	persistent;		// Number of persistent SLBs	x00-x03
184 	u32	buffer_length;		// Total shadow buffer length	x04-x07
185 	u64	reserved;		// Alignment			x08-x0f
186 	struct	{
187 		u64     esid;
188 		u64	vsid;
189 	} save_area[SLB_NUM_BOLTED];	//				x10-x40
190 } ____cacheline_aligned;
191 
192 extern struct slb_shadow slb_shadow[];
193 
194 /*
195  * Layout of entries in the hypervisor's dispatch trace log buffer.
196  */
197 struct dtl_entry {
198 	u8	dispatch_reason;
199 	u8	preempt_reason;
200 	u16	processor_id;
201 	u32	enqueue_to_dispatch_time;
202 	u32	ready_to_enqueue_time;
203 	u32	waiting_to_ready_time;
204 	u64	timebase;
205 	u64	fault_addr;
206 	u64	srr0;
207 	u64	srr1;
208 };
209 
210 #define DISPATCH_LOG_BYTES	4096	/* bytes per cpu */
211 #define N_DISPATCH_LOG		(DISPATCH_LOG_BYTES / sizeof(struct dtl_entry))
212 
213 /*
214  * When CONFIG_VIRT_CPU_ACCOUNTING = y, the cpu accounting code controls
215  * reading from the dispatch trace log.  If other code wants to consume
216  * DTL entries, it can set this pointer to a function that will get
217  * called once for each DTL entry that gets processed.
218  */
219 extern void (*dtl_consumer)(struct dtl_entry *entry, u64 index);
220 
221 #endif /* CONFIG_PPC_BOOK3S */
222 #endif /* __KERNEL__ */
223 #endif /* _ASM_POWERPC_LPPACA_H */
224