1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * This program is distributed in the hope that it will be useful, 7 * but WITHOUT ANY WARRANTY; without even the implied warranty of 8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 9 * GNU General Public License for more details. 10 * 11 * You should have received a copy of the GNU General Public License 12 * along with this program; if not, write to the Free Software 13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 14 * 15 * Copyright SUSE Linux Products GmbH 2010 16 * 17 * Authors: Alexander Graf <agraf@suse.de> 18 */ 19 20 #ifndef __ASM_KVM_BOOK3S_64_H__ 21 #define __ASM_KVM_BOOK3S_64_H__ 22 23 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 24 static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu) 25 { 26 preempt_disable(); 27 return &get_paca()->shadow_vcpu; 28 } 29 30 static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu) 31 { 32 preempt_enable(); 33 } 34 #endif 35 36 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 37 #define KVM_DEFAULT_HPT_ORDER 24 /* 16MB HPT by default */ 38 #endif 39 40 #define VRMA_VSID 0x1ffffffUL /* 1TB VSID reserved for VRMA */ 41 42 /* 43 * We use a lock bit in HPTE dword 0 to synchronize updates and 44 * accesses to each HPTE, and another bit to indicate non-present 45 * HPTEs. 46 */ 47 #define HPTE_V_HVLOCK 0x40UL 48 #define HPTE_V_ABSENT 0x20UL 49 50 /* 51 * We use this bit in the guest_rpte field of the revmap entry 52 * to indicate a modified HPTE. 53 */ 54 #define HPTE_GR_MODIFIED (1ul << 62) 55 56 /* These bits are reserved in the guest view of the HPTE */ 57 #define HPTE_GR_RESERVED HPTE_GR_MODIFIED 58 59 static inline long try_lock_hpte(__be64 *hpte, unsigned long bits) 60 { 61 unsigned long tmp, old; 62 __be64 be_lockbit, be_bits; 63 64 /* 65 * We load/store in native endian, but the HTAB is in big endian. If 66 * we byte swap all data we apply on the PTE we're implicitly correct 67 * again. 68 */ 69 be_lockbit = cpu_to_be64(HPTE_V_HVLOCK); 70 be_bits = cpu_to_be64(bits); 71 72 asm volatile(" ldarx %0,0,%2\n" 73 " and. %1,%0,%3\n" 74 " bne 2f\n" 75 " or %0,%0,%4\n" 76 " stdcx. %0,0,%2\n" 77 " beq+ 2f\n" 78 " mr %1,%3\n" 79 "2: isync" 80 : "=&r" (tmp), "=&r" (old) 81 : "r" (hpte), "r" (be_bits), "r" (be_lockbit) 82 : "cc", "memory"); 83 return old == 0; 84 } 85 86 static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v) 87 { 88 hpte_v &= ~HPTE_V_HVLOCK; 89 asm volatile(PPC_RELEASE_BARRIER "" : : : "memory"); 90 hpte[0] = cpu_to_be64(hpte_v); 91 } 92 93 /* Without barrier */ 94 static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v) 95 { 96 hpte_v &= ~HPTE_V_HVLOCK; 97 hpte[0] = cpu_to_be64(hpte_v); 98 } 99 100 static inline int __hpte_actual_psize(unsigned int lp, int psize) 101 { 102 int i, shift; 103 unsigned int mask; 104 105 /* start from 1 ignoring MMU_PAGE_4K */ 106 for (i = 1; i < MMU_PAGE_COUNT; i++) { 107 108 /* invalid penc */ 109 if (mmu_psize_defs[psize].penc[i] == -1) 110 continue; 111 /* 112 * encoding bits per actual page size 113 * PTE LP actual page size 114 * rrrr rrrz >=8KB 115 * rrrr rrzz >=16KB 116 * rrrr rzzz >=32KB 117 * rrrr zzzz >=64KB 118 * ....... 119 */ 120 shift = mmu_psize_defs[i].shift - LP_SHIFT; 121 if (shift > LP_BITS) 122 shift = LP_BITS; 123 mask = (1 << shift) - 1; 124 if ((lp & mask) == mmu_psize_defs[psize].penc[i]) 125 return i; 126 } 127 return -1; 128 } 129 130 static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r, 131 unsigned long pte_index) 132 { 133 int b_psize = MMU_PAGE_4K, a_psize = MMU_PAGE_4K; 134 unsigned int penc; 135 unsigned long rb = 0, va_low, sllp; 136 unsigned int lp = (r >> LP_SHIFT) & ((1 << LP_BITS) - 1); 137 138 if (v & HPTE_V_LARGE) { 139 for (b_psize = 0; b_psize < MMU_PAGE_COUNT; b_psize++) { 140 141 /* valid entries have a shift value */ 142 if (!mmu_psize_defs[b_psize].shift) 143 continue; 144 145 a_psize = __hpte_actual_psize(lp, b_psize); 146 if (a_psize != -1) 147 break; 148 } 149 } 150 /* 151 * Ignore the top 14 bits of va 152 * v have top two bits covering segment size, hence move 153 * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits. 154 * AVA field in v also have the lower 23 bits ignored. 155 * For base page size 4K we need 14 .. 65 bits (so need to 156 * collect extra 11 bits) 157 * For others we need 14..14+i 158 */ 159 /* This covers 14..54 bits of va*/ 160 rb = (v & ~0x7fUL) << 16; /* AVA field */ 161 162 rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8; /* B field */ 163 /* 164 * AVA in v had cleared lower 23 bits. We need to derive 165 * that from pteg index 166 */ 167 va_low = pte_index >> 3; 168 if (v & HPTE_V_SECONDARY) 169 va_low = ~va_low; 170 /* 171 * get the vpn bits from va_low using reverse of hashing. 172 * In v we have va with 23 bits dropped and then left shifted 173 * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need 174 * right shift it with (SID_SHIFT - (23 - 7)) 175 */ 176 if (!(v & HPTE_V_1TB_SEG)) 177 va_low ^= v >> (SID_SHIFT - 16); 178 else 179 va_low ^= v >> (SID_SHIFT_1T - 16); 180 va_low &= 0x7ff; 181 182 switch (b_psize) { 183 case MMU_PAGE_4K: 184 sllp = get_sllp_encoding(a_psize); 185 rb |= sllp << 5; /* AP field */ 186 rb |= (va_low & 0x7ff) << 12; /* remaining 11 bits of AVA */ 187 break; 188 default: 189 { 190 int aval_shift; 191 /* 192 * remaining bits of AVA/LP fields 193 * Also contain the rr bits of LP 194 */ 195 rb |= (va_low << mmu_psize_defs[b_psize].shift) & 0x7ff000; 196 /* 197 * Now clear not needed LP bits based on actual psize 198 */ 199 rb &= ~((1ul << mmu_psize_defs[a_psize].shift) - 1); 200 /* 201 * AVAL field 58..77 - base_page_shift bits of va 202 * we have space for 58..64 bits, Missing bits should 203 * be zero filled. +1 is to take care of L bit shift 204 */ 205 aval_shift = 64 - (77 - mmu_psize_defs[b_psize].shift) + 1; 206 rb |= ((va_low << aval_shift) & 0xfe); 207 208 rb |= 1; /* L field */ 209 penc = mmu_psize_defs[b_psize].penc[a_psize]; 210 rb |= penc << 12; /* LP field */ 211 break; 212 } 213 } 214 rb |= (v >> 54) & 0x300; /* B field */ 215 return rb; 216 } 217 218 static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l, 219 bool is_base_size) 220 { 221 222 int size, a_psize; 223 /* Look at the 8 bit LP value */ 224 unsigned int lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1); 225 226 /* only handle 4k, 64k and 16M pages for now */ 227 if (!(h & HPTE_V_LARGE)) 228 return 1ul << 12; 229 else { 230 for (size = 0; size < MMU_PAGE_COUNT; size++) { 231 /* valid entries have a shift value */ 232 if (!mmu_psize_defs[size].shift) 233 continue; 234 235 a_psize = __hpte_actual_psize(lp, size); 236 if (a_psize != -1) { 237 if (is_base_size) 238 return 1ul << mmu_psize_defs[size].shift; 239 return 1ul << mmu_psize_defs[a_psize].shift; 240 } 241 } 242 243 } 244 return 0; 245 } 246 247 static inline unsigned long hpte_page_size(unsigned long h, unsigned long l) 248 { 249 return __hpte_page_size(h, l, 0); 250 } 251 252 static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l) 253 { 254 return __hpte_page_size(h, l, 1); 255 } 256 257 static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize) 258 { 259 return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT; 260 } 261 262 static inline int hpte_is_writable(unsigned long ptel) 263 { 264 unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP); 265 266 return pp != PP_RXRX && pp != PP_RXXX; 267 } 268 269 static inline unsigned long hpte_make_readonly(unsigned long ptel) 270 { 271 if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX) 272 ptel = (ptel & ~HPTE_R_PP) | PP_RXXX; 273 else 274 ptel |= PP_RXRX; 275 return ptel; 276 } 277 278 static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci) 279 { 280 unsigned int wimg = hptel & HPTE_R_WIMG; 281 282 /* Handle SAO */ 283 if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) && 284 cpu_has_feature(CPU_FTR_ARCH_206)) 285 wimg = HPTE_R_M; 286 287 if (!is_ci) 288 return wimg == HPTE_R_M; 289 /* 290 * if host is mapped cache inhibited, make sure hptel also have 291 * cache inhibited. 292 */ 293 if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */ 294 return false; 295 return !!(wimg & HPTE_R_I); 296 } 297 298 /* 299 * If it's present and writable, atomically set dirty and referenced bits and 300 * return the PTE, otherwise return 0. 301 */ 302 static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing) 303 { 304 pte_t old_pte, new_pte = __pte(0); 305 306 while (1) { 307 /* 308 * Make sure we don't reload from ptep 309 */ 310 old_pte = READ_ONCE(*ptep); 311 /* 312 * wait until H_PAGE_BUSY is clear then set it atomically 313 */ 314 if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) { 315 cpu_relax(); 316 continue; 317 } 318 /* If pte is not present return None */ 319 if (unlikely(!(pte_val(old_pte) & _PAGE_PRESENT))) 320 return __pte(0); 321 322 new_pte = pte_mkyoung(old_pte); 323 if (writing && pte_write(old_pte)) 324 new_pte = pte_mkdirty(new_pte); 325 326 if (pte_xchg(ptep, old_pte, new_pte)) 327 break; 328 } 329 return new_pte; 330 } 331 332 static inline bool hpte_read_permission(unsigned long pp, unsigned long key) 333 { 334 if (key) 335 return PP_RWRX <= pp && pp <= PP_RXRX; 336 return true; 337 } 338 339 static inline bool hpte_write_permission(unsigned long pp, unsigned long key) 340 { 341 if (key) 342 return pp == PP_RWRW; 343 return pp <= PP_RWRW; 344 } 345 346 static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr) 347 { 348 unsigned long skey; 349 350 skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) | 351 ((hpte_r & HPTE_R_KEY_LO) >> 9); 352 return (amr >> (62 - 2 * skey)) & 3; 353 } 354 355 static inline void lock_rmap(unsigned long *rmap) 356 { 357 do { 358 while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap)) 359 cpu_relax(); 360 } while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap)); 361 } 362 363 static inline void unlock_rmap(unsigned long *rmap) 364 { 365 __clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap); 366 } 367 368 static inline bool slot_is_aligned(struct kvm_memory_slot *memslot, 369 unsigned long pagesize) 370 { 371 unsigned long mask = (pagesize >> PAGE_SHIFT) - 1; 372 373 if (pagesize <= PAGE_SIZE) 374 return true; 375 return !(memslot->base_gfn & mask) && !(memslot->npages & mask); 376 } 377 378 /* 379 * This works for 4k, 64k and 16M pages on POWER7, 380 * and 4k and 16M pages on PPC970. 381 */ 382 static inline unsigned long slb_pgsize_encoding(unsigned long psize) 383 { 384 unsigned long senc = 0; 385 386 if (psize > 0x1000) { 387 senc = SLB_VSID_L; 388 if (psize == 0x10000) 389 senc |= SLB_VSID_LP_01; 390 } 391 return senc; 392 } 393 394 static inline int is_vrma_hpte(unsigned long hpte_v) 395 { 396 return (hpte_v & ~0xffffffUL) == 397 (HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16))); 398 } 399 400 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 401 /* 402 * Note modification of an HPTE; set the HPTE modified bit 403 * if anyone is interested. 404 */ 405 static inline void note_hpte_modification(struct kvm *kvm, 406 struct revmap_entry *rev) 407 { 408 if (atomic_read(&kvm->arch.hpte_mod_interest)) 409 rev->guest_rpte |= HPTE_GR_MODIFIED; 410 } 411 412 /* 413 * Like kvm_memslots(), but for use in real mode when we can't do 414 * any RCU stuff (since the secondary threads are offline from the 415 * kernel's point of view), and we can't print anything. 416 * Thus we use rcu_dereference_raw() rather than rcu_dereference_check(). 417 */ 418 static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm) 419 { 420 return rcu_dereference_raw_notrace(kvm->memslots[0]); 421 } 422 423 extern void kvmppc_mmu_debugfs_init(struct kvm *kvm); 424 425 extern void kvmhv_rm_send_ipi(int cpu); 426 427 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 428 429 #endif /* __ASM_KVM_BOOK3S_64_H__ */ 430