1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * 4 * Copyright SUSE Linux Products GmbH 2010 5 * 6 * Authors: Alexander Graf <agraf@suse.de> 7 */ 8 9 #ifndef __ASM_KVM_BOOK3S_64_H__ 10 #define __ASM_KVM_BOOK3S_64_H__ 11 12 #include <linux/string.h> 13 #include <asm/bitops.h> 14 #include <asm/book3s/64/mmu-hash.h> 15 #include <asm/cpu_has_feature.h> 16 #include <asm/ppc-opcode.h> 17 #include <asm/pte-walk.h> 18 19 #ifdef CONFIG_PPC_PSERIES 20 static inline bool kvmhv_on_pseries(void) 21 { 22 return !cpu_has_feature(CPU_FTR_HVMODE); 23 } 24 #else 25 static inline bool kvmhv_on_pseries(void) 26 { 27 return false; 28 } 29 #endif 30 31 /* 32 * Structure for a nested guest, that is, for a guest that is managed by 33 * one of our guests. 34 */ 35 struct kvm_nested_guest { 36 struct kvm *l1_host; /* L1 VM that owns this nested guest */ 37 int l1_lpid; /* lpid L1 guest thinks this guest is */ 38 int shadow_lpid; /* real lpid of this nested guest */ 39 pgd_t *shadow_pgtable; /* our page table for this guest */ 40 u64 l1_gr_to_hr; /* L1's addr of part'n-scoped table */ 41 u64 process_table; /* process table entry for this guest */ 42 u64 hfscr; /* HFSCR that the L1 requested for this nested guest */ 43 long refcnt; /* number of pointers to this struct */ 44 struct mutex tlb_lock; /* serialize page faults and tlbies */ 45 struct kvm_nested_guest *next; 46 cpumask_t need_tlb_flush; 47 cpumask_t cpu_in_guest; 48 short prev_cpu[NR_CPUS]; 49 u8 radix; /* is this nested guest radix */ 50 }; 51 52 /* 53 * We define a nested rmap entry as a single 64-bit quantity 54 * 0xFFF0000000000000 12-bit lpid field 55 * 0x000FFFFFFFFFF000 40-bit guest 4k page frame number 56 * 0x0000000000000001 1-bit single entry flag 57 */ 58 #define RMAP_NESTED_LPID_MASK 0xFFF0000000000000UL 59 #define RMAP_NESTED_LPID_SHIFT (52) 60 #define RMAP_NESTED_GPA_MASK 0x000FFFFFFFFFF000UL 61 #define RMAP_NESTED_IS_SINGLE_ENTRY 0x0000000000000001UL 62 63 /* Structure for a nested guest rmap entry */ 64 struct rmap_nested { 65 struct llist_node list; 66 u64 rmap; 67 }; 68 69 /* 70 * for_each_nest_rmap_safe - iterate over the list of nested rmap entries 71 * safe against removal of the list entry or NULL list 72 * @pos: a (struct rmap_nested *) to use as a loop cursor 73 * @node: pointer to the first entry 74 * NOTE: this can be NULL 75 * @rmapp: an (unsigned long *) in which to return the rmap entries on each 76 * iteration 77 * NOTE: this must point to already allocated memory 78 * 79 * The nested_rmap is a llist of (struct rmap_nested) entries pointed to by the 80 * rmap entry in the memslot. The list is always terminated by a "single entry" 81 * stored in the list element of the final entry of the llist. If there is ONLY 82 * a single entry then this is itself in the rmap entry of the memslot, not a 83 * llist head pointer. 84 * 85 * Note that the iterator below assumes that a nested rmap entry is always 86 * non-zero. This is true for our usage because the LPID field is always 87 * non-zero (zero is reserved for the host). 88 * 89 * This should be used to iterate over the list of rmap_nested entries with 90 * processing done on the u64 rmap value given by each iteration. This is safe 91 * against removal of list entries and it is always safe to call free on (pos). 92 * 93 * e.g. 94 * struct rmap_nested *cursor; 95 * struct llist_node *first; 96 * unsigned long rmap; 97 * for_each_nest_rmap_safe(cursor, first, &rmap) { 98 * do_something(rmap); 99 * free(cursor); 100 * } 101 */ 102 #define for_each_nest_rmap_safe(pos, node, rmapp) \ 103 for ((pos) = llist_entry((node), typeof(*(pos)), list); \ 104 (node) && \ 105 (*(rmapp) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ? \ 106 ((u64) (node)) : ((pos)->rmap))) && \ 107 (((node) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ? \ 108 ((struct llist_node *) ((pos) = NULL)) : \ 109 (pos)->list.next)), true); \ 110 (pos) = llist_entry((node), typeof(*(pos)), list)) 111 112 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid, 113 bool create); 114 void kvmhv_put_nested(struct kvm_nested_guest *gp); 115 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid); 116 117 /* Encoding of first parameter for H_TLB_INVALIDATE */ 118 #define H_TLBIE_P1_ENC(ric, prs, r) (___PPC_RIC(ric) | ___PPC_PRS(prs) | \ 119 ___PPC_R(r)) 120 121 /* Power architecture requires HPT is at least 256kiB, at most 64TiB */ 122 #define PPC_MIN_HPT_ORDER 18 123 #define PPC_MAX_HPT_ORDER 46 124 125 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 126 static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu) 127 { 128 preempt_disable(); 129 return &get_paca()->shadow_vcpu; 130 } 131 132 static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu) 133 { 134 preempt_enable(); 135 } 136 #endif 137 138 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 139 140 static inline bool kvm_is_radix(struct kvm *kvm) 141 { 142 return kvm->arch.radix; 143 } 144 145 static inline bool kvmhv_vcpu_is_radix(struct kvm_vcpu *vcpu) 146 { 147 bool radix; 148 149 if (vcpu->arch.nested) 150 radix = vcpu->arch.nested->radix; 151 else 152 radix = kvm_is_radix(vcpu->kvm); 153 154 return radix; 155 } 156 157 int kvmhv_vcpu_entry_p9(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr); 158 159 #define KVM_DEFAULT_HPT_ORDER 24 /* 16MB HPT by default */ 160 #endif 161 162 /* 163 * Invalid HDSISR value which is used to indicate when HW has not set the reg. 164 * Used to work around an errata. 165 */ 166 #define HDSISR_CANARY 0x7fff 167 168 /* 169 * We use a lock bit in HPTE dword 0 to synchronize updates and 170 * accesses to each HPTE, and another bit to indicate non-present 171 * HPTEs. 172 */ 173 #define HPTE_V_HVLOCK 0x40UL 174 #define HPTE_V_ABSENT 0x20UL 175 176 /* 177 * We use this bit in the guest_rpte field of the revmap entry 178 * to indicate a modified HPTE. 179 */ 180 #define HPTE_GR_MODIFIED (1ul << 62) 181 182 /* These bits are reserved in the guest view of the HPTE */ 183 #define HPTE_GR_RESERVED HPTE_GR_MODIFIED 184 185 static inline long try_lock_hpte(__be64 *hpte, unsigned long bits) 186 { 187 unsigned long tmp, old; 188 __be64 be_lockbit, be_bits; 189 190 /* 191 * We load/store in native endian, but the HTAB is in big endian. If 192 * we byte swap all data we apply on the PTE we're implicitly correct 193 * again. 194 */ 195 be_lockbit = cpu_to_be64(HPTE_V_HVLOCK); 196 be_bits = cpu_to_be64(bits); 197 198 asm volatile(" ldarx %0,0,%2\n" 199 " and. %1,%0,%3\n" 200 " bne 2f\n" 201 " or %0,%0,%4\n" 202 " stdcx. %0,0,%2\n" 203 " beq+ 2f\n" 204 " mr %1,%3\n" 205 "2: isync" 206 : "=&r" (tmp), "=&r" (old) 207 : "r" (hpte), "r" (be_bits), "r" (be_lockbit) 208 : "cc", "memory"); 209 return old == 0; 210 } 211 212 static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v) 213 { 214 hpte_v &= ~HPTE_V_HVLOCK; 215 asm volatile(PPC_RELEASE_BARRIER "" : : : "memory"); 216 hpte[0] = cpu_to_be64(hpte_v); 217 } 218 219 /* Without barrier */ 220 static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v) 221 { 222 hpte_v &= ~HPTE_V_HVLOCK; 223 hpte[0] = cpu_to_be64(hpte_v); 224 } 225 226 /* 227 * These functions encode knowledge of the POWER7/8/9 hardware 228 * interpretations of the HPTE LP (large page size) field. 229 */ 230 static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l) 231 { 232 unsigned int lphi; 233 234 if (!(h & HPTE_V_LARGE)) 235 return 12; /* 4kB */ 236 lphi = (l >> 16) & 0xf; 237 switch ((l >> 12) & 0xf) { 238 case 0: 239 return !lphi ? 24 : 0; /* 16MB */ 240 break; 241 case 1: 242 return 16; /* 64kB */ 243 break; 244 case 3: 245 return !lphi ? 34 : 0; /* 16GB */ 246 break; 247 case 7: 248 return (16 << 8) + 12; /* 64kB in 4kB */ 249 break; 250 case 8: 251 if (!lphi) 252 return (24 << 8) + 16; /* 16MB in 64kkB */ 253 if (lphi == 3) 254 return (24 << 8) + 12; /* 16MB in 4kB */ 255 break; 256 } 257 return 0; 258 } 259 260 static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l) 261 { 262 return kvmppc_hpte_page_shifts(h, l) & 0xff; 263 } 264 265 static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l) 266 { 267 int tmp = kvmppc_hpte_page_shifts(h, l); 268 269 if (tmp >= 0x100) 270 tmp >>= 8; 271 return tmp; 272 } 273 274 static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r) 275 { 276 int shift = kvmppc_hpte_actual_page_shift(v, r); 277 278 if (shift) 279 return 1ul << shift; 280 return 0; 281 } 282 283 static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift) 284 { 285 switch (base_shift) { 286 case 12: 287 switch (actual_shift) { 288 case 12: 289 return 0; 290 case 16: 291 return 7; 292 case 24: 293 return 0x38; 294 } 295 break; 296 case 16: 297 switch (actual_shift) { 298 case 16: 299 return 1; 300 case 24: 301 return 8; 302 } 303 break; 304 case 24: 305 return 0; 306 } 307 return -1; 308 } 309 310 static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r, 311 unsigned long pte_index) 312 { 313 int a_pgshift, b_pgshift; 314 unsigned long rb = 0, va_low, sllp; 315 316 b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r); 317 if (a_pgshift >= 0x100) { 318 b_pgshift &= 0xff; 319 a_pgshift >>= 8; 320 } 321 322 /* 323 * Ignore the top 14 bits of va 324 * v have top two bits covering segment size, hence move 325 * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits. 326 * AVA field in v also have the lower 23 bits ignored. 327 * For base page size 4K we need 14 .. 65 bits (so need to 328 * collect extra 11 bits) 329 * For others we need 14..14+i 330 */ 331 /* This covers 14..54 bits of va*/ 332 rb = (v & ~0x7fUL) << 16; /* AVA field */ 333 334 /* 335 * AVA in v had cleared lower 23 bits. We need to derive 336 * that from pteg index 337 */ 338 va_low = pte_index >> 3; 339 if (v & HPTE_V_SECONDARY) 340 va_low = ~va_low; 341 /* 342 * get the vpn bits from va_low using reverse of hashing. 343 * In v we have va with 23 bits dropped and then left shifted 344 * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need 345 * right shift it with (SID_SHIFT - (23 - 7)) 346 */ 347 if (!(v & HPTE_V_1TB_SEG)) 348 va_low ^= v >> (SID_SHIFT - 16); 349 else 350 va_low ^= v >> (SID_SHIFT_1T - 16); 351 va_low &= 0x7ff; 352 353 if (b_pgshift <= 12) { 354 if (a_pgshift > 12) { 355 sllp = (a_pgshift == 16) ? 5 : 4; 356 rb |= sllp << 5; /* AP field */ 357 } 358 rb |= (va_low & 0x7ff) << 12; /* remaining 11 bits of AVA */ 359 } else { 360 int aval_shift; 361 /* 362 * remaining bits of AVA/LP fields 363 * Also contain the rr bits of LP 364 */ 365 rb |= (va_low << b_pgshift) & 0x7ff000; 366 /* 367 * Now clear not needed LP bits based on actual psize 368 */ 369 rb &= ~((1ul << a_pgshift) - 1); 370 /* 371 * AVAL field 58..77 - base_page_shift bits of va 372 * we have space for 58..64 bits, Missing bits should 373 * be zero filled. +1 is to take care of L bit shift 374 */ 375 aval_shift = 64 - (77 - b_pgshift) + 1; 376 rb |= ((va_low << aval_shift) & 0xfe); 377 378 rb |= 1; /* L field */ 379 rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */ 380 } 381 /* 382 * This sets both bits of the B field in the PTE. 0b1x values are 383 * reserved, but those will have been filtered by kvmppc_do_h_enter. 384 */ 385 rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8; /* B field */ 386 return rb; 387 } 388 389 static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize) 390 { 391 return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT; 392 } 393 394 static inline int hpte_is_writable(unsigned long ptel) 395 { 396 unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP); 397 398 return pp != PP_RXRX && pp != PP_RXXX; 399 } 400 401 static inline unsigned long hpte_make_readonly(unsigned long ptel) 402 { 403 if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX) 404 ptel = (ptel & ~HPTE_R_PP) | PP_RXXX; 405 else 406 ptel |= PP_RXRX; 407 return ptel; 408 } 409 410 static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci) 411 { 412 unsigned int wimg = hptel & HPTE_R_WIMG; 413 414 /* Handle SAO */ 415 if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) && 416 cpu_has_feature(CPU_FTR_ARCH_206)) 417 wimg = HPTE_R_M; 418 419 if (!is_ci) 420 return wimg == HPTE_R_M; 421 /* 422 * if host is mapped cache inhibited, make sure hptel also have 423 * cache inhibited. 424 */ 425 if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */ 426 return false; 427 return !!(wimg & HPTE_R_I); 428 } 429 430 /* 431 * If it's present and writable, atomically set dirty and referenced bits and 432 * return the PTE, otherwise return 0. 433 */ 434 static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing) 435 { 436 pte_t old_pte, new_pte = __pte(0); 437 438 while (1) { 439 /* 440 * Make sure we don't reload from ptep 441 */ 442 old_pte = READ_ONCE(*ptep); 443 /* 444 * wait until H_PAGE_BUSY is clear then set it atomically 445 */ 446 if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) { 447 cpu_relax(); 448 continue; 449 } 450 /* If pte is not present return None */ 451 if (unlikely(!pte_present(old_pte))) 452 return __pte(0); 453 454 new_pte = pte_mkyoung(old_pte); 455 if (writing && pte_write(old_pte)) 456 new_pte = pte_mkdirty(new_pte); 457 458 if (pte_xchg(ptep, old_pte, new_pte)) 459 break; 460 } 461 return new_pte; 462 } 463 464 static inline bool hpte_read_permission(unsigned long pp, unsigned long key) 465 { 466 if (key) 467 return PP_RWRX <= pp && pp <= PP_RXRX; 468 return true; 469 } 470 471 static inline bool hpte_write_permission(unsigned long pp, unsigned long key) 472 { 473 if (key) 474 return pp == PP_RWRW; 475 return pp <= PP_RWRW; 476 } 477 478 static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr) 479 { 480 unsigned long skey; 481 482 skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) | 483 ((hpte_r & HPTE_R_KEY_LO) >> 9); 484 return (amr >> (62 - 2 * skey)) & 3; 485 } 486 487 static inline void lock_rmap(unsigned long *rmap) 488 { 489 do { 490 while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap)) 491 cpu_relax(); 492 } while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap)); 493 } 494 495 static inline void unlock_rmap(unsigned long *rmap) 496 { 497 __clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap); 498 } 499 500 static inline bool slot_is_aligned(struct kvm_memory_slot *memslot, 501 unsigned long pagesize) 502 { 503 unsigned long mask = (pagesize >> PAGE_SHIFT) - 1; 504 505 if (pagesize <= PAGE_SIZE) 506 return true; 507 return !(memslot->base_gfn & mask) && !(memslot->npages & mask); 508 } 509 510 /* 511 * This works for 4k, 64k and 16M pages on POWER7, 512 * and 4k and 16M pages on PPC970. 513 */ 514 static inline unsigned long slb_pgsize_encoding(unsigned long psize) 515 { 516 unsigned long senc = 0; 517 518 if (psize > 0x1000) { 519 senc = SLB_VSID_L; 520 if (psize == 0x10000) 521 senc |= SLB_VSID_LP_01; 522 } 523 return senc; 524 } 525 526 static inline int is_vrma_hpte(unsigned long hpte_v) 527 { 528 return (hpte_v & ~0xffffffUL) == 529 (HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16))); 530 } 531 532 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 533 /* 534 * Note modification of an HPTE; set the HPTE modified bit 535 * if anyone is interested. 536 */ 537 static inline void note_hpte_modification(struct kvm *kvm, 538 struct revmap_entry *rev) 539 { 540 if (atomic_read(&kvm->arch.hpte_mod_interest)) 541 rev->guest_rpte |= HPTE_GR_MODIFIED; 542 } 543 544 /* 545 * Like kvm_memslots(), but for use in real mode when we can't do 546 * any RCU stuff (since the secondary threads are offline from the 547 * kernel's point of view), and we can't print anything. 548 * Thus we use rcu_dereference_raw() rather than rcu_dereference_check(). 549 */ 550 static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm) 551 { 552 return rcu_dereference_raw_check(kvm->memslots[0]); 553 } 554 555 extern void kvmppc_mmu_debugfs_init(struct kvm *kvm); 556 extern void kvmhv_radix_debugfs_init(struct kvm *kvm); 557 558 extern void kvmhv_rm_send_ipi(int cpu); 559 560 static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt) 561 { 562 /* HPTEs are 2**4 bytes long */ 563 return 1UL << (hpt->order - 4); 564 } 565 566 static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt) 567 { 568 /* 128 (2**7) bytes in each HPTEG */ 569 return (1UL << (hpt->order - 7)) - 1; 570 } 571 572 /* Set bits in a dirty bitmap, which is in LE format */ 573 static inline void set_dirty_bits(unsigned long *map, unsigned long i, 574 unsigned long npages) 575 { 576 577 if (npages >= 8) 578 memset((char *)map + i / 8, 0xff, npages / 8); 579 else 580 for (; npages; ++i, --npages) 581 __set_bit_le(i, map); 582 } 583 584 static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i, 585 unsigned long npages) 586 { 587 if (npages >= 8) 588 memset((char *)map + i / 8, 0xff, npages / 8); 589 else 590 for (; npages; ++i, --npages) 591 set_bit_le(i, map); 592 } 593 594 static inline u64 sanitize_msr(u64 msr) 595 { 596 msr &= ~MSR_HV; 597 msr |= MSR_ME; 598 return msr; 599 } 600 601 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 602 static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu) 603 { 604 vcpu->arch.regs.ccr = vcpu->arch.cr_tm; 605 vcpu->arch.regs.xer = vcpu->arch.xer_tm; 606 vcpu->arch.regs.link = vcpu->arch.lr_tm; 607 vcpu->arch.regs.ctr = vcpu->arch.ctr_tm; 608 vcpu->arch.amr = vcpu->arch.amr_tm; 609 vcpu->arch.ppr = vcpu->arch.ppr_tm; 610 vcpu->arch.dscr = vcpu->arch.dscr_tm; 611 vcpu->arch.tar = vcpu->arch.tar_tm; 612 memcpy(vcpu->arch.regs.gpr, vcpu->arch.gpr_tm, 613 sizeof(vcpu->arch.regs.gpr)); 614 vcpu->arch.fp = vcpu->arch.fp_tm; 615 vcpu->arch.vr = vcpu->arch.vr_tm; 616 vcpu->arch.vrsave = vcpu->arch.vrsave_tm; 617 } 618 619 static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu) 620 { 621 vcpu->arch.cr_tm = vcpu->arch.regs.ccr; 622 vcpu->arch.xer_tm = vcpu->arch.regs.xer; 623 vcpu->arch.lr_tm = vcpu->arch.regs.link; 624 vcpu->arch.ctr_tm = vcpu->arch.regs.ctr; 625 vcpu->arch.amr_tm = vcpu->arch.amr; 626 vcpu->arch.ppr_tm = vcpu->arch.ppr; 627 vcpu->arch.dscr_tm = vcpu->arch.dscr; 628 vcpu->arch.tar_tm = vcpu->arch.tar; 629 memcpy(vcpu->arch.gpr_tm, vcpu->arch.regs.gpr, 630 sizeof(vcpu->arch.regs.gpr)); 631 vcpu->arch.fp_tm = vcpu->arch.fp; 632 vcpu->arch.vr_tm = vcpu->arch.vr; 633 vcpu->arch.vrsave_tm = vcpu->arch.vrsave; 634 } 635 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 636 637 extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte, 638 unsigned long gpa, unsigned int level, 639 unsigned long mmu_seq, unsigned int lpid, 640 unsigned long *rmapp, struct rmap_nested **n_rmap); 641 extern void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp, 642 struct rmap_nested **n_rmap); 643 extern void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp, 644 unsigned long clr, unsigned long set, 645 unsigned long hpa, unsigned long nbytes); 646 extern void kvmhv_remove_nest_rmap_range(struct kvm *kvm, 647 const struct kvm_memory_slot *memslot, 648 unsigned long gpa, unsigned long hpa, 649 unsigned long nbytes); 650 651 static inline pte_t * 652 find_kvm_secondary_pte_unlocked(struct kvm *kvm, unsigned long ea, 653 unsigned *hshift) 654 { 655 pte_t *pte; 656 657 pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift); 658 return pte; 659 } 660 661 static inline pte_t *find_kvm_secondary_pte(struct kvm *kvm, unsigned long ea, 662 unsigned *hshift) 663 { 664 pte_t *pte; 665 666 VM_WARN(!spin_is_locked(&kvm->mmu_lock), 667 "%s called with kvm mmu_lock not held \n", __func__); 668 pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift); 669 670 return pte; 671 } 672 673 static inline pte_t *find_kvm_host_pte(struct kvm *kvm, unsigned long mmu_seq, 674 unsigned long ea, unsigned *hshift) 675 { 676 pte_t *pte; 677 678 VM_WARN(!spin_is_locked(&kvm->mmu_lock), 679 "%s called with kvm mmu_lock not held \n", __func__); 680 681 if (mmu_notifier_retry(kvm, mmu_seq)) 682 return NULL; 683 684 pte = __find_linux_pte(kvm->mm->pgd, ea, NULL, hshift); 685 686 return pte; 687 } 688 689 extern pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid, 690 unsigned long ea, unsigned *hshift); 691 692 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 693 694 #endif /* __ASM_KVM_BOOK3S_64_H__ */ 695