1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * This program is distributed in the hope that it will be useful, 7 * but WITHOUT ANY WARRANTY; without even the implied warranty of 8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 9 * GNU General Public License for more details. 10 * 11 * You should have received a copy of the GNU General Public License 12 * along with this program; if not, write to the Free Software 13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 14 * 15 * Copyright SUSE Linux Products GmbH 2010 16 * 17 * Authors: Alexander Graf <agraf@suse.de> 18 */ 19 20 #ifndef __ASM_KVM_BOOK3S_64_H__ 21 #define __ASM_KVM_BOOK3S_64_H__ 22 23 #include <linux/string.h> 24 #include <asm/bitops.h> 25 #include <asm/book3s/64/mmu-hash.h> 26 #include <asm/cpu_has_feature.h> 27 #include <asm/ppc-opcode.h> 28 29 #ifdef CONFIG_PPC_PSERIES 30 static inline bool kvmhv_on_pseries(void) 31 { 32 return !cpu_has_feature(CPU_FTR_HVMODE); 33 } 34 #else 35 static inline bool kvmhv_on_pseries(void) 36 { 37 return false; 38 } 39 #endif 40 41 /* 42 * Structure for a nested guest, that is, for a guest that is managed by 43 * one of our guests. 44 */ 45 struct kvm_nested_guest { 46 struct kvm *l1_host; /* L1 VM that owns this nested guest */ 47 int l1_lpid; /* lpid L1 guest thinks this guest is */ 48 int shadow_lpid; /* real lpid of this nested guest */ 49 pgd_t *shadow_pgtable; /* our page table for this guest */ 50 u64 l1_gr_to_hr; /* L1's addr of part'n-scoped table */ 51 u64 process_table; /* process table entry for this guest */ 52 long refcnt; /* number of pointers to this struct */ 53 struct mutex tlb_lock; /* serialize page faults and tlbies */ 54 struct kvm_nested_guest *next; 55 cpumask_t need_tlb_flush; 56 cpumask_t cpu_in_guest; 57 short prev_cpu[NR_CPUS]; 58 u8 radix; /* is this nested guest radix */ 59 }; 60 61 /* 62 * We define a nested rmap entry as a single 64-bit quantity 63 * 0xFFF0000000000000 12-bit lpid field 64 * 0x000FFFFFFFFFF000 40-bit guest 4k page frame number 65 * 0x0000000000000001 1-bit single entry flag 66 */ 67 #define RMAP_NESTED_LPID_MASK 0xFFF0000000000000UL 68 #define RMAP_NESTED_LPID_SHIFT (52) 69 #define RMAP_NESTED_GPA_MASK 0x000FFFFFFFFFF000UL 70 #define RMAP_NESTED_IS_SINGLE_ENTRY 0x0000000000000001UL 71 72 /* Structure for a nested guest rmap entry */ 73 struct rmap_nested { 74 struct llist_node list; 75 u64 rmap; 76 }; 77 78 /* 79 * for_each_nest_rmap_safe - iterate over the list of nested rmap entries 80 * safe against removal of the list entry or NULL list 81 * @pos: a (struct rmap_nested *) to use as a loop cursor 82 * @node: pointer to the first entry 83 * NOTE: this can be NULL 84 * @rmapp: an (unsigned long *) in which to return the rmap entries on each 85 * iteration 86 * NOTE: this must point to already allocated memory 87 * 88 * The nested_rmap is a llist of (struct rmap_nested) entries pointed to by the 89 * rmap entry in the memslot. The list is always terminated by a "single entry" 90 * stored in the list element of the final entry of the llist. If there is ONLY 91 * a single entry then this is itself in the rmap entry of the memslot, not a 92 * llist head pointer. 93 * 94 * Note that the iterator below assumes that a nested rmap entry is always 95 * non-zero. This is true for our usage because the LPID field is always 96 * non-zero (zero is reserved for the host). 97 * 98 * This should be used to iterate over the list of rmap_nested entries with 99 * processing done on the u64 rmap value given by each iteration. This is safe 100 * against removal of list entries and it is always safe to call free on (pos). 101 * 102 * e.g. 103 * struct rmap_nested *cursor; 104 * struct llist_node *first; 105 * unsigned long rmap; 106 * for_each_nest_rmap_safe(cursor, first, &rmap) { 107 * do_something(rmap); 108 * free(cursor); 109 * } 110 */ 111 #define for_each_nest_rmap_safe(pos, node, rmapp) \ 112 for ((pos) = llist_entry((node), typeof(*(pos)), list); \ 113 (node) && \ 114 (*(rmapp) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ? \ 115 ((u64) (node)) : ((pos)->rmap))) && \ 116 (((node) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ? \ 117 ((struct llist_node *) ((pos) = NULL)) : \ 118 (pos)->list.next)), true); \ 119 (pos) = llist_entry((node), typeof(*(pos)), list)) 120 121 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid, 122 bool create); 123 void kvmhv_put_nested(struct kvm_nested_guest *gp); 124 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid); 125 126 /* Encoding of first parameter for H_TLB_INVALIDATE */ 127 #define H_TLBIE_P1_ENC(ric, prs, r) (___PPC_RIC(ric) | ___PPC_PRS(prs) | \ 128 ___PPC_R(r)) 129 130 /* Power architecture requires HPT is at least 256kiB, at most 64TiB */ 131 #define PPC_MIN_HPT_ORDER 18 132 #define PPC_MAX_HPT_ORDER 46 133 134 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 135 static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu) 136 { 137 preempt_disable(); 138 return &get_paca()->shadow_vcpu; 139 } 140 141 static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu) 142 { 143 preempt_enable(); 144 } 145 #endif 146 147 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 148 149 static inline bool kvm_is_radix(struct kvm *kvm) 150 { 151 return kvm->arch.radix; 152 } 153 154 static inline bool kvmhv_vcpu_is_radix(struct kvm_vcpu *vcpu) 155 { 156 bool radix; 157 158 if (vcpu->arch.nested) 159 radix = vcpu->arch.nested->radix; 160 else 161 radix = kvm_is_radix(vcpu->kvm); 162 163 return radix; 164 } 165 166 #define KVM_DEFAULT_HPT_ORDER 24 /* 16MB HPT by default */ 167 #endif 168 169 /* 170 * We use a lock bit in HPTE dword 0 to synchronize updates and 171 * accesses to each HPTE, and another bit to indicate non-present 172 * HPTEs. 173 */ 174 #define HPTE_V_HVLOCK 0x40UL 175 #define HPTE_V_ABSENT 0x20UL 176 177 /* 178 * We use this bit in the guest_rpte field of the revmap entry 179 * to indicate a modified HPTE. 180 */ 181 #define HPTE_GR_MODIFIED (1ul << 62) 182 183 /* These bits are reserved in the guest view of the HPTE */ 184 #define HPTE_GR_RESERVED HPTE_GR_MODIFIED 185 186 static inline long try_lock_hpte(__be64 *hpte, unsigned long bits) 187 { 188 unsigned long tmp, old; 189 __be64 be_lockbit, be_bits; 190 191 /* 192 * We load/store in native endian, but the HTAB is in big endian. If 193 * we byte swap all data we apply on the PTE we're implicitly correct 194 * again. 195 */ 196 be_lockbit = cpu_to_be64(HPTE_V_HVLOCK); 197 be_bits = cpu_to_be64(bits); 198 199 asm volatile(" ldarx %0,0,%2\n" 200 " and. %1,%0,%3\n" 201 " bne 2f\n" 202 " or %0,%0,%4\n" 203 " stdcx. %0,0,%2\n" 204 " beq+ 2f\n" 205 " mr %1,%3\n" 206 "2: isync" 207 : "=&r" (tmp), "=&r" (old) 208 : "r" (hpte), "r" (be_bits), "r" (be_lockbit) 209 : "cc", "memory"); 210 return old == 0; 211 } 212 213 static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v) 214 { 215 hpte_v &= ~HPTE_V_HVLOCK; 216 asm volatile(PPC_RELEASE_BARRIER "" : : : "memory"); 217 hpte[0] = cpu_to_be64(hpte_v); 218 } 219 220 /* Without barrier */ 221 static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v) 222 { 223 hpte_v &= ~HPTE_V_HVLOCK; 224 hpte[0] = cpu_to_be64(hpte_v); 225 } 226 227 /* 228 * These functions encode knowledge of the POWER7/8/9 hardware 229 * interpretations of the HPTE LP (large page size) field. 230 */ 231 static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l) 232 { 233 unsigned int lphi; 234 235 if (!(h & HPTE_V_LARGE)) 236 return 12; /* 4kB */ 237 lphi = (l >> 16) & 0xf; 238 switch ((l >> 12) & 0xf) { 239 case 0: 240 return !lphi ? 24 : 0; /* 16MB */ 241 break; 242 case 1: 243 return 16; /* 64kB */ 244 break; 245 case 3: 246 return !lphi ? 34 : 0; /* 16GB */ 247 break; 248 case 7: 249 return (16 << 8) + 12; /* 64kB in 4kB */ 250 break; 251 case 8: 252 if (!lphi) 253 return (24 << 8) + 16; /* 16MB in 64kkB */ 254 if (lphi == 3) 255 return (24 << 8) + 12; /* 16MB in 4kB */ 256 break; 257 } 258 return 0; 259 } 260 261 static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l) 262 { 263 return kvmppc_hpte_page_shifts(h, l) & 0xff; 264 } 265 266 static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l) 267 { 268 int tmp = kvmppc_hpte_page_shifts(h, l); 269 270 if (tmp >= 0x100) 271 tmp >>= 8; 272 return tmp; 273 } 274 275 static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r) 276 { 277 int shift = kvmppc_hpte_actual_page_shift(v, r); 278 279 if (shift) 280 return 1ul << shift; 281 return 0; 282 } 283 284 static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift) 285 { 286 switch (base_shift) { 287 case 12: 288 switch (actual_shift) { 289 case 12: 290 return 0; 291 case 16: 292 return 7; 293 case 24: 294 return 0x38; 295 } 296 break; 297 case 16: 298 switch (actual_shift) { 299 case 16: 300 return 1; 301 case 24: 302 return 8; 303 } 304 break; 305 case 24: 306 return 0; 307 } 308 return -1; 309 } 310 311 static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r, 312 unsigned long pte_index) 313 { 314 int a_pgshift, b_pgshift; 315 unsigned long rb = 0, va_low, sllp; 316 317 b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r); 318 if (a_pgshift >= 0x100) { 319 b_pgshift &= 0xff; 320 a_pgshift >>= 8; 321 } 322 323 /* 324 * Ignore the top 14 bits of va 325 * v have top two bits covering segment size, hence move 326 * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits. 327 * AVA field in v also have the lower 23 bits ignored. 328 * For base page size 4K we need 14 .. 65 bits (so need to 329 * collect extra 11 bits) 330 * For others we need 14..14+i 331 */ 332 /* This covers 14..54 bits of va*/ 333 rb = (v & ~0x7fUL) << 16; /* AVA field */ 334 335 /* 336 * AVA in v had cleared lower 23 bits. We need to derive 337 * that from pteg index 338 */ 339 va_low = pte_index >> 3; 340 if (v & HPTE_V_SECONDARY) 341 va_low = ~va_low; 342 /* 343 * get the vpn bits from va_low using reverse of hashing. 344 * In v we have va with 23 bits dropped and then left shifted 345 * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need 346 * right shift it with (SID_SHIFT - (23 - 7)) 347 */ 348 if (!(v & HPTE_V_1TB_SEG)) 349 va_low ^= v >> (SID_SHIFT - 16); 350 else 351 va_low ^= v >> (SID_SHIFT_1T - 16); 352 va_low &= 0x7ff; 353 354 if (b_pgshift <= 12) { 355 if (a_pgshift > 12) { 356 sllp = (a_pgshift == 16) ? 5 : 4; 357 rb |= sllp << 5; /* AP field */ 358 } 359 rb |= (va_low & 0x7ff) << 12; /* remaining 11 bits of AVA */ 360 } else { 361 int aval_shift; 362 /* 363 * remaining bits of AVA/LP fields 364 * Also contain the rr bits of LP 365 */ 366 rb |= (va_low << b_pgshift) & 0x7ff000; 367 /* 368 * Now clear not needed LP bits based on actual psize 369 */ 370 rb &= ~((1ul << a_pgshift) - 1); 371 /* 372 * AVAL field 58..77 - base_page_shift bits of va 373 * we have space for 58..64 bits, Missing bits should 374 * be zero filled. +1 is to take care of L bit shift 375 */ 376 aval_shift = 64 - (77 - b_pgshift) + 1; 377 rb |= ((va_low << aval_shift) & 0xfe); 378 379 rb |= 1; /* L field */ 380 rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */ 381 } 382 rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8; /* B field */ 383 return rb; 384 } 385 386 static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize) 387 { 388 return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT; 389 } 390 391 static inline int hpte_is_writable(unsigned long ptel) 392 { 393 unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP); 394 395 return pp != PP_RXRX && pp != PP_RXXX; 396 } 397 398 static inline unsigned long hpte_make_readonly(unsigned long ptel) 399 { 400 if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX) 401 ptel = (ptel & ~HPTE_R_PP) | PP_RXXX; 402 else 403 ptel |= PP_RXRX; 404 return ptel; 405 } 406 407 static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci) 408 { 409 unsigned int wimg = hptel & HPTE_R_WIMG; 410 411 /* Handle SAO */ 412 if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) && 413 cpu_has_feature(CPU_FTR_ARCH_206)) 414 wimg = HPTE_R_M; 415 416 if (!is_ci) 417 return wimg == HPTE_R_M; 418 /* 419 * if host is mapped cache inhibited, make sure hptel also have 420 * cache inhibited. 421 */ 422 if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */ 423 return false; 424 return !!(wimg & HPTE_R_I); 425 } 426 427 /* 428 * If it's present and writable, atomically set dirty and referenced bits and 429 * return the PTE, otherwise return 0. 430 */ 431 static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing) 432 { 433 pte_t old_pte, new_pte = __pte(0); 434 435 while (1) { 436 /* 437 * Make sure we don't reload from ptep 438 */ 439 old_pte = READ_ONCE(*ptep); 440 /* 441 * wait until H_PAGE_BUSY is clear then set it atomically 442 */ 443 if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) { 444 cpu_relax(); 445 continue; 446 } 447 /* If pte is not present return None */ 448 if (unlikely(!(pte_val(old_pte) & _PAGE_PRESENT))) 449 return __pte(0); 450 451 new_pte = pte_mkyoung(old_pte); 452 if (writing && pte_write(old_pte)) 453 new_pte = pte_mkdirty(new_pte); 454 455 if (pte_xchg(ptep, old_pte, new_pte)) 456 break; 457 } 458 return new_pte; 459 } 460 461 static inline bool hpte_read_permission(unsigned long pp, unsigned long key) 462 { 463 if (key) 464 return PP_RWRX <= pp && pp <= PP_RXRX; 465 return true; 466 } 467 468 static inline bool hpte_write_permission(unsigned long pp, unsigned long key) 469 { 470 if (key) 471 return pp == PP_RWRW; 472 return pp <= PP_RWRW; 473 } 474 475 static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr) 476 { 477 unsigned long skey; 478 479 skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) | 480 ((hpte_r & HPTE_R_KEY_LO) >> 9); 481 return (amr >> (62 - 2 * skey)) & 3; 482 } 483 484 static inline void lock_rmap(unsigned long *rmap) 485 { 486 do { 487 while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap)) 488 cpu_relax(); 489 } while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap)); 490 } 491 492 static inline void unlock_rmap(unsigned long *rmap) 493 { 494 __clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap); 495 } 496 497 static inline bool slot_is_aligned(struct kvm_memory_slot *memslot, 498 unsigned long pagesize) 499 { 500 unsigned long mask = (pagesize >> PAGE_SHIFT) - 1; 501 502 if (pagesize <= PAGE_SIZE) 503 return true; 504 return !(memslot->base_gfn & mask) && !(memslot->npages & mask); 505 } 506 507 /* 508 * This works for 4k, 64k and 16M pages on POWER7, 509 * and 4k and 16M pages on PPC970. 510 */ 511 static inline unsigned long slb_pgsize_encoding(unsigned long psize) 512 { 513 unsigned long senc = 0; 514 515 if (psize > 0x1000) { 516 senc = SLB_VSID_L; 517 if (psize == 0x10000) 518 senc |= SLB_VSID_LP_01; 519 } 520 return senc; 521 } 522 523 static inline int is_vrma_hpte(unsigned long hpte_v) 524 { 525 return (hpte_v & ~0xffffffUL) == 526 (HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16))); 527 } 528 529 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 530 /* 531 * Note modification of an HPTE; set the HPTE modified bit 532 * if anyone is interested. 533 */ 534 static inline void note_hpte_modification(struct kvm *kvm, 535 struct revmap_entry *rev) 536 { 537 if (atomic_read(&kvm->arch.hpte_mod_interest)) 538 rev->guest_rpte |= HPTE_GR_MODIFIED; 539 } 540 541 /* 542 * Like kvm_memslots(), but for use in real mode when we can't do 543 * any RCU stuff (since the secondary threads are offline from the 544 * kernel's point of view), and we can't print anything. 545 * Thus we use rcu_dereference_raw() rather than rcu_dereference_check(). 546 */ 547 static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm) 548 { 549 return rcu_dereference_raw_notrace(kvm->memslots[0]); 550 } 551 552 extern void kvmppc_mmu_debugfs_init(struct kvm *kvm); 553 extern void kvmhv_radix_debugfs_init(struct kvm *kvm); 554 555 extern void kvmhv_rm_send_ipi(int cpu); 556 557 static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt) 558 { 559 /* HPTEs are 2**4 bytes long */ 560 return 1UL << (hpt->order - 4); 561 } 562 563 static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt) 564 { 565 /* 128 (2**7) bytes in each HPTEG */ 566 return (1UL << (hpt->order - 7)) - 1; 567 } 568 569 /* Set bits in a dirty bitmap, which is in LE format */ 570 static inline void set_dirty_bits(unsigned long *map, unsigned long i, 571 unsigned long npages) 572 { 573 574 if (npages >= 8) 575 memset((char *)map + i / 8, 0xff, npages / 8); 576 else 577 for (; npages; ++i, --npages) 578 __set_bit_le(i, map); 579 } 580 581 static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i, 582 unsigned long npages) 583 { 584 if (npages >= 8) 585 memset((char *)map + i / 8, 0xff, npages / 8); 586 else 587 for (; npages; ++i, --npages) 588 set_bit_le(i, map); 589 } 590 591 static inline u64 sanitize_msr(u64 msr) 592 { 593 msr &= ~MSR_HV; 594 msr |= MSR_ME; 595 return msr; 596 } 597 598 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 599 static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu) 600 { 601 vcpu->arch.regs.ccr = vcpu->arch.cr_tm; 602 vcpu->arch.regs.xer = vcpu->arch.xer_tm; 603 vcpu->arch.regs.link = vcpu->arch.lr_tm; 604 vcpu->arch.regs.ctr = vcpu->arch.ctr_tm; 605 vcpu->arch.amr = vcpu->arch.amr_tm; 606 vcpu->arch.ppr = vcpu->arch.ppr_tm; 607 vcpu->arch.dscr = vcpu->arch.dscr_tm; 608 vcpu->arch.tar = vcpu->arch.tar_tm; 609 memcpy(vcpu->arch.regs.gpr, vcpu->arch.gpr_tm, 610 sizeof(vcpu->arch.regs.gpr)); 611 vcpu->arch.fp = vcpu->arch.fp_tm; 612 vcpu->arch.vr = vcpu->arch.vr_tm; 613 vcpu->arch.vrsave = vcpu->arch.vrsave_tm; 614 } 615 616 static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu) 617 { 618 vcpu->arch.cr_tm = vcpu->arch.regs.ccr; 619 vcpu->arch.xer_tm = vcpu->arch.regs.xer; 620 vcpu->arch.lr_tm = vcpu->arch.regs.link; 621 vcpu->arch.ctr_tm = vcpu->arch.regs.ctr; 622 vcpu->arch.amr_tm = vcpu->arch.amr; 623 vcpu->arch.ppr_tm = vcpu->arch.ppr; 624 vcpu->arch.dscr_tm = vcpu->arch.dscr; 625 vcpu->arch.tar_tm = vcpu->arch.tar; 626 memcpy(vcpu->arch.gpr_tm, vcpu->arch.regs.gpr, 627 sizeof(vcpu->arch.regs.gpr)); 628 vcpu->arch.fp_tm = vcpu->arch.fp; 629 vcpu->arch.vr_tm = vcpu->arch.vr; 630 vcpu->arch.vrsave_tm = vcpu->arch.vrsave; 631 } 632 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 633 634 extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte, 635 unsigned long gpa, unsigned int level, 636 unsigned long mmu_seq, unsigned int lpid, 637 unsigned long *rmapp, struct rmap_nested **n_rmap); 638 extern void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp, 639 struct rmap_nested **n_rmap); 640 extern void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp, 641 unsigned long clr, unsigned long set, 642 unsigned long hpa, unsigned long nbytes); 643 extern void kvmhv_remove_nest_rmap_range(struct kvm *kvm, 644 const struct kvm_memory_slot *memslot, 645 unsigned long gpa, unsigned long hpa, 646 unsigned long nbytes); 647 648 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 649 650 #endif /* __ASM_KVM_BOOK3S_64_H__ */ 651