1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *
4  * Copyright SUSE Linux Products GmbH 2010
5  *
6  * Authors: Alexander Graf <agraf@suse.de>
7  */
8 
9 #ifndef __ASM_KVM_BOOK3S_64_H__
10 #define __ASM_KVM_BOOK3S_64_H__
11 
12 #include <linux/string.h>
13 #include <asm/bitops.h>
14 #include <asm/book3s/64/mmu-hash.h>
15 #include <asm/cpu_has_feature.h>
16 #include <asm/ppc-opcode.h>
17 #include <asm/pte-walk.h>
18 
19 #ifdef CONFIG_PPC_PSERIES
20 static inline bool kvmhv_on_pseries(void)
21 {
22 	return !cpu_has_feature(CPU_FTR_HVMODE);
23 }
24 #else
25 static inline bool kvmhv_on_pseries(void)
26 {
27 	return false;
28 }
29 #endif
30 
31 /*
32  * Structure for a nested guest, that is, for a guest that is managed by
33  * one of our guests.
34  */
35 struct kvm_nested_guest {
36 	struct kvm *l1_host;		/* L1 VM that owns this nested guest */
37 	int l1_lpid;			/* lpid L1 guest thinks this guest is */
38 	int shadow_lpid;		/* real lpid of this nested guest */
39 	pgd_t *shadow_pgtable;		/* our page table for this guest */
40 	u64 l1_gr_to_hr;		/* L1's addr of part'n-scoped table */
41 	u64 process_table;		/* process table entry for this guest */
42 	u64 hfscr;			/* HFSCR that the L1 requested for this nested guest */
43 	long refcnt;			/* number of pointers to this struct */
44 	struct mutex tlb_lock;		/* serialize page faults and tlbies */
45 	struct kvm_nested_guest *next;
46 	cpumask_t need_tlb_flush;
47 	cpumask_t cpu_in_guest;
48 	short prev_cpu[NR_CPUS];
49 	u8 radix;			/* is this nested guest radix */
50 };
51 
52 /*
53  * We define a nested rmap entry as a single 64-bit quantity
54  * 0xFFF0000000000000	12-bit lpid field
55  * 0x000FFFFFFFFFF000	40-bit guest 4k page frame number
56  * 0x0000000000000001	1-bit  single entry flag
57  */
58 #define RMAP_NESTED_LPID_MASK		0xFFF0000000000000UL
59 #define RMAP_NESTED_LPID_SHIFT		(52)
60 #define RMAP_NESTED_GPA_MASK		0x000FFFFFFFFFF000UL
61 #define RMAP_NESTED_IS_SINGLE_ENTRY	0x0000000000000001UL
62 
63 /* Structure for a nested guest rmap entry */
64 struct rmap_nested {
65 	struct llist_node list;
66 	u64 rmap;
67 };
68 
69 /*
70  * for_each_nest_rmap_safe - iterate over the list of nested rmap entries
71  *			     safe against removal of the list entry or NULL list
72  * @pos:	a (struct rmap_nested *) to use as a loop cursor
73  * @node:	pointer to the first entry
74  *		NOTE: this can be NULL
75  * @rmapp:	an (unsigned long *) in which to return the rmap entries on each
76  *		iteration
77  *		NOTE: this must point to already allocated memory
78  *
79  * The nested_rmap is a llist of (struct rmap_nested) entries pointed to by the
80  * rmap entry in the memslot. The list is always terminated by a "single entry"
81  * stored in the list element of the final entry of the llist. If there is ONLY
82  * a single entry then this is itself in the rmap entry of the memslot, not a
83  * llist head pointer.
84  *
85  * Note that the iterator below assumes that a nested rmap entry is always
86  * non-zero.  This is true for our usage because the LPID field is always
87  * non-zero (zero is reserved for the host).
88  *
89  * This should be used to iterate over the list of rmap_nested entries with
90  * processing done on the u64 rmap value given by each iteration. This is safe
91  * against removal of list entries and it is always safe to call free on (pos).
92  *
93  * e.g.
94  * struct rmap_nested *cursor;
95  * struct llist_node *first;
96  * unsigned long rmap;
97  * for_each_nest_rmap_safe(cursor, first, &rmap) {
98  *	do_something(rmap);
99  *	free(cursor);
100  * }
101  */
102 #define for_each_nest_rmap_safe(pos, node, rmapp)			       \
103 	for ((pos) = llist_entry((node), typeof(*(pos)), list);		       \
104 	     (node) &&							       \
105 	     (*(rmapp) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ?     \
106 			  ((u64) (node)) : ((pos)->rmap))) &&		       \
107 	     (((node) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ?      \
108 			 ((struct llist_node *) ((pos) = NULL)) :	       \
109 			 (pos)->list.next)), true);			       \
110 	     (pos) = llist_entry((node), typeof(*(pos)), list))
111 
112 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
113 					  bool create);
114 void kvmhv_put_nested(struct kvm_nested_guest *gp);
115 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid);
116 
117 /* Encoding of first parameter for H_TLB_INVALIDATE */
118 #define H_TLBIE_P1_ENC(ric, prs, r)	(___PPC_RIC(ric) | ___PPC_PRS(prs) | \
119 					 ___PPC_R(r))
120 
121 /* Power architecture requires HPT is at least 256kiB, at most 64TiB */
122 #define PPC_MIN_HPT_ORDER	18
123 #define PPC_MAX_HPT_ORDER	46
124 
125 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
126 static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
127 {
128 	preempt_disable();
129 	return &get_paca()->shadow_vcpu;
130 }
131 
132 static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
133 {
134 	preempt_enable();
135 }
136 #endif
137 
138 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
139 
140 static inline bool kvm_is_radix(struct kvm *kvm)
141 {
142 	return kvm->arch.radix;
143 }
144 
145 static inline bool kvmhv_vcpu_is_radix(struct kvm_vcpu *vcpu)
146 {
147 	bool radix;
148 
149 	if (vcpu->arch.nested)
150 		radix = vcpu->arch.nested->radix;
151 	else
152 		radix = kvm_is_radix(vcpu->kvm);
153 
154 	return radix;
155 }
156 
157 int kvmhv_vcpu_entry_p9(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr);
158 
159 #define KVM_DEFAULT_HPT_ORDER	24	/* 16MB HPT by default */
160 #endif
161 
162 /*
163  * Invalid HDSISR value which is used to indicate when HW has not set the reg.
164  * Used to work around an errata.
165  */
166 #define HDSISR_CANARY	0x7fff
167 
168 /*
169  * We use a lock bit in HPTE dword 0 to synchronize updates and
170  * accesses to each HPTE, and another bit to indicate non-present
171  * HPTEs.
172  */
173 #define HPTE_V_HVLOCK	0x40UL
174 #define HPTE_V_ABSENT	0x20UL
175 
176 /*
177  * We use this bit in the guest_rpte field of the revmap entry
178  * to indicate a modified HPTE.
179  */
180 #define HPTE_GR_MODIFIED	(1ul << 62)
181 
182 /* These bits are reserved in the guest view of the HPTE */
183 #define HPTE_GR_RESERVED	HPTE_GR_MODIFIED
184 
185 static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
186 {
187 	unsigned long tmp, old;
188 	__be64 be_lockbit, be_bits;
189 
190 	/*
191 	 * We load/store in native endian, but the HTAB is in big endian. If
192 	 * we byte swap all data we apply on the PTE we're implicitly correct
193 	 * again.
194 	 */
195 	be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
196 	be_bits = cpu_to_be64(bits);
197 
198 	asm volatile("	ldarx	%0,0,%2\n"
199 		     "	and.	%1,%0,%3\n"
200 		     "	bne	2f\n"
201 		     "	or	%0,%0,%4\n"
202 		     "  stdcx.	%0,0,%2\n"
203 		     "	beq+	2f\n"
204 		     "	mr	%1,%3\n"
205 		     "2:	isync"
206 		     : "=&r" (tmp), "=&r" (old)
207 		     : "r" (hpte), "r" (be_bits), "r" (be_lockbit)
208 		     : "cc", "memory");
209 	return old == 0;
210 }
211 
212 static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
213 {
214 	hpte_v &= ~HPTE_V_HVLOCK;
215 	asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
216 	hpte[0] = cpu_to_be64(hpte_v);
217 }
218 
219 /* Without barrier */
220 static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
221 {
222 	hpte_v &= ~HPTE_V_HVLOCK;
223 	hpte[0] = cpu_to_be64(hpte_v);
224 }
225 
226 /*
227  * These functions encode knowledge of the POWER7/8/9 hardware
228  * interpretations of the HPTE LP (large page size) field.
229  */
230 static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l)
231 {
232 	unsigned int lphi;
233 
234 	if (!(h & HPTE_V_LARGE))
235 		return 12;	/* 4kB */
236 	lphi = (l >> 16) & 0xf;
237 	switch ((l >> 12) & 0xf) {
238 	case 0:
239 		return !lphi ? 24 : 0;		/* 16MB */
240 		break;
241 	case 1:
242 		return 16;			/* 64kB */
243 		break;
244 	case 3:
245 		return !lphi ? 34 : 0;		/* 16GB */
246 		break;
247 	case 7:
248 		return (16 << 8) + 12;		/* 64kB in 4kB */
249 		break;
250 	case 8:
251 		if (!lphi)
252 			return (24 << 8) + 16;	/* 16MB in 64kkB */
253 		if (lphi == 3)
254 			return (24 << 8) + 12;	/* 16MB in 4kB */
255 		break;
256 	}
257 	return 0;
258 }
259 
260 static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l)
261 {
262 	return kvmppc_hpte_page_shifts(h, l) & 0xff;
263 }
264 
265 static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l)
266 {
267 	int tmp = kvmppc_hpte_page_shifts(h, l);
268 
269 	if (tmp >= 0x100)
270 		tmp >>= 8;
271 	return tmp;
272 }
273 
274 static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r)
275 {
276 	int shift = kvmppc_hpte_actual_page_shift(v, r);
277 
278 	if (shift)
279 		return 1ul << shift;
280 	return 0;
281 }
282 
283 static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift)
284 {
285 	switch (base_shift) {
286 	case 12:
287 		switch (actual_shift) {
288 		case 12:
289 			return 0;
290 		case 16:
291 			return 7;
292 		case 24:
293 			return 0x38;
294 		}
295 		break;
296 	case 16:
297 		switch (actual_shift) {
298 		case 16:
299 			return 1;
300 		case 24:
301 			return 8;
302 		}
303 		break;
304 	case 24:
305 		return 0;
306 	}
307 	return -1;
308 }
309 
310 static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
311 					     unsigned long pte_index)
312 {
313 	int a_pgshift, b_pgshift;
314 	unsigned long rb = 0, va_low, sllp;
315 
316 	b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r);
317 	if (a_pgshift >= 0x100) {
318 		b_pgshift &= 0xff;
319 		a_pgshift >>= 8;
320 	}
321 
322 	/*
323 	 * Ignore the top 14 bits of va
324 	 * v have top two bits covering segment size, hence move
325 	 * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
326 	 * AVA field in v also have the lower 23 bits ignored.
327 	 * For base page size 4K we need 14 .. 65 bits (so need to
328 	 * collect extra 11 bits)
329 	 * For others we need 14..14+i
330 	 */
331 	/* This covers 14..54 bits of va*/
332 	rb = (v & ~0x7fUL) << 16;		/* AVA field */
333 
334 	/*
335 	 * AVA in v had cleared lower 23 bits. We need to derive
336 	 * that from pteg index
337 	 */
338 	va_low = pte_index >> 3;
339 	if (v & HPTE_V_SECONDARY)
340 		va_low = ~va_low;
341 	/*
342 	 * get the vpn bits from va_low using reverse of hashing.
343 	 * In v we have va with 23 bits dropped and then left shifted
344 	 * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
345 	 * right shift it with (SID_SHIFT - (23 - 7))
346 	 */
347 	if (!(v & HPTE_V_1TB_SEG))
348 		va_low ^= v >> (SID_SHIFT - 16);
349 	else
350 		va_low ^= v >> (SID_SHIFT_1T - 16);
351 	va_low &= 0x7ff;
352 
353 	if (b_pgshift <= 12) {
354 		if (a_pgshift > 12) {
355 			sllp = (a_pgshift == 16) ? 5 : 4;
356 			rb |= sllp << 5;	/*  AP field */
357 		}
358 		rb |= (va_low & 0x7ff) << 12;	/* remaining 11 bits of AVA */
359 	} else {
360 		int aval_shift;
361 		/*
362 		 * remaining bits of AVA/LP fields
363 		 * Also contain the rr bits of LP
364 		 */
365 		rb |= (va_low << b_pgshift) & 0x7ff000;
366 		/*
367 		 * Now clear not needed LP bits based on actual psize
368 		 */
369 		rb &= ~((1ul << a_pgshift) - 1);
370 		/*
371 		 * AVAL field 58..77 - base_page_shift bits of va
372 		 * we have space for 58..64 bits, Missing bits should
373 		 * be zero filled. +1 is to take care of L bit shift
374 		 */
375 		aval_shift = 64 - (77 - b_pgshift) + 1;
376 		rb |= ((va_low << aval_shift) & 0xfe);
377 
378 		rb |= 1;		/* L field */
379 		rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */
380 	}
381 	rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8;	/* B field */
382 	return rb;
383 }
384 
385 static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
386 {
387 	return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
388 }
389 
390 static inline int hpte_is_writable(unsigned long ptel)
391 {
392 	unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
393 
394 	return pp != PP_RXRX && pp != PP_RXXX;
395 }
396 
397 static inline unsigned long hpte_make_readonly(unsigned long ptel)
398 {
399 	if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
400 		ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
401 	else
402 		ptel |= PP_RXRX;
403 	return ptel;
404 }
405 
406 static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci)
407 {
408 	unsigned int wimg = hptel & HPTE_R_WIMG;
409 
410 	/* Handle SAO */
411 	if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
412 	    cpu_has_feature(CPU_FTR_ARCH_206))
413 		wimg = HPTE_R_M;
414 
415 	if (!is_ci)
416 		return wimg == HPTE_R_M;
417 	/*
418 	 * if host is mapped cache inhibited, make sure hptel also have
419 	 * cache inhibited.
420 	 */
421 	if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */
422 		return false;
423 	return !!(wimg & HPTE_R_I);
424 }
425 
426 /*
427  * If it's present and writable, atomically set dirty and referenced bits and
428  * return the PTE, otherwise return 0.
429  */
430 static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
431 {
432 	pte_t old_pte, new_pte = __pte(0);
433 
434 	while (1) {
435 		/*
436 		 * Make sure we don't reload from ptep
437 		 */
438 		old_pte = READ_ONCE(*ptep);
439 		/*
440 		 * wait until H_PAGE_BUSY is clear then set it atomically
441 		 */
442 		if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) {
443 			cpu_relax();
444 			continue;
445 		}
446 		/* If pte is not present return None */
447 		if (unlikely(!pte_present(old_pte)))
448 			return __pte(0);
449 
450 		new_pte = pte_mkyoung(old_pte);
451 		if (writing && pte_write(old_pte))
452 			new_pte = pte_mkdirty(new_pte);
453 
454 		if (pte_xchg(ptep, old_pte, new_pte))
455 			break;
456 	}
457 	return new_pte;
458 }
459 
460 static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
461 {
462 	if (key)
463 		return PP_RWRX <= pp && pp <= PP_RXRX;
464 	return true;
465 }
466 
467 static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
468 {
469 	if (key)
470 		return pp == PP_RWRW;
471 	return pp <= PP_RWRW;
472 }
473 
474 static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
475 {
476 	unsigned long skey;
477 
478 	skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
479 		((hpte_r & HPTE_R_KEY_LO) >> 9);
480 	return (amr >> (62 - 2 * skey)) & 3;
481 }
482 
483 static inline void lock_rmap(unsigned long *rmap)
484 {
485 	do {
486 		while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
487 			cpu_relax();
488 	} while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
489 }
490 
491 static inline void unlock_rmap(unsigned long *rmap)
492 {
493 	__clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
494 }
495 
496 static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
497 				   unsigned long pagesize)
498 {
499 	unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
500 
501 	if (pagesize <= PAGE_SIZE)
502 		return true;
503 	return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
504 }
505 
506 /*
507  * This works for 4k, 64k and 16M pages on POWER7,
508  * and 4k and 16M pages on PPC970.
509  */
510 static inline unsigned long slb_pgsize_encoding(unsigned long psize)
511 {
512 	unsigned long senc = 0;
513 
514 	if (psize > 0x1000) {
515 		senc = SLB_VSID_L;
516 		if (psize == 0x10000)
517 			senc |= SLB_VSID_LP_01;
518 	}
519 	return senc;
520 }
521 
522 static inline int is_vrma_hpte(unsigned long hpte_v)
523 {
524 	return (hpte_v & ~0xffffffUL) ==
525 		(HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
526 }
527 
528 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
529 /*
530  * Note modification of an HPTE; set the HPTE modified bit
531  * if anyone is interested.
532  */
533 static inline void note_hpte_modification(struct kvm *kvm,
534 					  struct revmap_entry *rev)
535 {
536 	if (atomic_read(&kvm->arch.hpte_mod_interest))
537 		rev->guest_rpte |= HPTE_GR_MODIFIED;
538 }
539 
540 /*
541  * Like kvm_memslots(), but for use in real mode when we can't do
542  * any RCU stuff (since the secondary threads are offline from the
543  * kernel's point of view), and we can't print anything.
544  * Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
545  */
546 static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
547 {
548 	return rcu_dereference_raw_check(kvm->memslots[0]);
549 }
550 
551 extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
552 extern void kvmhv_radix_debugfs_init(struct kvm *kvm);
553 
554 extern void kvmhv_rm_send_ipi(int cpu);
555 
556 static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt)
557 {
558 	/* HPTEs are 2**4 bytes long */
559 	return 1UL << (hpt->order - 4);
560 }
561 
562 static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt)
563 {
564 	/* 128 (2**7) bytes in each HPTEG */
565 	return (1UL << (hpt->order - 7)) - 1;
566 }
567 
568 /* Set bits in a dirty bitmap, which is in LE format */
569 static inline void set_dirty_bits(unsigned long *map, unsigned long i,
570 				  unsigned long npages)
571 {
572 
573 	if (npages >= 8)
574 		memset((char *)map + i / 8, 0xff, npages / 8);
575 	else
576 		for (; npages; ++i, --npages)
577 			__set_bit_le(i, map);
578 }
579 
580 static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i,
581 					 unsigned long npages)
582 {
583 	if (npages >= 8)
584 		memset((char *)map + i / 8, 0xff, npages / 8);
585 	else
586 		for (; npages; ++i, --npages)
587 			set_bit_le(i, map);
588 }
589 
590 static inline u64 sanitize_msr(u64 msr)
591 {
592 	msr &= ~MSR_HV;
593 	msr |= MSR_ME;
594 	return msr;
595 }
596 
597 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
598 static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
599 {
600 	vcpu->arch.regs.ccr  = vcpu->arch.cr_tm;
601 	vcpu->arch.regs.xer = vcpu->arch.xer_tm;
602 	vcpu->arch.regs.link  = vcpu->arch.lr_tm;
603 	vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
604 	vcpu->arch.amr = vcpu->arch.amr_tm;
605 	vcpu->arch.ppr = vcpu->arch.ppr_tm;
606 	vcpu->arch.dscr = vcpu->arch.dscr_tm;
607 	vcpu->arch.tar = vcpu->arch.tar_tm;
608 	memcpy(vcpu->arch.regs.gpr, vcpu->arch.gpr_tm,
609 	       sizeof(vcpu->arch.regs.gpr));
610 	vcpu->arch.fp  = vcpu->arch.fp_tm;
611 	vcpu->arch.vr  = vcpu->arch.vr_tm;
612 	vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
613 }
614 
615 static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
616 {
617 	vcpu->arch.cr_tm  = vcpu->arch.regs.ccr;
618 	vcpu->arch.xer_tm = vcpu->arch.regs.xer;
619 	vcpu->arch.lr_tm  = vcpu->arch.regs.link;
620 	vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
621 	vcpu->arch.amr_tm = vcpu->arch.amr;
622 	vcpu->arch.ppr_tm = vcpu->arch.ppr;
623 	vcpu->arch.dscr_tm = vcpu->arch.dscr;
624 	vcpu->arch.tar_tm = vcpu->arch.tar;
625 	memcpy(vcpu->arch.gpr_tm, vcpu->arch.regs.gpr,
626 	       sizeof(vcpu->arch.regs.gpr));
627 	vcpu->arch.fp_tm  = vcpu->arch.fp;
628 	vcpu->arch.vr_tm  = vcpu->arch.vr;
629 	vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
630 }
631 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
632 
633 extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
634 			     unsigned long gpa, unsigned int level,
635 			     unsigned long mmu_seq, unsigned int lpid,
636 			     unsigned long *rmapp, struct rmap_nested **n_rmap);
637 extern void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
638 				   struct rmap_nested **n_rmap);
639 extern void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
640 					   unsigned long clr, unsigned long set,
641 					   unsigned long hpa, unsigned long nbytes);
642 extern void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
643 				const struct kvm_memory_slot *memslot,
644 				unsigned long gpa, unsigned long hpa,
645 				unsigned long nbytes);
646 
647 static inline pte_t *
648 find_kvm_secondary_pte_unlocked(struct kvm *kvm, unsigned long ea,
649 				unsigned *hshift)
650 {
651 	pte_t *pte;
652 
653 	pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift);
654 	return pte;
655 }
656 
657 static inline pte_t *find_kvm_secondary_pte(struct kvm *kvm, unsigned long ea,
658 					    unsigned *hshift)
659 {
660 	pte_t *pte;
661 
662 	VM_WARN(!spin_is_locked(&kvm->mmu_lock),
663 		"%s called with kvm mmu_lock not held \n", __func__);
664 	pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift);
665 
666 	return pte;
667 }
668 
669 static inline pte_t *find_kvm_host_pte(struct kvm *kvm, unsigned long mmu_seq,
670 				       unsigned long ea, unsigned *hshift)
671 {
672 	pte_t *pte;
673 
674 	VM_WARN(!spin_is_locked(&kvm->mmu_lock),
675 		"%s called with kvm mmu_lock not held \n", __func__);
676 
677 	if (mmu_notifier_retry(kvm, mmu_seq))
678 		return NULL;
679 
680 	pte = __find_linux_pte(kvm->mm->pgd, ea, NULL, hshift);
681 
682 	return pte;
683 }
684 
685 extern pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
686 					unsigned long ea, unsigned *hshift);
687 
688 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
689 
690 #endif /* __ASM_KVM_BOOK3S_64_H__ */
691