1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *
4  * Copyright SUSE Linux Products GmbH 2010
5  *
6  * Authors: Alexander Graf <agraf@suse.de>
7  */
8 
9 #ifndef __ASM_KVM_BOOK3S_64_H__
10 #define __ASM_KVM_BOOK3S_64_H__
11 
12 #include <linux/string.h>
13 #include <asm/bitops.h>
14 #include <asm/book3s/64/mmu-hash.h>
15 #include <asm/cpu_has_feature.h>
16 #include <asm/ppc-opcode.h>
17 #include <asm/pte-walk.h>
18 
19 #ifdef CONFIG_PPC_PSERIES
20 static inline bool kvmhv_on_pseries(void)
21 {
22 	return !cpu_has_feature(CPU_FTR_HVMODE);
23 }
24 #else
25 static inline bool kvmhv_on_pseries(void)
26 {
27 	return false;
28 }
29 #endif
30 
31 /*
32  * Structure for a nested guest, that is, for a guest that is managed by
33  * one of our guests.
34  */
35 struct kvm_nested_guest {
36 	struct kvm *l1_host;		/* L1 VM that owns this nested guest */
37 	int l1_lpid;			/* lpid L1 guest thinks this guest is */
38 	int shadow_lpid;		/* real lpid of this nested guest */
39 	pgd_t *shadow_pgtable;		/* our page table for this guest */
40 	u64 l1_gr_to_hr;		/* L1's addr of part'n-scoped table */
41 	u64 process_table;		/* process table entry for this guest */
42 	u64 hfscr;			/* HFSCR that the L1 requested for this nested guest */
43 	long refcnt;			/* number of pointers to this struct */
44 	struct mutex tlb_lock;		/* serialize page faults and tlbies */
45 	struct kvm_nested_guest *next;
46 	cpumask_t need_tlb_flush;
47 	short prev_cpu[NR_CPUS];
48 	u8 radix;			/* is this nested guest radix */
49 };
50 
51 /*
52  * We define a nested rmap entry as a single 64-bit quantity
53  * 0xFFF0000000000000	12-bit lpid field
54  * 0x000FFFFFFFFFF000	40-bit guest 4k page frame number
55  * 0x0000000000000001	1-bit  single entry flag
56  */
57 #define RMAP_NESTED_LPID_MASK		0xFFF0000000000000UL
58 #define RMAP_NESTED_LPID_SHIFT		(52)
59 #define RMAP_NESTED_GPA_MASK		0x000FFFFFFFFFF000UL
60 #define RMAP_NESTED_IS_SINGLE_ENTRY	0x0000000000000001UL
61 
62 /* Structure for a nested guest rmap entry */
63 struct rmap_nested {
64 	struct llist_node list;
65 	u64 rmap;
66 };
67 
68 /*
69  * for_each_nest_rmap_safe - iterate over the list of nested rmap entries
70  *			     safe against removal of the list entry or NULL list
71  * @pos:	a (struct rmap_nested *) to use as a loop cursor
72  * @node:	pointer to the first entry
73  *		NOTE: this can be NULL
74  * @rmapp:	an (unsigned long *) in which to return the rmap entries on each
75  *		iteration
76  *		NOTE: this must point to already allocated memory
77  *
78  * The nested_rmap is a llist of (struct rmap_nested) entries pointed to by the
79  * rmap entry in the memslot. The list is always terminated by a "single entry"
80  * stored in the list element of the final entry of the llist. If there is ONLY
81  * a single entry then this is itself in the rmap entry of the memslot, not a
82  * llist head pointer.
83  *
84  * Note that the iterator below assumes that a nested rmap entry is always
85  * non-zero.  This is true for our usage because the LPID field is always
86  * non-zero (zero is reserved for the host).
87  *
88  * This should be used to iterate over the list of rmap_nested entries with
89  * processing done on the u64 rmap value given by each iteration. This is safe
90  * against removal of list entries and it is always safe to call free on (pos).
91  *
92  * e.g.
93  * struct rmap_nested *cursor;
94  * struct llist_node *first;
95  * unsigned long rmap;
96  * for_each_nest_rmap_safe(cursor, first, &rmap) {
97  *	do_something(rmap);
98  *	free(cursor);
99  * }
100  */
101 #define for_each_nest_rmap_safe(pos, node, rmapp)			       \
102 	for ((pos) = llist_entry((node), typeof(*(pos)), list);		       \
103 	     (node) &&							       \
104 	     (*(rmapp) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ?     \
105 			  ((u64) (node)) : ((pos)->rmap))) &&		       \
106 	     (((node) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ?      \
107 			 ((struct llist_node *) ((pos) = NULL)) :	       \
108 			 (pos)->list.next)), true);			       \
109 	     (pos) = llist_entry((node), typeof(*(pos)), list))
110 
111 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
112 					  bool create);
113 void kvmhv_put_nested(struct kvm_nested_guest *gp);
114 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid);
115 
116 /* Encoding of first parameter for H_TLB_INVALIDATE */
117 #define H_TLBIE_P1_ENC(ric, prs, r)	(___PPC_RIC(ric) | ___PPC_PRS(prs) | \
118 					 ___PPC_R(r))
119 
120 /* Power architecture requires HPT is at least 256kiB, at most 64TiB */
121 #define PPC_MIN_HPT_ORDER	18
122 #define PPC_MAX_HPT_ORDER	46
123 
124 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
125 static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
126 {
127 	preempt_disable();
128 	return &get_paca()->shadow_vcpu;
129 }
130 
131 static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
132 {
133 	preempt_enable();
134 }
135 #endif
136 
137 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
138 
139 static inline bool kvm_is_radix(struct kvm *kvm)
140 {
141 	return kvm->arch.radix;
142 }
143 
144 static inline bool kvmhv_vcpu_is_radix(struct kvm_vcpu *vcpu)
145 {
146 	bool radix;
147 
148 	if (vcpu->arch.nested)
149 		radix = vcpu->arch.nested->radix;
150 	else
151 		radix = kvm_is_radix(vcpu->kvm);
152 
153 	return radix;
154 }
155 
156 unsigned long kvmppc_msr_hard_disable_set_facilities(struct kvm_vcpu *vcpu, unsigned long msr);
157 
158 int kvmhv_vcpu_entry_p9(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb);
159 
160 #define KVM_DEFAULT_HPT_ORDER	24	/* 16MB HPT by default */
161 #endif
162 
163 /*
164  * Invalid HDSISR value which is used to indicate when HW has not set the reg.
165  * Used to work around an errata.
166  */
167 #define HDSISR_CANARY	0x7fff
168 
169 /*
170  * We use a lock bit in HPTE dword 0 to synchronize updates and
171  * accesses to each HPTE, and another bit to indicate non-present
172  * HPTEs.
173  */
174 #define HPTE_V_HVLOCK	0x40UL
175 #define HPTE_V_ABSENT	0x20UL
176 
177 /*
178  * We use this bit in the guest_rpte field of the revmap entry
179  * to indicate a modified HPTE.
180  */
181 #define HPTE_GR_MODIFIED	(1ul << 62)
182 
183 /* These bits are reserved in the guest view of the HPTE */
184 #define HPTE_GR_RESERVED	HPTE_GR_MODIFIED
185 
186 static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
187 {
188 	unsigned long tmp, old;
189 	__be64 be_lockbit, be_bits;
190 
191 	/*
192 	 * We load/store in native endian, but the HTAB is in big endian. If
193 	 * we byte swap all data we apply on the PTE we're implicitly correct
194 	 * again.
195 	 */
196 	be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
197 	be_bits = cpu_to_be64(bits);
198 
199 	asm volatile("	ldarx	%0,0,%2\n"
200 		     "	and.	%1,%0,%3\n"
201 		     "	bne	2f\n"
202 		     "	or	%0,%0,%4\n"
203 		     "  stdcx.	%0,0,%2\n"
204 		     "	beq+	2f\n"
205 		     "	mr	%1,%3\n"
206 		     "2:	isync"
207 		     : "=&r" (tmp), "=&r" (old)
208 		     : "r" (hpte), "r" (be_bits), "r" (be_lockbit)
209 		     : "cc", "memory");
210 	return old == 0;
211 }
212 
213 static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
214 {
215 	hpte_v &= ~HPTE_V_HVLOCK;
216 	asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
217 	hpte[0] = cpu_to_be64(hpte_v);
218 }
219 
220 /* Without barrier */
221 static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
222 {
223 	hpte_v &= ~HPTE_V_HVLOCK;
224 	hpte[0] = cpu_to_be64(hpte_v);
225 }
226 
227 /*
228  * These functions encode knowledge of the POWER7/8/9 hardware
229  * interpretations of the HPTE LP (large page size) field.
230  */
231 static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l)
232 {
233 	unsigned int lphi;
234 
235 	if (!(h & HPTE_V_LARGE))
236 		return 12;	/* 4kB */
237 	lphi = (l >> 16) & 0xf;
238 	switch ((l >> 12) & 0xf) {
239 	case 0:
240 		return !lphi ? 24 : 0;		/* 16MB */
241 		break;
242 	case 1:
243 		return 16;			/* 64kB */
244 		break;
245 	case 3:
246 		return !lphi ? 34 : 0;		/* 16GB */
247 		break;
248 	case 7:
249 		return (16 << 8) + 12;		/* 64kB in 4kB */
250 		break;
251 	case 8:
252 		if (!lphi)
253 			return (24 << 8) + 16;	/* 16MB in 64kkB */
254 		if (lphi == 3)
255 			return (24 << 8) + 12;	/* 16MB in 4kB */
256 		break;
257 	}
258 	return 0;
259 }
260 
261 static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l)
262 {
263 	return kvmppc_hpte_page_shifts(h, l) & 0xff;
264 }
265 
266 static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l)
267 {
268 	int tmp = kvmppc_hpte_page_shifts(h, l);
269 
270 	if (tmp >= 0x100)
271 		tmp >>= 8;
272 	return tmp;
273 }
274 
275 static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r)
276 {
277 	int shift = kvmppc_hpte_actual_page_shift(v, r);
278 
279 	if (shift)
280 		return 1ul << shift;
281 	return 0;
282 }
283 
284 static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift)
285 {
286 	switch (base_shift) {
287 	case 12:
288 		switch (actual_shift) {
289 		case 12:
290 			return 0;
291 		case 16:
292 			return 7;
293 		case 24:
294 			return 0x38;
295 		}
296 		break;
297 	case 16:
298 		switch (actual_shift) {
299 		case 16:
300 			return 1;
301 		case 24:
302 			return 8;
303 		}
304 		break;
305 	case 24:
306 		return 0;
307 	}
308 	return -1;
309 }
310 
311 static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
312 					     unsigned long pte_index)
313 {
314 	int a_pgshift, b_pgshift;
315 	unsigned long rb = 0, va_low, sllp;
316 
317 	b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r);
318 	if (a_pgshift >= 0x100) {
319 		b_pgshift &= 0xff;
320 		a_pgshift >>= 8;
321 	}
322 
323 	/*
324 	 * Ignore the top 14 bits of va
325 	 * v have top two bits covering segment size, hence move
326 	 * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
327 	 * AVA field in v also have the lower 23 bits ignored.
328 	 * For base page size 4K we need 14 .. 65 bits (so need to
329 	 * collect extra 11 bits)
330 	 * For others we need 14..14+i
331 	 */
332 	/* This covers 14..54 bits of va*/
333 	rb = (v & ~0x7fUL) << 16;		/* AVA field */
334 
335 	/*
336 	 * AVA in v had cleared lower 23 bits. We need to derive
337 	 * that from pteg index
338 	 */
339 	va_low = pte_index >> 3;
340 	if (v & HPTE_V_SECONDARY)
341 		va_low = ~va_low;
342 	/*
343 	 * get the vpn bits from va_low using reverse of hashing.
344 	 * In v we have va with 23 bits dropped and then left shifted
345 	 * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
346 	 * right shift it with (SID_SHIFT - (23 - 7))
347 	 */
348 	if (!(v & HPTE_V_1TB_SEG))
349 		va_low ^= v >> (SID_SHIFT - 16);
350 	else
351 		va_low ^= v >> (SID_SHIFT_1T - 16);
352 	va_low &= 0x7ff;
353 
354 	if (b_pgshift <= 12) {
355 		if (a_pgshift > 12) {
356 			sllp = (a_pgshift == 16) ? 5 : 4;
357 			rb |= sllp << 5;	/*  AP field */
358 		}
359 		rb |= (va_low & 0x7ff) << 12;	/* remaining 11 bits of AVA */
360 	} else {
361 		int aval_shift;
362 		/*
363 		 * remaining bits of AVA/LP fields
364 		 * Also contain the rr bits of LP
365 		 */
366 		rb |= (va_low << b_pgshift) & 0x7ff000;
367 		/*
368 		 * Now clear not needed LP bits based on actual psize
369 		 */
370 		rb &= ~((1ul << a_pgshift) - 1);
371 		/*
372 		 * AVAL field 58..77 - base_page_shift bits of va
373 		 * we have space for 58..64 bits, Missing bits should
374 		 * be zero filled. +1 is to take care of L bit shift
375 		 */
376 		aval_shift = 64 - (77 - b_pgshift) + 1;
377 		rb |= ((va_low << aval_shift) & 0xfe);
378 
379 		rb |= 1;		/* L field */
380 		rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */
381 	}
382 	/*
383 	 * This sets both bits of the B field in the PTE. 0b1x values are
384 	 * reserved, but those will have been filtered by kvmppc_do_h_enter.
385 	 */
386 	rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8;	/* B field */
387 	return rb;
388 }
389 
390 static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
391 {
392 	return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
393 }
394 
395 static inline int hpte_is_writable(unsigned long ptel)
396 {
397 	unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
398 
399 	return pp != PP_RXRX && pp != PP_RXXX;
400 }
401 
402 static inline unsigned long hpte_make_readonly(unsigned long ptel)
403 {
404 	if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
405 		ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
406 	else
407 		ptel |= PP_RXRX;
408 	return ptel;
409 }
410 
411 static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci)
412 {
413 	unsigned int wimg = hptel & HPTE_R_WIMG;
414 
415 	/* Handle SAO */
416 	if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
417 	    cpu_has_feature(CPU_FTR_ARCH_206))
418 		wimg = HPTE_R_M;
419 
420 	if (!is_ci)
421 		return wimg == HPTE_R_M;
422 	/*
423 	 * if host is mapped cache inhibited, make sure hptel also have
424 	 * cache inhibited.
425 	 */
426 	if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */
427 		return false;
428 	return !!(wimg & HPTE_R_I);
429 }
430 
431 /*
432  * If it's present and writable, atomically set dirty and referenced bits and
433  * return the PTE, otherwise return 0.
434  */
435 static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
436 {
437 	pte_t old_pte, new_pte = __pte(0);
438 
439 	while (1) {
440 		/*
441 		 * Make sure we don't reload from ptep
442 		 */
443 		old_pte = READ_ONCE(*ptep);
444 		/*
445 		 * wait until H_PAGE_BUSY is clear then set it atomically
446 		 */
447 		if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) {
448 			cpu_relax();
449 			continue;
450 		}
451 		/* If pte is not present return None */
452 		if (unlikely(!pte_present(old_pte)))
453 			return __pte(0);
454 
455 		new_pte = pte_mkyoung(old_pte);
456 		if (writing && pte_write(old_pte))
457 			new_pte = pte_mkdirty(new_pte);
458 
459 		if (pte_xchg(ptep, old_pte, new_pte))
460 			break;
461 	}
462 	return new_pte;
463 }
464 
465 static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
466 {
467 	if (key)
468 		return PP_RWRX <= pp && pp <= PP_RXRX;
469 	return true;
470 }
471 
472 static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
473 {
474 	if (key)
475 		return pp == PP_RWRW;
476 	return pp <= PP_RWRW;
477 }
478 
479 static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
480 {
481 	unsigned long skey;
482 
483 	skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
484 		((hpte_r & HPTE_R_KEY_LO) >> 9);
485 	return (amr >> (62 - 2 * skey)) & 3;
486 }
487 
488 static inline void lock_rmap(unsigned long *rmap)
489 {
490 	do {
491 		while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
492 			cpu_relax();
493 	} while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
494 }
495 
496 static inline void unlock_rmap(unsigned long *rmap)
497 {
498 	__clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
499 }
500 
501 static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
502 				   unsigned long pagesize)
503 {
504 	unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
505 
506 	if (pagesize <= PAGE_SIZE)
507 		return true;
508 	return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
509 }
510 
511 /*
512  * This works for 4k, 64k and 16M pages on POWER7,
513  * and 4k and 16M pages on PPC970.
514  */
515 static inline unsigned long slb_pgsize_encoding(unsigned long psize)
516 {
517 	unsigned long senc = 0;
518 
519 	if (psize > 0x1000) {
520 		senc = SLB_VSID_L;
521 		if (psize == 0x10000)
522 			senc |= SLB_VSID_LP_01;
523 	}
524 	return senc;
525 }
526 
527 static inline int is_vrma_hpte(unsigned long hpte_v)
528 {
529 	return (hpte_v & ~0xffffffUL) ==
530 		(HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
531 }
532 
533 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
534 /*
535  * Note modification of an HPTE; set the HPTE modified bit
536  * if anyone is interested.
537  */
538 static inline void note_hpte_modification(struct kvm *kvm,
539 					  struct revmap_entry *rev)
540 {
541 	if (atomic_read(&kvm->arch.hpte_mod_interest))
542 		rev->guest_rpte |= HPTE_GR_MODIFIED;
543 }
544 
545 /*
546  * Like kvm_memslots(), but for use in real mode when we can't do
547  * any RCU stuff (since the secondary threads are offline from the
548  * kernel's point of view), and we can't print anything.
549  * Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
550  */
551 static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
552 {
553 	return rcu_dereference_raw_check(kvm->memslots[0]);
554 }
555 
556 extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
557 extern void kvmhv_radix_debugfs_init(struct kvm *kvm);
558 
559 extern void kvmhv_rm_send_ipi(int cpu);
560 
561 static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt)
562 {
563 	/* HPTEs are 2**4 bytes long */
564 	return 1UL << (hpt->order - 4);
565 }
566 
567 static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt)
568 {
569 	/* 128 (2**7) bytes in each HPTEG */
570 	return (1UL << (hpt->order - 7)) - 1;
571 }
572 
573 /* Set bits in a dirty bitmap, which is in LE format */
574 static inline void set_dirty_bits(unsigned long *map, unsigned long i,
575 				  unsigned long npages)
576 {
577 
578 	if (npages >= 8)
579 		memset((char *)map + i / 8, 0xff, npages / 8);
580 	else
581 		for (; npages; ++i, --npages)
582 			__set_bit_le(i, map);
583 }
584 
585 static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i,
586 					 unsigned long npages)
587 {
588 	if (npages >= 8)
589 		memset((char *)map + i / 8, 0xff, npages / 8);
590 	else
591 		for (; npages; ++i, --npages)
592 			set_bit_le(i, map);
593 }
594 
595 static inline u64 sanitize_msr(u64 msr)
596 {
597 	msr &= ~MSR_HV;
598 	msr |= MSR_ME;
599 	return msr;
600 }
601 
602 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
603 static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
604 {
605 	vcpu->arch.regs.ccr  = vcpu->arch.cr_tm;
606 	vcpu->arch.regs.xer = vcpu->arch.xer_tm;
607 	vcpu->arch.regs.link  = vcpu->arch.lr_tm;
608 	vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
609 	vcpu->arch.amr = vcpu->arch.amr_tm;
610 	vcpu->arch.ppr = vcpu->arch.ppr_tm;
611 	vcpu->arch.dscr = vcpu->arch.dscr_tm;
612 	vcpu->arch.tar = vcpu->arch.tar_tm;
613 	memcpy(vcpu->arch.regs.gpr, vcpu->arch.gpr_tm,
614 	       sizeof(vcpu->arch.regs.gpr));
615 	vcpu->arch.fp  = vcpu->arch.fp_tm;
616 	vcpu->arch.vr  = vcpu->arch.vr_tm;
617 	vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
618 }
619 
620 static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
621 {
622 	vcpu->arch.cr_tm  = vcpu->arch.regs.ccr;
623 	vcpu->arch.xer_tm = vcpu->arch.regs.xer;
624 	vcpu->arch.lr_tm  = vcpu->arch.regs.link;
625 	vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
626 	vcpu->arch.amr_tm = vcpu->arch.amr;
627 	vcpu->arch.ppr_tm = vcpu->arch.ppr;
628 	vcpu->arch.dscr_tm = vcpu->arch.dscr;
629 	vcpu->arch.tar_tm = vcpu->arch.tar;
630 	memcpy(vcpu->arch.gpr_tm, vcpu->arch.regs.gpr,
631 	       sizeof(vcpu->arch.regs.gpr));
632 	vcpu->arch.fp_tm  = vcpu->arch.fp;
633 	vcpu->arch.vr_tm  = vcpu->arch.vr;
634 	vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
635 }
636 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
637 
638 extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
639 			     unsigned long gpa, unsigned int level,
640 			     unsigned long mmu_seq, unsigned int lpid,
641 			     unsigned long *rmapp, struct rmap_nested **n_rmap);
642 extern void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
643 				   struct rmap_nested **n_rmap);
644 extern void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
645 					   unsigned long clr, unsigned long set,
646 					   unsigned long hpa, unsigned long nbytes);
647 extern void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
648 				const struct kvm_memory_slot *memslot,
649 				unsigned long gpa, unsigned long hpa,
650 				unsigned long nbytes);
651 
652 static inline pte_t *
653 find_kvm_secondary_pte_unlocked(struct kvm *kvm, unsigned long ea,
654 				unsigned *hshift)
655 {
656 	pte_t *pte;
657 
658 	pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift);
659 	return pte;
660 }
661 
662 static inline pte_t *find_kvm_secondary_pte(struct kvm *kvm, unsigned long ea,
663 					    unsigned *hshift)
664 {
665 	pte_t *pte;
666 
667 	VM_WARN(!spin_is_locked(&kvm->mmu_lock),
668 		"%s called with kvm mmu_lock not held \n", __func__);
669 	pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift);
670 
671 	return pte;
672 }
673 
674 static inline pte_t *find_kvm_host_pte(struct kvm *kvm, unsigned long mmu_seq,
675 				       unsigned long ea, unsigned *hshift)
676 {
677 	pte_t *pte;
678 
679 	VM_WARN(!spin_is_locked(&kvm->mmu_lock),
680 		"%s called with kvm mmu_lock not held \n", __func__);
681 
682 	if (mmu_notifier_retry(kvm, mmu_seq))
683 		return NULL;
684 
685 	pte = __find_linux_pte(kvm->mm->pgd, ea, NULL, hshift);
686 
687 	return pte;
688 }
689 
690 extern pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
691 					unsigned long ea, unsigned *hshift);
692 
693 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
694 
695 #endif /* __ASM_KVM_BOOK3S_64_H__ */
696