xref: /openbmc/linux/arch/powerpc/include/asm/kvm_book3s_64.h (revision 179dd8c0348af75b02c7d72eaaf1cb179f1721ef)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright SUSE Linux Products GmbH 2010
16  *
17  * Authors: Alexander Graf <agraf@suse.de>
18  */
19 
20 #ifndef __ASM_KVM_BOOK3S_64_H__
21 #define __ASM_KVM_BOOK3S_64_H__
22 
23 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
24 static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
25 {
26 	preempt_disable();
27 	return &get_paca()->shadow_vcpu;
28 }
29 
30 static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
31 {
32 	preempt_enable();
33 }
34 #endif
35 
36 #define SPAPR_TCE_SHIFT		12
37 
38 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
39 #define KVM_DEFAULT_HPT_ORDER	24	/* 16MB HPT by default */
40 #endif
41 
42 #define VRMA_VSID	0x1ffffffUL	/* 1TB VSID reserved for VRMA */
43 
44 /*
45  * We use a lock bit in HPTE dword 0 to synchronize updates and
46  * accesses to each HPTE, and another bit to indicate non-present
47  * HPTEs.
48  */
49 #define HPTE_V_HVLOCK	0x40UL
50 #define HPTE_V_ABSENT	0x20UL
51 
52 /*
53  * We use this bit in the guest_rpte field of the revmap entry
54  * to indicate a modified HPTE.
55  */
56 #define HPTE_GR_MODIFIED	(1ul << 62)
57 
58 /* These bits are reserved in the guest view of the HPTE */
59 #define HPTE_GR_RESERVED	HPTE_GR_MODIFIED
60 
61 static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
62 {
63 	unsigned long tmp, old;
64 	__be64 be_lockbit, be_bits;
65 
66 	/*
67 	 * We load/store in native endian, but the HTAB is in big endian. If
68 	 * we byte swap all data we apply on the PTE we're implicitly correct
69 	 * again.
70 	 */
71 	be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
72 	be_bits = cpu_to_be64(bits);
73 
74 	asm volatile("	ldarx	%0,0,%2\n"
75 		     "	and.	%1,%0,%3\n"
76 		     "	bne	2f\n"
77 		     "	or	%0,%0,%4\n"
78 		     "  stdcx.	%0,0,%2\n"
79 		     "	beq+	2f\n"
80 		     "	mr	%1,%3\n"
81 		     "2:	isync"
82 		     : "=&r" (tmp), "=&r" (old)
83 		     : "r" (hpte), "r" (be_bits), "r" (be_lockbit)
84 		     : "cc", "memory");
85 	return old == 0;
86 }
87 
88 static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
89 {
90 	hpte_v &= ~HPTE_V_HVLOCK;
91 	asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
92 	hpte[0] = cpu_to_be64(hpte_v);
93 }
94 
95 /* Without barrier */
96 static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
97 {
98 	hpte_v &= ~HPTE_V_HVLOCK;
99 	hpte[0] = cpu_to_be64(hpte_v);
100 }
101 
102 static inline int __hpte_actual_psize(unsigned int lp, int psize)
103 {
104 	int i, shift;
105 	unsigned int mask;
106 
107 	/* start from 1 ignoring MMU_PAGE_4K */
108 	for (i = 1; i < MMU_PAGE_COUNT; i++) {
109 
110 		/* invalid penc */
111 		if (mmu_psize_defs[psize].penc[i] == -1)
112 			continue;
113 		/*
114 		 * encoding bits per actual page size
115 		 *        PTE LP     actual page size
116 		 *    rrrr rrrz		>=8KB
117 		 *    rrrr rrzz		>=16KB
118 		 *    rrrr rzzz		>=32KB
119 		 *    rrrr zzzz		>=64KB
120 		 * .......
121 		 */
122 		shift = mmu_psize_defs[i].shift - LP_SHIFT;
123 		if (shift > LP_BITS)
124 			shift = LP_BITS;
125 		mask = (1 << shift) - 1;
126 		if ((lp & mask) == mmu_psize_defs[psize].penc[i])
127 			return i;
128 	}
129 	return -1;
130 }
131 
132 static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
133 					     unsigned long pte_index)
134 {
135 	int b_psize = MMU_PAGE_4K, a_psize = MMU_PAGE_4K;
136 	unsigned int penc;
137 	unsigned long rb = 0, va_low, sllp;
138 	unsigned int lp = (r >> LP_SHIFT) & ((1 << LP_BITS) - 1);
139 
140 	if (v & HPTE_V_LARGE) {
141 		for (b_psize = 0; b_psize < MMU_PAGE_COUNT; b_psize++) {
142 
143 			/* valid entries have a shift value */
144 			if (!mmu_psize_defs[b_psize].shift)
145 				continue;
146 
147 			a_psize = __hpte_actual_psize(lp, b_psize);
148 			if (a_psize != -1)
149 				break;
150 		}
151 	}
152 	/*
153 	 * Ignore the top 14 bits of va
154 	 * v have top two bits covering segment size, hence move
155 	 * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
156 	 * AVA field in v also have the lower 23 bits ignored.
157 	 * For base page size 4K we need 14 .. 65 bits (so need to
158 	 * collect extra 11 bits)
159 	 * For others we need 14..14+i
160 	 */
161 	/* This covers 14..54 bits of va*/
162 	rb = (v & ~0x7fUL) << 16;		/* AVA field */
163 
164 	rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8;	/*  B field */
165 	/*
166 	 * AVA in v had cleared lower 23 bits. We need to derive
167 	 * that from pteg index
168 	 */
169 	va_low = pte_index >> 3;
170 	if (v & HPTE_V_SECONDARY)
171 		va_low = ~va_low;
172 	/*
173 	 * get the vpn bits from va_low using reverse of hashing.
174 	 * In v we have va with 23 bits dropped and then left shifted
175 	 * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
176 	 * right shift it with (SID_SHIFT - (23 - 7))
177 	 */
178 	if (!(v & HPTE_V_1TB_SEG))
179 		va_low ^= v >> (SID_SHIFT - 16);
180 	else
181 		va_low ^= v >> (SID_SHIFT_1T - 16);
182 	va_low &= 0x7ff;
183 
184 	switch (b_psize) {
185 	case MMU_PAGE_4K:
186 		sllp = ((mmu_psize_defs[a_psize].sllp & SLB_VSID_L) >> 6) |
187 			((mmu_psize_defs[a_psize].sllp & SLB_VSID_LP) >> 4);
188 		rb |= sllp << 5;	/*  AP field */
189 		rb |= (va_low & 0x7ff) << 12;	/* remaining 11 bits of AVA */
190 		break;
191 	default:
192 	{
193 		int aval_shift;
194 		/*
195 		 * remaining bits of AVA/LP fields
196 		 * Also contain the rr bits of LP
197 		 */
198 		rb |= (va_low << mmu_psize_defs[b_psize].shift) & 0x7ff000;
199 		/*
200 		 * Now clear not needed LP bits based on actual psize
201 		 */
202 		rb &= ~((1ul << mmu_psize_defs[a_psize].shift) - 1);
203 		/*
204 		 * AVAL field 58..77 - base_page_shift bits of va
205 		 * we have space for 58..64 bits, Missing bits should
206 		 * be zero filled. +1 is to take care of L bit shift
207 		 */
208 		aval_shift = 64 - (77 - mmu_psize_defs[b_psize].shift) + 1;
209 		rb |= ((va_low << aval_shift) & 0xfe);
210 
211 		rb |= 1;		/* L field */
212 		penc = mmu_psize_defs[b_psize].penc[a_psize];
213 		rb |= penc << 12;	/* LP field */
214 		break;
215 	}
216 	}
217 	rb |= (v >> 54) & 0x300;		/* B field */
218 	return rb;
219 }
220 
221 static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
222 					     bool is_base_size)
223 {
224 
225 	int size, a_psize;
226 	/* Look at the 8 bit LP value */
227 	unsigned int lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);
228 
229 	/* only handle 4k, 64k and 16M pages for now */
230 	if (!(h & HPTE_V_LARGE))
231 		return 1ul << 12;
232 	else {
233 		for (size = 0; size < MMU_PAGE_COUNT; size++) {
234 			/* valid entries have a shift value */
235 			if (!mmu_psize_defs[size].shift)
236 				continue;
237 
238 			a_psize = __hpte_actual_psize(lp, size);
239 			if (a_psize != -1) {
240 				if (is_base_size)
241 					return 1ul << mmu_psize_defs[size].shift;
242 				return 1ul << mmu_psize_defs[a_psize].shift;
243 			}
244 		}
245 
246 	}
247 	return 0;
248 }
249 
250 static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
251 {
252 	return __hpte_page_size(h, l, 0);
253 }
254 
255 static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
256 {
257 	return __hpte_page_size(h, l, 1);
258 }
259 
260 static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
261 {
262 	return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
263 }
264 
265 static inline int hpte_is_writable(unsigned long ptel)
266 {
267 	unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
268 
269 	return pp != PP_RXRX && pp != PP_RXXX;
270 }
271 
272 static inline unsigned long hpte_make_readonly(unsigned long ptel)
273 {
274 	if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
275 		ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
276 	else
277 		ptel |= PP_RXRX;
278 	return ptel;
279 }
280 
281 static inline int hpte_cache_flags_ok(unsigned long ptel, unsigned long io_type)
282 {
283 	unsigned int wimg = ptel & HPTE_R_WIMG;
284 
285 	/* Handle SAO */
286 	if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
287 	    cpu_has_feature(CPU_FTR_ARCH_206))
288 		wimg = HPTE_R_M;
289 
290 	if (!io_type)
291 		return wimg == HPTE_R_M;
292 
293 	return (wimg & (HPTE_R_W | HPTE_R_I)) == io_type;
294 }
295 
296 /*
297  * If it's present and writable, atomically set dirty and referenced bits and
298  * return the PTE, otherwise return 0.
299  */
300 static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
301 {
302 	pte_t old_pte, new_pte = __pte(0);
303 
304 	while (1) {
305 		/*
306 		 * Make sure we don't reload from ptep
307 		 */
308 		old_pte = READ_ONCE(*ptep);
309 		/*
310 		 * wait until _PAGE_BUSY is clear then set it atomically
311 		 */
312 		if (unlikely(pte_val(old_pte) & _PAGE_BUSY)) {
313 			cpu_relax();
314 			continue;
315 		}
316 		/* If pte is not present return None */
317 		if (unlikely(!(pte_val(old_pte) & _PAGE_PRESENT)))
318 			return __pte(0);
319 
320 		new_pte = pte_mkyoung(old_pte);
321 		if (writing && pte_write(old_pte))
322 			new_pte = pte_mkdirty(new_pte);
323 
324 		if (pte_val(old_pte) == __cmpxchg_u64((unsigned long *)ptep,
325 						      pte_val(old_pte),
326 						      pte_val(new_pte))) {
327 			break;
328 		}
329 	}
330 	return new_pte;
331 }
332 
333 
334 /* Return HPTE cache control bits corresponding to Linux pte bits */
335 static inline unsigned long hpte_cache_bits(unsigned long pte_val)
336 {
337 #if _PAGE_NO_CACHE == HPTE_R_I && _PAGE_WRITETHRU == HPTE_R_W
338 	return pte_val & (HPTE_R_W | HPTE_R_I);
339 #else
340 	return ((pte_val & _PAGE_NO_CACHE) ? HPTE_R_I : 0) +
341 		((pte_val & _PAGE_WRITETHRU) ? HPTE_R_W : 0);
342 #endif
343 }
344 
345 static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
346 {
347 	if (key)
348 		return PP_RWRX <= pp && pp <= PP_RXRX;
349 	return true;
350 }
351 
352 static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
353 {
354 	if (key)
355 		return pp == PP_RWRW;
356 	return pp <= PP_RWRW;
357 }
358 
359 static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
360 {
361 	unsigned long skey;
362 
363 	skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
364 		((hpte_r & HPTE_R_KEY_LO) >> 9);
365 	return (amr >> (62 - 2 * skey)) & 3;
366 }
367 
368 static inline void lock_rmap(unsigned long *rmap)
369 {
370 	do {
371 		while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
372 			cpu_relax();
373 	} while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
374 }
375 
376 static inline void unlock_rmap(unsigned long *rmap)
377 {
378 	__clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
379 }
380 
381 static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
382 				   unsigned long pagesize)
383 {
384 	unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
385 
386 	if (pagesize <= PAGE_SIZE)
387 		return true;
388 	return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
389 }
390 
391 /*
392  * This works for 4k, 64k and 16M pages on POWER7,
393  * and 4k and 16M pages on PPC970.
394  */
395 static inline unsigned long slb_pgsize_encoding(unsigned long psize)
396 {
397 	unsigned long senc = 0;
398 
399 	if (psize > 0x1000) {
400 		senc = SLB_VSID_L;
401 		if (psize == 0x10000)
402 			senc |= SLB_VSID_LP_01;
403 	}
404 	return senc;
405 }
406 
407 static inline int is_vrma_hpte(unsigned long hpte_v)
408 {
409 	return (hpte_v & ~0xffffffUL) ==
410 		(HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
411 }
412 
413 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
414 /*
415  * Note modification of an HPTE; set the HPTE modified bit
416  * if anyone is interested.
417  */
418 static inline void note_hpte_modification(struct kvm *kvm,
419 					  struct revmap_entry *rev)
420 {
421 	if (atomic_read(&kvm->arch.hpte_mod_interest))
422 		rev->guest_rpte |= HPTE_GR_MODIFIED;
423 }
424 
425 /*
426  * Like kvm_memslots(), but for use in real mode when we can't do
427  * any RCU stuff (since the secondary threads are offline from the
428  * kernel's point of view), and we can't print anything.
429  * Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
430  */
431 static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
432 {
433 	return rcu_dereference_raw_notrace(kvm->memslots[0]);
434 }
435 
436 extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
437 
438 extern void kvmhv_rm_send_ipi(int cpu);
439 
440 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
441 
442 #endif /* __ASM_KVM_BOOK3S_64_H__ */
443