xref: /openbmc/linux/arch/powerpc/include/asm/io.h (revision f71a261a)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 #ifndef _ASM_POWERPC_IO_H
3 #define _ASM_POWERPC_IO_H
4 #ifdef __KERNEL__
5 
6 #define ARCH_HAS_IOREMAP_WC
7 #ifdef CONFIG_PPC32
8 #define ARCH_HAS_IOREMAP_WT
9 #endif
10 
11 /*
12  */
13 
14 /* Check of existence of legacy devices */
15 extern int check_legacy_ioport(unsigned long base_port);
16 #define I8042_DATA_REG	0x60
17 #define FDC_BASE	0x3f0
18 
19 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
20 extern struct pci_dev *isa_bridge_pcidev;
21 /*
22  * has legacy ISA devices ?
23  */
24 #define arch_has_dev_port()	(isa_bridge_pcidev != NULL || isa_io_special)
25 #endif
26 
27 #include <linux/device.h>
28 #include <linux/compiler.h>
29 #include <linux/mm.h>
30 #include <asm/page.h>
31 #include <asm/byteorder.h>
32 #include <asm/synch.h>
33 #include <asm/delay.h>
34 #include <asm/mmiowb.h>
35 #include <asm/mmu.h>
36 #include <asm/ppc_asm.h>
37 
38 #define SIO_CONFIG_RA	0x398
39 #define SIO_CONFIG_RD	0x399
40 
41 /* 32 bits uses slightly different variables for the various IO
42  * bases. Most of this file only uses _IO_BASE though which we
43  * define properly based on the platform
44  */
45 #ifndef CONFIG_PCI
46 #define _IO_BASE	0
47 #define _ISA_MEM_BASE	0
48 #define PCI_DRAM_OFFSET 0
49 #elif defined(CONFIG_PPC32)
50 #define _IO_BASE	isa_io_base
51 #define _ISA_MEM_BASE	isa_mem_base
52 #define PCI_DRAM_OFFSET	pci_dram_offset
53 #else
54 #define _IO_BASE	pci_io_base
55 #define _ISA_MEM_BASE	isa_mem_base
56 #define PCI_DRAM_OFFSET	0
57 #endif
58 
59 extern unsigned long isa_io_base;
60 extern unsigned long pci_io_base;
61 extern unsigned long pci_dram_offset;
62 
63 extern resource_size_t isa_mem_base;
64 
65 /* Boolean set by platform if PIO accesses are suppored while _IO_BASE
66  * is not set or addresses cannot be translated to MMIO. This is typically
67  * set when the platform supports "special" PIO accesses via a non memory
68  * mapped mechanism, and allows things like the early udbg UART code to
69  * function.
70  */
71 extern bool isa_io_special;
72 
73 #ifdef CONFIG_PPC32
74 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
75 #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
76 #endif
77 #endif
78 
79 /*
80  *
81  * Low level MMIO accessors
82  *
83  * This provides the non-bus specific accessors to MMIO. Those are PowerPC
84  * specific and thus shouldn't be used in generic code. The accessors
85  * provided here are:
86  *
87  *	in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
88  *	out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
89  *	_insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
90  *
91  * Those operate directly on a kernel virtual address. Note that the prototype
92  * for the out_* accessors has the arguments in opposite order from the usual
93  * linux PCI accessors. Unlike those, they take the address first and the value
94  * next.
95  *
96  * Note: I might drop the _ns suffix on the stream operations soon as it is
97  * simply normal for stream operations to not swap in the first place.
98  *
99  */
100 
101 #define DEF_MMIO_IN_X(name, size, insn)				\
102 static inline u##size name(const volatile u##size __iomem *addr)	\
103 {									\
104 	u##size ret;							\
105 	__asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"	\
106 		: "=r" (ret) : "Z" (*addr) : "memory");			\
107 	return ret;							\
108 }
109 
110 #define DEF_MMIO_OUT_X(name, size, insn)				\
111 static inline void name(volatile u##size __iomem *addr, u##size val)	\
112 {									\
113 	__asm__ __volatile__("sync;"#insn" %1,%y0"			\
114 		: "=Z" (*addr) : "r" (val) : "memory");			\
115 	mmiowb_set_pending();						\
116 }
117 
118 #define DEF_MMIO_IN_D(name, size, insn)				\
119 static inline u##size name(const volatile u##size __iomem *addr)	\
120 {									\
121 	u##size ret;							\
122 	__asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
123 		: "=r" (ret) : "m<>" (*addr) : "memory");	\
124 	return ret;							\
125 }
126 
127 #define DEF_MMIO_OUT_D(name, size, insn)				\
128 static inline void name(volatile u##size __iomem *addr, u##size val)	\
129 {									\
130 	__asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"			\
131 		: "=m<>" (*addr) : "r" (val) : "memory");	\
132 	mmiowb_set_pending();						\
133 }
134 
135 DEF_MMIO_IN_D(in_8,     8, lbz);
136 DEF_MMIO_OUT_D(out_8,   8, stb);
137 
138 #ifdef __BIG_ENDIAN__
139 DEF_MMIO_IN_D(in_be16, 16, lhz);
140 DEF_MMIO_IN_D(in_be32, 32, lwz);
141 DEF_MMIO_IN_X(in_le16, 16, lhbrx);
142 DEF_MMIO_IN_X(in_le32, 32, lwbrx);
143 
144 DEF_MMIO_OUT_D(out_be16, 16, sth);
145 DEF_MMIO_OUT_D(out_be32, 32, stw);
146 DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
147 DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
148 #else
149 DEF_MMIO_IN_X(in_be16, 16, lhbrx);
150 DEF_MMIO_IN_X(in_be32, 32, lwbrx);
151 DEF_MMIO_IN_D(in_le16, 16, lhz);
152 DEF_MMIO_IN_D(in_le32, 32, lwz);
153 
154 DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
155 DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
156 DEF_MMIO_OUT_D(out_le16, 16, sth);
157 DEF_MMIO_OUT_D(out_le32, 32, stw);
158 
159 #endif /* __BIG_ENDIAN */
160 
161 #ifdef __powerpc64__
162 
163 #ifdef __BIG_ENDIAN__
164 DEF_MMIO_OUT_D(out_be64, 64, std);
165 DEF_MMIO_IN_D(in_be64, 64, ld);
166 
167 /* There is no asm instructions for 64 bits reverse loads and stores */
168 static inline u64 in_le64(const volatile u64 __iomem *addr)
169 {
170 	return swab64(in_be64(addr));
171 }
172 
173 static inline void out_le64(volatile u64 __iomem *addr, u64 val)
174 {
175 	out_be64(addr, swab64(val));
176 }
177 #else
178 DEF_MMIO_OUT_D(out_le64, 64, std);
179 DEF_MMIO_IN_D(in_le64, 64, ld);
180 
181 /* There is no asm instructions for 64 bits reverse loads and stores */
182 static inline u64 in_be64(const volatile u64 __iomem *addr)
183 {
184 	return swab64(in_le64(addr));
185 }
186 
187 static inline void out_be64(volatile u64 __iomem *addr, u64 val)
188 {
189 	out_le64(addr, swab64(val));
190 }
191 
192 #endif
193 #endif /* __powerpc64__ */
194 
195 /*
196  * Low level IO stream instructions are defined out of line for now
197  */
198 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
199 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
200 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
201 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
202 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
203 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
204 
205 /* The _ns naming is historical and will be removed. For now, just #define
206  * the non _ns equivalent names
207  */
208 #define _insw	_insw_ns
209 #define _insl	_insl_ns
210 #define _outsw	_outsw_ns
211 #define _outsl	_outsl_ns
212 
213 
214 /*
215  * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
216  */
217 
218 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
219 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
220 			   unsigned long n);
221 extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
222 			 unsigned long n);
223 
224 /*
225  *
226  * PCI and standard ISA accessors
227  *
228  * Those are globally defined linux accessors for devices on PCI or ISA
229  * busses. They follow the Linux defined semantics. The current implementation
230  * for PowerPC is as close as possible to the x86 version of these, and thus
231  * provides fairly heavy weight barriers for the non-raw versions
232  *
233  * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
234  * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
235  * own implementation of some or all of the accessors.
236  */
237 
238 /*
239  * Include the EEH definitions when EEH is enabled only so they don't get
240  * in the way when building for 32 bits
241  */
242 #ifdef CONFIG_EEH
243 #include <asm/eeh.h>
244 #endif
245 
246 /* Shortcut to the MMIO argument pointer */
247 #define PCI_IO_ADDR	volatile void __iomem *
248 
249 /* Indirect IO address tokens:
250  *
251  * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
252  * on all MMIOs. (Note that this is all 64 bits only for now)
253  *
254  * To help platforms who may need to differentiate MMIO addresses in
255  * their hooks, a bitfield is reserved for use by the platform near the
256  * top of MMIO addresses (not PIO, those have to cope the hard way).
257  *
258  * The highest address in the kernel virtual space are:
259  *
260  *  d0003fffffffffff	# with Hash MMU
261  *  c00fffffffffffff	# with Radix MMU
262  *
263  * The top 4 bits are reserved as the region ID on hash, leaving us 8 bits
264  * that can be used for the field.
265  *
266  * The direct IO mapping operations will then mask off those bits
267  * before doing the actual access, though that only happen when
268  * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
269  * mechanism
270  *
271  * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
272  * all PIO functions call through a hook.
273  */
274 
275 #ifdef CONFIG_PPC_INDIRECT_MMIO
276 #define PCI_IO_IND_TOKEN_SHIFT	52
277 #define PCI_IO_IND_TOKEN_MASK	(0xfful << PCI_IO_IND_TOKEN_SHIFT)
278 #define PCI_FIX_ADDR(addr)						\
279 	((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
280 #define PCI_GET_ADDR_TOKEN(addr)					\
281 	(((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> 		\
282 		PCI_IO_IND_TOKEN_SHIFT)
283 #define PCI_SET_ADDR_TOKEN(addr, token) 				\
284 do {									\
285 	unsigned long __a = (unsigned long)(addr);			\
286 	__a &= ~PCI_IO_IND_TOKEN_MASK;					\
287 	__a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;	\
288 	(addr) = (void __iomem *)__a;					\
289 } while(0)
290 #else
291 #define PCI_FIX_ADDR(addr) (addr)
292 #endif
293 
294 
295 /*
296  * Non ordered and non-swapping "raw" accessors
297  */
298 
299 static inline unsigned char __raw_readb(const volatile void __iomem *addr)
300 {
301 	return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
302 }
303 #define __raw_readb __raw_readb
304 
305 static inline unsigned short __raw_readw(const volatile void __iomem *addr)
306 {
307 	return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
308 }
309 #define __raw_readw __raw_readw
310 
311 static inline unsigned int __raw_readl(const volatile void __iomem *addr)
312 {
313 	return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
314 }
315 #define __raw_readl __raw_readl
316 
317 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
318 {
319 	*(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
320 }
321 #define __raw_writeb __raw_writeb
322 
323 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
324 {
325 	*(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
326 }
327 #define __raw_writew __raw_writew
328 
329 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
330 {
331 	*(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
332 }
333 #define __raw_writel __raw_writel
334 
335 #ifdef __powerpc64__
336 static inline unsigned long __raw_readq(const volatile void __iomem *addr)
337 {
338 	return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
339 }
340 #define __raw_readq __raw_readq
341 
342 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
343 {
344 	*(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
345 }
346 #define __raw_writeq __raw_writeq
347 
348 static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr)
349 {
350 	__raw_writeq((__force unsigned long)cpu_to_be64(v), addr);
351 }
352 #define __raw_writeq_be __raw_writeq_be
353 
354 /*
355  * Real mode versions of the above. Those instructions are only supposed
356  * to be used in hypervisor real mode as per the architecture spec.
357  */
358 static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr)
359 {
360 	__asm__ __volatile__(".machine push;   \
361 			      .machine power6; \
362 			      stbcix %0,0,%1;  \
363 			      .machine pop;"
364 		: : "r" (val), "r" (paddr) : "memory");
365 }
366 
367 static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr)
368 {
369 	__asm__ __volatile__(".machine push;   \
370 			      .machine power6; \
371 			      sthcix %0,0,%1;  \
372 			      .machine pop;"
373 		: : "r" (val), "r" (paddr) : "memory");
374 }
375 
376 static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr)
377 {
378 	__asm__ __volatile__(".machine push;   \
379 			      .machine power6; \
380 			      stwcix %0,0,%1;  \
381 			      .machine pop;"
382 		: : "r" (val), "r" (paddr) : "memory");
383 }
384 
385 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
386 {
387 	__asm__ __volatile__(".machine push;   \
388 			      .machine power6; \
389 			      stdcix %0,0,%1;  \
390 			      .machine pop;"
391 		: : "r" (val), "r" (paddr) : "memory");
392 }
393 
394 static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr)
395 {
396 	__raw_rm_writeq((__force u64)cpu_to_be64(val), paddr);
397 }
398 
399 static inline u8 __raw_rm_readb(volatile void __iomem *paddr)
400 {
401 	u8 ret;
402 	__asm__ __volatile__(".machine push;   \
403 			      .machine power6; \
404 			      lbzcix %0,0, %1; \
405 			      .machine pop;"
406 			     : "=r" (ret) : "r" (paddr) : "memory");
407 	return ret;
408 }
409 
410 static inline u16 __raw_rm_readw(volatile void __iomem *paddr)
411 {
412 	u16 ret;
413 	__asm__ __volatile__(".machine push;   \
414 			      .machine power6; \
415 			      lhzcix %0,0, %1; \
416 			      .machine pop;"
417 			     : "=r" (ret) : "r" (paddr) : "memory");
418 	return ret;
419 }
420 
421 static inline u32 __raw_rm_readl(volatile void __iomem *paddr)
422 {
423 	u32 ret;
424 	__asm__ __volatile__(".machine push;   \
425 			      .machine power6; \
426 			      lwzcix %0,0, %1; \
427 			      .machine pop;"
428 			     : "=r" (ret) : "r" (paddr) : "memory");
429 	return ret;
430 }
431 
432 static inline u64 __raw_rm_readq(volatile void __iomem *paddr)
433 {
434 	u64 ret;
435 	__asm__ __volatile__(".machine push;   \
436 			      .machine power6; \
437 			      ldcix %0,0, %1;  \
438 			      .machine pop;"
439 			     : "=r" (ret) : "r" (paddr) : "memory");
440 	return ret;
441 }
442 #endif /* __powerpc64__ */
443 
444 /*
445  *
446  * PCI PIO and MMIO accessors.
447  *
448  *
449  * On 32 bits, PIO operations have a recovery mechanism in case they trigger
450  * machine checks (which they occasionally do when probing non existing
451  * IO ports on some platforms, like PowerMac and 8xx).
452  * I always found it to be of dubious reliability and I am tempted to get
453  * rid of it one of these days. So if you think it's important to keep it,
454  * please voice up asap. We never had it for 64 bits and I do not intend
455  * to port it over
456  */
457 
458 #ifdef CONFIG_PPC32
459 
460 #define __do_in_asm(name, op)				\
461 static inline unsigned int name(unsigned int port)	\
462 {							\
463 	unsigned int x;					\
464 	__asm__ __volatile__(				\
465 		"sync\n"				\
466 		"0:"	op "	%0,0,%1\n"		\
467 		"1:	twi	0,%0,0\n"		\
468 		"2:	isync\n"			\
469 		"3:	nop\n"				\
470 		"4:\n"					\
471 		".section .fixup,\"ax\"\n"		\
472 		"5:	li	%0,-1\n"		\
473 		"	b	4b\n"			\
474 		".previous\n"				\
475 		EX_TABLE(0b, 5b)			\
476 		EX_TABLE(1b, 5b)			\
477 		EX_TABLE(2b, 5b)			\
478 		EX_TABLE(3b, 5b)			\
479 		: "=&r" (x)				\
480 		: "r" (port + _IO_BASE)			\
481 		: "memory");  				\
482 	return x;					\
483 }
484 
485 #define __do_out_asm(name, op)				\
486 static inline void name(unsigned int val, unsigned int port) \
487 {							\
488 	__asm__ __volatile__(				\
489 		"sync\n"				\
490 		"0:" op " %0,0,%1\n"			\
491 		"1:	sync\n"				\
492 		"2:\n"					\
493 		EX_TABLE(0b, 2b)			\
494 		EX_TABLE(1b, 2b)			\
495 		: : "r" (val), "r" (port + _IO_BASE)	\
496 		: "memory");   	   	   		\
497 }
498 
499 __do_in_asm(_rec_inb, "lbzx")
500 __do_in_asm(_rec_inw, "lhbrx")
501 __do_in_asm(_rec_inl, "lwbrx")
502 __do_out_asm(_rec_outb, "stbx")
503 __do_out_asm(_rec_outw, "sthbrx")
504 __do_out_asm(_rec_outl, "stwbrx")
505 
506 #endif /* CONFIG_PPC32 */
507 
508 /* The "__do_*" operations below provide the actual "base" implementation
509  * for each of the defined accessors. Some of them use the out_* functions
510  * directly, some of them still use EEH, though we might change that in the
511  * future. Those macros below provide the necessary argument swapping and
512  * handling of the IO base for PIO.
513  *
514  * They are themselves used by the macros that define the actual accessors
515  * and can be used by the hooks if any.
516  *
517  * Note that PIO operations are always defined in terms of their corresonding
518  * MMIO operations. That allows platforms like iSeries who want to modify the
519  * behaviour of both to only hook on the MMIO version and get both. It's also
520  * possible to hook directly at the toplevel PIO operation if they have to
521  * be handled differently
522  */
523 #define __do_writeb(val, addr)	out_8(PCI_FIX_ADDR(addr), val)
524 #define __do_writew(val, addr)	out_le16(PCI_FIX_ADDR(addr), val)
525 #define __do_writel(val, addr)	out_le32(PCI_FIX_ADDR(addr), val)
526 #define __do_writeq(val, addr)	out_le64(PCI_FIX_ADDR(addr), val)
527 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
528 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
529 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
530 
531 #ifdef CONFIG_EEH
532 #define __do_readb(addr)	eeh_readb(PCI_FIX_ADDR(addr))
533 #define __do_readw(addr)	eeh_readw(PCI_FIX_ADDR(addr))
534 #define __do_readl(addr)	eeh_readl(PCI_FIX_ADDR(addr))
535 #define __do_readq(addr)	eeh_readq(PCI_FIX_ADDR(addr))
536 #define __do_readw_be(addr)	eeh_readw_be(PCI_FIX_ADDR(addr))
537 #define __do_readl_be(addr)	eeh_readl_be(PCI_FIX_ADDR(addr))
538 #define __do_readq_be(addr)	eeh_readq_be(PCI_FIX_ADDR(addr))
539 #else /* CONFIG_EEH */
540 #define __do_readb(addr)	in_8(PCI_FIX_ADDR(addr))
541 #define __do_readw(addr)	in_le16(PCI_FIX_ADDR(addr))
542 #define __do_readl(addr)	in_le32(PCI_FIX_ADDR(addr))
543 #define __do_readq(addr)	in_le64(PCI_FIX_ADDR(addr))
544 #define __do_readw_be(addr)	in_be16(PCI_FIX_ADDR(addr))
545 #define __do_readl_be(addr)	in_be32(PCI_FIX_ADDR(addr))
546 #define __do_readq_be(addr)	in_be64(PCI_FIX_ADDR(addr))
547 #endif /* !defined(CONFIG_EEH) */
548 
549 #ifdef CONFIG_PPC32
550 #define __do_outb(val, port)	_rec_outb(val, port)
551 #define __do_outw(val, port)	_rec_outw(val, port)
552 #define __do_outl(val, port)	_rec_outl(val, port)
553 #define __do_inb(port)		_rec_inb(port)
554 #define __do_inw(port)		_rec_inw(port)
555 #define __do_inl(port)		_rec_inl(port)
556 #else /* CONFIG_PPC32 */
557 #define __do_outb(val, port)	writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
558 #define __do_outw(val, port)	writew(val,(PCI_IO_ADDR)_IO_BASE+port);
559 #define __do_outl(val, port)	writel(val,(PCI_IO_ADDR)_IO_BASE+port);
560 #define __do_inb(port)		readb((PCI_IO_ADDR)_IO_BASE + port);
561 #define __do_inw(port)		readw((PCI_IO_ADDR)_IO_BASE + port);
562 #define __do_inl(port)		readl((PCI_IO_ADDR)_IO_BASE + port);
563 #endif /* !CONFIG_PPC32 */
564 
565 #ifdef CONFIG_EEH
566 #define __do_readsb(a, b, n)	eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
567 #define __do_readsw(a, b, n)	eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
568 #define __do_readsl(a, b, n)	eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
569 #else /* CONFIG_EEH */
570 #define __do_readsb(a, b, n)	_insb(PCI_FIX_ADDR(a), (b), (n))
571 #define __do_readsw(a, b, n)	_insw(PCI_FIX_ADDR(a), (b), (n))
572 #define __do_readsl(a, b, n)	_insl(PCI_FIX_ADDR(a), (b), (n))
573 #endif /* !CONFIG_EEH */
574 #define __do_writesb(a, b, n)	_outsb(PCI_FIX_ADDR(a),(b),(n))
575 #define __do_writesw(a, b, n)	_outsw(PCI_FIX_ADDR(a),(b),(n))
576 #define __do_writesl(a, b, n)	_outsl(PCI_FIX_ADDR(a),(b),(n))
577 
578 #define __do_insb(p, b, n)	readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
579 #define __do_insw(p, b, n)	readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
580 #define __do_insl(p, b, n)	readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
581 #define __do_outsb(p, b, n)	writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
582 #define __do_outsw(p, b, n)	writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
583 #define __do_outsl(p, b, n)	writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
584 
585 #define __do_memset_io(addr, c, n)	\
586 				_memset_io(PCI_FIX_ADDR(addr), c, n)
587 #define __do_memcpy_toio(dst, src, n)	\
588 				_memcpy_toio(PCI_FIX_ADDR(dst), src, n)
589 
590 #ifdef CONFIG_EEH
591 #define __do_memcpy_fromio(dst, src, n)	\
592 				eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
593 #else /* CONFIG_EEH */
594 #define __do_memcpy_fromio(dst, src, n)	\
595 				_memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
596 #endif /* !CONFIG_EEH */
597 
598 #ifdef CONFIG_PPC_INDIRECT_PIO
599 #define DEF_PCI_HOOK_pio(x)	x
600 #else
601 #define DEF_PCI_HOOK_pio(x)	NULL
602 #endif
603 
604 #ifdef CONFIG_PPC_INDIRECT_MMIO
605 #define DEF_PCI_HOOK_mem(x)	x
606 #else
607 #define DEF_PCI_HOOK_mem(x)	NULL
608 #endif
609 
610 /* Structure containing all the hooks */
611 extern struct ppc_pci_io {
612 
613 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)	ret (*name) at;
614 #define DEF_PCI_AC_NORET(name, at, al, space, aa)	void (*name) at;
615 
616 #include <asm/io-defs.h>
617 
618 #undef DEF_PCI_AC_RET
619 #undef DEF_PCI_AC_NORET
620 
621 } ppc_pci_io;
622 
623 /* The inline wrappers */
624 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)		\
625 static inline ret name at					\
626 {								\
627 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)	\
628 		return ppc_pci_io.name al;			\
629 	return __do_##name al;					\
630 }
631 
632 #define DEF_PCI_AC_NORET(name, at, al, space, aa)		\
633 static inline void name at					\
634 {								\
635 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)		\
636 		ppc_pci_io.name al;				\
637 	else							\
638 		__do_##name al;					\
639 }
640 
641 #include <asm/io-defs.h>
642 
643 #undef DEF_PCI_AC_RET
644 #undef DEF_PCI_AC_NORET
645 
646 /* Some drivers check for the presence of readq & writeq with
647  * a #ifdef, so we make them happy here.
648  */
649 #define readb readb
650 #define readw readw
651 #define readl readl
652 #define writeb writeb
653 #define writew writew
654 #define writel writel
655 #define readsb readsb
656 #define readsw readsw
657 #define readsl readsl
658 #define writesb writesb
659 #define writesw writesw
660 #define writesl writesl
661 #define inb inb
662 #define inw inw
663 #define inl inl
664 #define outb outb
665 #define outw outw
666 #define outl outl
667 #define insb insb
668 #define insw insw
669 #define insl insl
670 #define outsb outsb
671 #define outsw outsw
672 #define outsl outsl
673 #ifdef __powerpc64__
674 #define readq	readq
675 #define writeq	writeq
676 #endif
677 #define memset_io memset_io
678 #define memcpy_fromio memcpy_fromio
679 #define memcpy_toio memcpy_toio
680 
681 /*
682  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
683  * access
684  */
685 #define xlate_dev_mem_ptr(p)	__va(p)
686 
687 /*
688  * We don't do relaxed operations yet, at least not with this semantic
689  */
690 #define readb_relaxed(addr)	readb(addr)
691 #define readw_relaxed(addr)	readw(addr)
692 #define readl_relaxed(addr)	readl(addr)
693 #define readq_relaxed(addr)	readq(addr)
694 #define writeb_relaxed(v, addr)	writeb(v, addr)
695 #define writew_relaxed(v, addr)	writew(v, addr)
696 #define writel_relaxed(v, addr)	writel(v, addr)
697 #define writeq_relaxed(v, addr)	writeq(v, addr)
698 
699 #ifdef CONFIG_GENERIC_IOMAP
700 #include <asm-generic/iomap.h>
701 #else
702 /*
703  * Here comes the implementation of the IOMAP interfaces.
704  */
705 static inline unsigned int ioread16be(const void __iomem *addr)
706 {
707 	return readw_be(addr);
708 }
709 #define ioread16be ioread16be
710 
711 static inline unsigned int ioread32be(const void __iomem *addr)
712 {
713 	return readl_be(addr);
714 }
715 #define ioread32be ioread32be
716 
717 #ifdef __powerpc64__
718 static inline u64 ioread64_lo_hi(const void __iomem *addr)
719 {
720 	return readq(addr);
721 }
722 #define ioread64_lo_hi ioread64_lo_hi
723 
724 static inline u64 ioread64_hi_lo(const void __iomem *addr)
725 {
726 	return readq(addr);
727 }
728 #define ioread64_hi_lo ioread64_hi_lo
729 
730 static inline u64 ioread64be(const void __iomem *addr)
731 {
732 	return readq_be(addr);
733 }
734 #define ioread64be ioread64be
735 
736 static inline u64 ioread64be_lo_hi(const void __iomem *addr)
737 {
738 	return readq_be(addr);
739 }
740 #define ioread64be_lo_hi ioread64be_lo_hi
741 
742 static inline u64 ioread64be_hi_lo(const void __iomem *addr)
743 {
744 	return readq_be(addr);
745 }
746 #define ioread64be_hi_lo ioread64be_hi_lo
747 #endif /* __powerpc64__ */
748 
749 static inline void iowrite16be(u16 val, void __iomem *addr)
750 {
751 	writew_be(val, addr);
752 }
753 #define iowrite16be iowrite16be
754 
755 static inline void iowrite32be(u32 val, void __iomem *addr)
756 {
757 	writel_be(val, addr);
758 }
759 #define iowrite32be iowrite32be
760 
761 #ifdef __powerpc64__
762 static inline void iowrite64_lo_hi(u64 val, void __iomem *addr)
763 {
764 	writeq(val, addr);
765 }
766 #define iowrite64_lo_hi iowrite64_lo_hi
767 
768 static inline void iowrite64_hi_lo(u64 val, void __iomem *addr)
769 {
770 	writeq(val, addr);
771 }
772 #define iowrite64_hi_lo iowrite64_hi_lo
773 
774 static inline void iowrite64be(u64 val, void __iomem *addr)
775 {
776 	writeq_be(val, addr);
777 }
778 #define iowrite64be iowrite64be
779 
780 static inline void iowrite64be_lo_hi(u64 val, void __iomem *addr)
781 {
782 	writeq_be(val, addr);
783 }
784 #define iowrite64be_lo_hi iowrite64be_lo_hi
785 
786 static inline void iowrite64be_hi_lo(u64 val, void __iomem *addr)
787 {
788 	writeq_be(val, addr);
789 }
790 #define iowrite64be_hi_lo iowrite64be_hi_lo
791 #endif /* __powerpc64__ */
792 
793 struct pci_dev;
794 void pci_iounmap(struct pci_dev *dev, void __iomem *addr);
795 #define pci_iounmap pci_iounmap
796 void __iomem *ioport_map(unsigned long port, unsigned int len);
797 #define ioport_map ioport_map
798 #endif
799 
800 static inline void iosync(void)
801 {
802         __asm__ __volatile__ ("sync" : : : "memory");
803 }
804 
805 /* Enforce in-order execution of data I/O.
806  * No distinction between read/write on PPC; use eieio for all three.
807  * Those are fairly week though. They don't provide a barrier between
808  * MMIO and cacheable storage nor do they provide a barrier vs. locks,
809  * they only provide barriers between 2 __raw MMIO operations and
810  * possibly break write combining.
811  */
812 #define iobarrier_rw() eieio()
813 #define iobarrier_r()  eieio()
814 #define iobarrier_w()  eieio()
815 
816 
817 /*
818  * output pause versions need a delay at least for the
819  * w83c105 ide controller in a p610.
820  */
821 #define inb_p(port)             inb(port)
822 #define outb_p(val, port)       (udelay(1), outb((val), (port)))
823 #define inw_p(port)             inw(port)
824 #define outw_p(val, port)       (udelay(1), outw((val), (port)))
825 #define inl_p(port)             inl(port)
826 #define outl_p(val, port)       (udelay(1), outl((val), (port)))
827 
828 
829 #define IO_SPACE_LIMIT ~(0UL)
830 
831 /**
832  * ioremap     -   map bus memory into CPU space
833  * @address:   bus address of the memory
834  * @size:      size of the resource to map
835  *
836  * ioremap performs a platform specific sequence of operations to
837  * make bus memory CPU accessible via the readb/readw/readl/writeb/
838  * writew/writel functions and the other mmio helpers. The returned
839  * address is not guaranteed to be usable directly as a virtual
840  * address.
841  *
842  * We provide a few variations of it:
843  *
844  * * ioremap is the standard one and provides non-cacheable guarded mappings
845  *   and can be hooked by the platform via ppc_md
846  *
847  * * ioremap_prot allows to specify the page flags as an argument and can
848  *   also be hooked by the platform via ppc_md.
849  *
850  * * ioremap_wc enables write combining
851  *
852  * * ioremap_wt enables write through
853  *
854  * * ioremap_coherent maps coherent cached memory
855  *
856  * * iounmap undoes such a mapping and can be hooked
857  *
858  * * __ioremap_caller is the same as above but takes an explicit caller
859  *   reference rather than using __builtin_return_address(0)
860  *
861  */
862 extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
863 extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
864 				  unsigned long flags);
865 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
866 #define ioremap_wc ioremap_wc
867 
868 #ifdef CONFIG_PPC32
869 void __iomem *ioremap_wt(phys_addr_t address, unsigned long size);
870 #define ioremap_wt ioremap_wt
871 #endif
872 
873 void __iomem *ioremap_coherent(phys_addr_t address, unsigned long size);
874 #define ioremap_uc(addr, size)		ioremap((addr), (size))
875 #define ioremap_cache(addr, size) \
876 	ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL))
877 
878 extern void iounmap(volatile void __iomem *addr);
879 
880 void __iomem *ioremap_phb(phys_addr_t paddr, unsigned long size);
881 
882 int early_ioremap_range(unsigned long ea, phys_addr_t pa,
883 			unsigned long size, pgprot_t prot);
884 void __iomem *do_ioremap(phys_addr_t pa, phys_addr_t offset, unsigned long size,
885 			 pgprot_t prot, void *caller);
886 
887 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
888 				      pgprot_t prot, void *caller);
889 
890 /*
891  * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
892  * which needs some additional definitions here. They basically allow PIO
893  * space overall to be 1GB. This will work as long as we never try to use
894  * iomap to map MMIO below 1GB which should be fine on ppc64
895  */
896 #define HAVE_ARCH_PIO_SIZE		1
897 #define PIO_OFFSET			0x00000000UL
898 #define PIO_MASK			(FULL_IO_SIZE - 1)
899 #define PIO_RESERVED			(FULL_IO_SIZE)
900 
901 #define mmio_read16be(addr)		readw_be(addr)
902 #define mmio_read32be(addr)		readl_be(addr)
903 #define mmio_read64be(addr)		readq_be(addr)
904 #define mmio_write16be(val, addr)	writew_be(val, addr)
905 #define mmio_write32be(val, addr)	writel_be(val, addr)
906 #define mmio_write64be(val, addr)	writeq_be(val, addr)
907 #define mmio_insb(addr, dst, count)	readsb(addr, dst, count)
908 #define mmio_insw(addr, dst, count)	readsw(addr, dst, count)
909 #define mmio_insl(addr, dst, count)	readsl(addr, dst, count)
910 #define mmio_outsb(addr, src, count)	writesb(addr, src, count)
911 #define mmio_outsw(addr, src, count)	writesw(addr, src, count)
912 #define mmio_outsl(addr, src, count)	writesl(addr, src, count)
913 
914 /**
915  *	virt_to_phys	-	map virtual addresses to physical
916  *	@address: address to remap
917  *
918  *	The returned physical address is the physical (CPU) mapping for
919  *	the memory address given. It is only valid to use this function on
920  *	addresses directly mapped or allocated via kmalloc.
921  *
922  *	This function does not give bus mappings for DMA transfers. In
923  *	almost all conceivable cases a device driver should not be using
924  *	this function
925  */
926 static inline unsigned long virt_to_phys(volatile void * address)
927 {
928 	WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !virt_addr_valid(address));
929 
930 	return __pa((unsigned long)address);
931 }
932 #define virt_to_phys virt_to_phys
933 
934 /**
935  *	phys_to_virt	-	map physical address to virtual
936  *	@address: address to remap
937  *
938  *	The returned virtual address is a current CPU mapping for
939  *	the memory address given. It is only valid to use this function on
940  *	addresses that have a kernel mapping
941  *
942  *	This function does not handle bus mappings for DMA transfers. In
943  *	almost all conceivable cases a device driver should not be using
944  *	this function
945  */
946 static inline void * phys_to_virt(unsigned long address)
947 {
948 	return (void *)__va(address);
949 }
950 #define phys_to_virt phys_to_virt
951 
952 /*
953  * Change "struct page" to physical address.
954  */
955 static inline phys_addr_t page_to_phys(struct page *page)
956 {
957 	unsigned long pfn = page_to_pfn(page);
958 
959 	WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !pfn_valid(pfn));
960 
961 	return PFN_PHYS(pfn);
962 }
963 
964 /*
965  * 32 bits still uses virt_to_bus() for it's implementation of DMA
966  * mappings se we have to keep it defined here. We also have some old
967  * drivers (shame shame shame) that use bus_to_virt() and haven't been
968  * fixed yet so I need to define it here.
969  */
970 #ifdef CONFIG_PPC32
971 
972 static inline unsigned long virt_to_bus(volatile void * address)
973 {
974         if (address == NULL)
975 		return 0;
976         return __pa(address) + PCI_DRAM_OFFSET;
977 }
978 #define virt_to_bus virt_to_bus
979 
980 static inline void * bus_to_virt(unsigned long address)
981 {
982         if (address == 0)
983 		return NULL;
984         return __va(address - PCI_DRAM_OFFSET);
985 }
986 #define bus_to_virt bus_to_virt
987 
988 #define page_to_bus(page)	(page_to_phys(page) + PCI_DRAM_OFFSET)
989 
990 #endif /* CONFIG_PPC32 */
991 
992 /* access ports */
993 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v))
994 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
995 
996 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v))
997 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
998 
999 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v))
1000 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
1001 
1002 /* Clear and set bits in one shot.  These macros can be used to clear and
1003  * set multiple bits in a register using a single read-modify-write.  These
1004  * macros can also be used to set a multiple-bit bit pattern using a mask,
1005  * by specifying the mask in the 'clear' parameter and the new bit pattern
1006  * in the 'set' parameter.
1007  */
1008 
1009 #define clrsetbits(type, addr, clear, set) \
1010 	out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
1011 
1012 #ifdef __powerpc64__
1013 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
1014 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
1015 #endif
1016 
1017 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
1018 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
1019 
1020 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
1021 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
1022 
1023 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
1024 
1025 #include <asm-generic/io.h>
1026 
1027 #endif /* __KERNEL__ */
1028 
1029 #endif /* _ASM_POWERPC_IO_H */
1030