1 #ifndef _ASM_POWERPC_IO_H 2 #define _ASM_POWERPC_IO_H 3 #ifdef __KERNEL__ 4 5 #define ARCH_HAS_IOREMAP_WC 6 7 /* 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 /* Check of existence of legacy devices */ 15 extern int check_legacy_ioport(unsigned long base_port); 16 #define I8042_DATA_REG 0x60 17 #define FDC_BASE 0x3f0 18 19 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI) 20 extern struct pci_dev *isa_bridge_pcidev; 21 /* 22 * has legacy ISA devices ? 23 */ 24 #define arch_has_dev_port() (isa_bridge_pcidev != NULL || isa_io_special) 25 #endif 26 27 #include <linux/device.h> 28 #include <linux/compiler.h> 29 #include <asm/page.h> 30 #include <asm/byteorder.h> 31 #include <asm/synch.h> 32 #include <asm/delay.h> 33 #include <asm/mmu.h> 34 #include <asm/ppc_asm.h> 35 36 #ifdef CONFIG_PPC64 37 #include <asm/paca.h> 38 #endif 39 40 #define SIO_CONFIG_RA 0x398 41 #define SIO_CONFIG_RD 0x399 42 43 #define SLOW_DOWN_IO 44 45 /* 32 bits uses slightly different variables for the various IO 46 * bases. Most of this file only uses _IO_BASE though which we 47 * define properly based on the platform 48 */ 49 #ifndef CONFIG_PCI 50 #define _IO_BASE 0 51 #define _ISA_MEM_BASE 0 52 #define PCI_DRAM_OFFSET 0 53 #elif defined(CONFIG_PPC32) 54 #define _IO_BASE isa_io_base 55 #define _ISA_MEM_BASE isa_mem_base 56 #define PCI_DRAM_OFFSET pci_dram_offset 57 #else 58 #define _IO_BASE pci_io_base 59 #define _ISA_MEM_BASE isa_mem_base 60 #define PCI_DRAM_OFFSET 0 61 #endif 62 63 extern unsigned long isa_io_base; 64 extern unsigned long pci_io_base; 65 extern unsigned long pci_dram_offset; 66 67 extern resource_size_t isa_mem_base; 68 69 /* Boolean set by platform if PIO accesses are suppored while _IO_BASE 70 * is not set or addresses cannot be translated to MMIO. This is typically 71 * set when the platform supports "special" PIO accesses via a non memory 72 * mapped mechanism, and allows things like the early udbg UART code to 73 * function. 74 */ 75 extern bool isa_io_special; 76 77 #ifdef CONFIG_PPC32 78 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) 79 #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits 80 #endif 81 #endif 82 83 /* 84 * 85 * Low level MMIO accessors 86 * 87 * This provides the non-bus specific accessors to MMIO. Those are PowerPC 88 * specific and thus shouldn't be used in generic code. The accessors 89 * provided here are: 90 * 91 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64 92 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64 93 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns 94 * 95 * Those operate directly on a kernel virtual address. Note that the prototype 96 * for the out_* accessors has the arguments in opposite order from the usual 97 * linux PCI accessors. Unlike those, they take the address first and the value 98 * next. 99 * 100 * Note: I might drop the _ns suffix on the stream operations soon as it is 101 * simply normal for stream operations to not swap in the first place. 102 * 103 */ 104 105 #ifdef CONFIG_PPC64 106 #define IO_SET_SYNC_FLAG() do { local_paca->io_sync = 1; } while(0) 107 #else 108 #define IO_SET_SYNC_FLAG() 109 #endif 110 111 /* gcc 4.0 and older doesn't have 'Z' constraint */ 112 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0) 113 #define DEF_MMIO_IN_X(name, size, insn) \ 114 static inline u##size name(const volatile u##size __iomem *addr) \ 115 { \ 116 u##size ret; \ 117 __asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync" \ 118 : "=r" (ret) : "r" (addr), "m" (*addr) : "memory"); \ 119 return ret; \ 120 } 121 122 #define DEF_MMIO_OUT_X(name, size, insn) \ 123 static inline void name(volatile u##size __iomem *addr, u##size val) \ 124 { \ 125 __asm__ __volatile__("sync;"#insn" %1,0,%2" \ 126 : "=m" (*addr) : "r" (val), "r" (addr) : "memory"); \ 127 IO_SET_SYNC_FLAG(); \ 128 } 129 #else /* newer gcc */ 130 #define DEF_MMIO_IN_X(name, size, insn) \ 131 static inline u##size name(const volatile u##size __iomem *addr) \ 132 { \ 133 u##size ret; \ 134 __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync" \ 135 : "=r" (ret) : "Z" (*addr) : "memory"); \ 136 return ret; \ 137 } 138 139 #define DEF_MMIO_OUT_X(name, size, insn) \ 140 static inline void name(volatile u##size __iomem *addr, u##size val) \ 141 { \ 142 __asm__ __volatile__("sync;"#insn" %1,%y0" \ 143 : "=Z" (*addr) : "r" (val) : "memory"); \ 144 IO_SET_SYNC_FLAG(); \ 145 } 146 #endif 147 148 #define DEF_MMIO_IN_D(name, size, insn) \ 149 static inline u##size name(const volatile u##size __iomem *addr) \ 150 { \ 151 u##size ret; \ 152 __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\ 153 : "=r" (ret) : "m" (*addr) : "memory"); \ 154 return ret; \ 155 } 156 157 #define DEF_MMIO_OUT_D(name, size, insn) \ 158 static inline void name(volatile u##size __iomem *addr, u##size val) \ 159 { \ 160 __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0" \ 161 : "=m" (*addr) : "r" (val) : "memory"); \ 162 IO_SET_SYNC_FLAG(); \ 163 } 164 165 DEF_MMIO_IN_D(in_8, 8, lbz); 166 DEF_MMIO_OUT_D(out_8, 8, stb); 167 168 #ifdef __BIG_ENDIAN__ 169 DEF_MMIO_IN_D(in_be16, 16, lhz); 170 DEF_MMIO_IN_D(in_be32, 32, lwz); 171 DEF_MMIO_IN_X(in_le16, 16, lhbrx); 172 DEF_MMIO_IN_X(in_le32, 32, lwbrx); 173 174 DEF_MMIO_OUT_D(out_be16, 16, sth); 175 DEF_MMIO_OUT_D(out_be32, 32, stw); 176 DEF_MMIO_OUT_X(out_le16, 16, sthbrx); 177 DEF_MMIO_OUT_X(out_le32, 32, stwbrx); 178 #else 179 DEF_MMIO_IN_X(in_be16, 16, lhbrx); 180 DEF_MMIO_IN_X(in_be32, 32, lwbrx); 181 DEF_MMIO_IN_D(in_le16, 16, lhz); 182 DEF_MMIO_IN_D(in_le32, 32, lwz); 183 184 DEF_MMIO_OUT_X(out_be16, 16, sthbrx); 185 DEF_MMIO_OUT_X(out_be32, 32, stwbrx); 186 DEF_MMIO_OUT_D(out_le16, 16, sth); 187 DEF_MMIO_OUT_D(out_le32, 32, stw); 188 189 #endif /* __BIG_ENDIAN */ 190 191 #ifdef __powerpc64__ 192 193 #ifdef __BIG_ENDIAN__ 194 DEF_MMIO_OUT_D(out_be64, 64, std); 195 DEF_MMIO_IN_D(in_be64, 64, ld); 196 197 /* There is no asm instructions for 64 bits reverse loads and stores */ 198 static inline u64 in_le64(const volatile u64 __iomem *addr) 199 { 200 return swab64(in_be64(addr)); 201 } 202 203 static inline void out_le64(volatile u64 __iomem *addr, u64 val) 204 { 205 out_be64(addr, swab64(val)); 206 } 207 #else 208 DEF_MMIO_OUT_D(out_le64, 64, std); 209 DEF_MMIO_IN_D(in_le64, 64, ld); 210 211 /* There is no asm instructions for 64 bits reverse loads and stores */ 212 static inline u64 in_be64(const volatile u64 __iomem *addr) 213 { 214 return swab64(in_le64(addr)); 215 } 216 217 static inline void out_be64(volatile u64 __iomem *addr, u64 val) 218 { 219 out_le64(addr, swab64(val)); 220 } 221 222 #endif 223 #endif /* __powerpc64__ */ 224 225 /* 226 * Low level IO stream instructions are defined out of line for now 227 */ 228 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count); 229 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count); 230 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count); 231 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count); 232 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count); 233 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count); 234 235 /* The _ns naming is historical and will be removed. For now, just #define 236 * the non _ns equivalent names 237 */ 238 #define _insw _insw_ns 239 #define _insl _insl_ns 240 #define _outsw _outsw_ns 241 #define _outsl _outsl_ns 242 243 244 /* 245 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line 246 */ 247 248 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n); 249 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src, 250 unsigned long n); 251 extern void _memcpy_toio(volatile void __iomem *dest, const void *src, 252 unsigned long n); 253 254 /* 255 * 256 * PCI and standard ISA accessors 257 * 258 * Those are globally defined linux accessors for devices on PCI or ISA 259 * busses. They follow the Linux defined semantics. The current implementation 260 * for PowerPC is as close as possible to the x86 version of these, and thus 261 * provides fairly heavy weight barriers for the non-raw versions 262 * 263 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO 264 * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its 265 * own implementation of some or all of the accessors. 266 */ 267 268 /* 269 * Include the EEH definitions when EEH is enabled only so they don't get 270 * in the way when building for 32 bits 271 */ 272 #ifdef CONFIG_EEH 273 #include <asm/eeh.h> 274 #endif 275 276 /* Shortcut to the MMIO argument pointer */ 277 #define PCI_IO_ADDR volatile void __iomem * 278 279 /* Indirect IO address tokens: 280 * 281 * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks 282 * on all MMIOs. (Note that this is all 64 bits only for now) 283 * 284 * To help platforms who may need to differentiate MMIO addresses in 285 * their hooks, a bitfield is reserved for use by the platform near the 286 * top of MMIO addresses (not PIO, those have to cope the hard way). 287 * 288 * This bit field is 12 bits and is at the top of the IO virtual 289 * addresses PCI_IO_INDIRECT_TOKEN_MASK. 290 * 291 * The kernel virtual space is thus: 292 * 293 * 0xD000000000000000 : vmalloc 294 * 0xD000080000000000 : PCI PHB IO space 295 * 0xD000080080000000 : ioremap 296 * 0xD0000fffffffffff : end of ioremap region 297 * 298 * Since the top 4 bits are reserved as the region ID, we use thus 299 * the next 12 bits and keep 4 bits available for the future if the 300 * virtual address space is ever to be extended. 301 * 302 * The direct IO mapping operations will then mask off those bits 303 * before doing the actual access, though that only happen when 304 * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that 305 * mechanism 306 * 307 * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes 308 * all PIO functions call through a hook. 309 */ 310 311 #ifdef CONFIG_PPC_INDIRECT_MMIO 312 #define PCI_IO_IND_TOKEN_MASK 0x0fff000000000000ul 313 #define PCI_IO_IND_TOKEN_SHIFT 48 314 #define PCI_FIX_ADDR(addr) \ 315 ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK)) 316 #define PCI_GET_ADDR_TOKEN(addr) \ 317 (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \ 318 PCI_IO_IND_TOKEN_SHIFT) 319 #define PCI_SET_ADDR_TOKEN(addr, token) \ 320 do { \ 321 unsigned long __a = (unsigned long)(addr); \ 322 __a &= ~PCI_IO_IND_TOKEN_MASK; \ 323 __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \ 324 (addr) = (void __iomem *)__a; \ 325 } while(0) 326 #else 327 #define PCI_FIX_ADDR(addr) (addr) 328 #endif 329 330 331 /* 332 * Non ordered and non-swapping "raw" accessors 333 */ 334 335 static inline unsigned char __raw_readb(const volatile void __iomem *addr) 336 { 337 return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr); 338 } 339 static inline unsigned short __raw_readw(const volatile void __iomem *addr) 340 { 341 return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr); 342 } 343 static inline unsigned int __raw_readl(const volatile void __iomem *addr) 344 { 345 return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr); 346 } 347 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr) 348 { 349 *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v; 350 } 351 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr) 352 { 353 *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v; 354 } 355 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr) 356 { 357 *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v; 358 } 359 360 #ifdef __powerpc64__ 361 static inline unsigned long __raw_readq(const volatile void __iomem *addr) 362 { 363 return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr); 364 } 365 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr) 366 { 367 *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v; 368 } 369 370 static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr) 371 { 372 __raw_writeq((__force unsigned long)cpu_to_be64(v), addr); 373 } 374 375 /* 376 * Real mode versions of the above. Those instructions are only supposed 377 * to be used in hypervisor real mode as per the architecture spec. 378 */ 379 static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr) 380 { 381 __asm__ __volatile__("stbcix %0,0,%1" 382 : : "r" (val), "r" (paddr) : "memory"); 383 } 384 385 static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr) 386 { 387 __asm__ __volatile__("sthcix %0,0,%1" 388 : : "r" (val), "r" (paddr) : "memory"); 389 } 390 391 static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr) 392 { 393 __asm__ __volatile__("stwcix %0,0,%1" 394 : : "r" (val), "r" (paddr) : "memory"); 395 } 396 397 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr) 398 { 399 __asm__ __volatile__("stdcix %0,0,%1" 400 : : "r" (val), "r" (paddr) : "memory"); 401 } 402 403 static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr) 404 { 405 __raw_rm_writeq((__force u64)cpu_to_be64(val), paddr); 406 } 407 408 static inline u8 __raw_rm_readb(volatile void __iomem *paddr) 409 { 410 u8 ret; 411 __asm__ __volatile__("lbzcix %0,0, %1" 412 : "=r" (ret) : "r" (paddr) : "memory"); 413 return ret; 414 } 415 416 static inline u16 __raw_rm_readw(volatile void __iomem *paddr) 417 { 418 u16 ret; 419 __asm__ __volatile__("lhzcix %0,0, %1" 420 : "=r" (ret) : "r" (paddr) : "memory"); 421 return ret; 422 } 423 424 static inline u32 __raw_rm_readl(volatile void __iomem *paddr) 425 { 426 u32 ret; 427 __asm__ __volatile__("lwzcix %0,0, %1" 428 : "=r" (ret) : "r" (paddr) : "memory"); 429 return ret; 430 } 431 432 static inline u64 __raw_rm_readq(volatile void __iomem *paddr) 433 { 434 u64 ret; 435 __asm__ __volatile__("ldcix %0,0, %1" 436 : "=r" (ret) : "r" (paddr) : "memory"); 437 return ret; 438 } 439 #endif /* __powerpc64__ */ 440 441 /* 442 * 443 * PCI PIO and MMIO accessors. 444 * 445 * 446 * On 32 bits, PIO operations have a recovery mechanism in case they trigger 447 * machine checks (which they occasionally do when probing non existing 448 * IO ports on some platforms, like PowerMac and 8xx). 449 * I always found it to be of dubious reliability and I am tempted to get 450 * rid of it one of these days. So if you think it's important to keep it, 451 * please voice up asap. We never had it for 64 bits and I do not intend 452 * to port it over 453 */ 454 455 #ifdef CONFIG_PPC32 456 457 #define __do_in_asm(name, op) \ 458 static inline unsigned int name(unsigned int port) \ 459 { \ 460 unsigned int x; \ 461 __asm__ __volatile__( \ 462 "sync\n" \ 463 "0:" op " %0,0,%1\n" \ 464 "1: twi 0,%0,0\n" \ 465 "2: isync\n" \ 466 "3: nop\n" \ 467 "4:\n" \ 468 ".section .fixup,\"ax\"\n" \ 469 "5: li %0,-1\n" \ 470 " b 4b\n" \ 471 ".previous\n" \ 472 EX_TABLE(0b, 5b) \ 473 EX_TABLE(1b, 5b) \ 474 EX_TABLE(2b, 5b) \ 475 EX_TABLE(3b, 5b) \ 476 : "=&r" (x) \ 477 : "r" (port + _IO_BASE) \ 478 : "memory"); \ 479 return x; \ 480 } 481 482 #define __do_out_asm(name, op) \ 483 static inline void name(unsigned int val, unsigned int port) \ 484 { \ 485 __asm__ __volatile__( \ 486 "sync\n" \ 487 "0:" op " %0,0,%1\n" \ 488 "1: sync\n" \ 489 "2:\n" \ 490 EX_TABLE(0b, 2b) \ 491 EX_TABLE(1b, 2b) \ 492 : : "r" (val), "r" (port + _IO_BASE) \ 493 : "memory"); \ 494 } 495 496 __do_in_asm(_rec_inb, "lbzx") 497 __do_in_asm(_rec_inw, "lhbrx") 498 __do_in_asm(_rec_inl, "lwbrx") 499 __do_out_asm(_rec_outb, "stbx") 500 __do_out_asm(_rec_outw, "sthbrx") 501 __do_out_asm(_rec_outl, "stwbrx") 502 503 #endif /* CONFIG_PPC32 */ 504 505 /* The "__do_*" operations below provide the actual "base" implementation 506 * for each of the defined accessors. Some of them use the out_* functions 507 * directly, some of them still use EEH, though we might change that in the 508 * future. Those macros below provide the necessary argument swapping and 509 * handling of the IO base for PIO. 510 * 511 * They are themselves used by the macros that define the actual accessors 512 * and can be used by the hooks if any. 513 * 514 * Note that PIO operations are always defined in terms of their corresonding 515 * MMIO operations. That allows platforms like iSeries who want to modify the 516 * behaviour of both to only hook on the MMIO version and get both. It's also 517 * possible to hook directly at the toplevel PIO operation if they have to 518 * be handled differently 519 */ 520 #define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val) 521 #define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val) 522 #define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val) 523 #define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val) 524 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val) 525 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val) 526 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val) 527 528 #ifdef CONFIG_EEH 529 #define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr)) 530 #define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr)) 531 #define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr)) 532 #define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr)) 533 #define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr)) 534 #define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr)) 535 #define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr)) 536 #else /* CONFIG_EEH */ 537 #define __do_readb(addr) in_8(PCI_FIX_ADDR(addr)) 538 #define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr)) 539 #define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr)) 540 #define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr)) 541 #define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr)) 542 #define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr)) 543 #define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr)) 544 #endif /* !defined(CONFIG_EEH) */ 545 546 #ifdef CONFIG_PPC32 547 #define __do_outb(val, port) _rec_outb(val, port) 548 #define __do_outw(val, port) _rec_outw(val, port) 549 #define __do_outl(val, port) _rec_outl(val, port) 550 #define __do_inb(port) _rec_inb(port) 551 #define __do_inw(port) _rec_inw(port) 552 #define __do_inl(port) _rec_inl(port) 553 #else /* CONFIG_PPC32 */ 554 #define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port); 555 #define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port); 556 #define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port); 557 #define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port); 558 #define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port); 559 #define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port); 560 #endif /* !CONFIG_PPC32 */ 561 562 #ifdef CONFIG_EEH 563 #define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n)) 564 #define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n)) 565 #define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n)) 566 #else /* CONFIG_EEH */ 567 #define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n)) 568 #define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n)) 569 #define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n)) 570 #endif /* !CONFIG_EEH */ 571 #define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n)) 572 #define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n)) 573 #define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n)) 574 575 #define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 576 #define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 577 #define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 578 #define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 579 #define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 580 #define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 581 582 #define __do_memset_io(addr, c, n) \ 583 _memset_io(PCI_FIX_ADDR(addr), c, n) 584 #define __do_memcpy_toio(dst, src, n) \ 585 _memcpy_toio(PCI_FIX_ADDR(dst), src, n) 586 587 #ifdef CONFIG_EEH 588 #define __do_memcpy_fromio(dst, src, n) \ 589 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n) 590 #else /* CONFIG_EEH */ 591 #define __do_memcpy_fromio(dst, src, n) \ 592 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n) 593 #endif /* !CONFIG_EEH */ 594 595 #ifdef CONFIG_PPC_INDIRECT_PIO 596 #define DEF_PCI_HOOK_pio(x) x 597 #else 598 #define DEF_PCI_HOOK_pio(x) NULL 599 #endif 600 601 #ifdef CONFIG_PPC_INDIRECT_MMIO 602 #define DEF_PCI_HOOK_mem(x) x 603 #else 604 #define DEF_PCI_HOOK_mem(x) NULL 605 #endif 606 607 /* Structure containing all the hooks */ 608 extern struct ppc_pci_io { 609 610 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) ret (*name) at; 611 #define DEF_PCI_AC_NORET(name, at, al, space, aa) void (*name) at; 612 613 #include <asm/io-defs.h> 614 615 #undef DEF_PCI_AC_RET 616 #undef DEF_PCI_AC_NORET 617 618 } ppc_pci_io; 619 620 /* The inline wrappers */ 621 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) \ 622 static inline ret name at \ 623 { \ 624 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \ 625 return ppc_pci_io.name al; \ 626 return __do_##name al; \ 627 } 628 629 #define DEF_PCI_AC_NORET(name, at, al, space, aa) \ 630 static inline void name at \ 631 { \ 632 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \ 633 ppc_pci_io.name al; \ 634 else \ 635 __do_##name al; \ 636 } 637 638 #include <asm/io-defs.h> 639 640 #undef DEF_PCI_AC_RET 641 #undef DEF_PCI_AC_NORET 642 643 /* Some drivers check for the presence of readq & writeq with 644 * a #ifdef, so we make them happy here. 645 */ 646 #ifdef __powerpc64__ 647 #define readq readq 648 #define writeq writeq 649 #endif 650 651 /* 652 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 653 * access 654 */ 655 #define xlate_dev_mem_ptr(p) __va(p) 656 657 /* 658 * Convert a virtual cached pointer to an uncached pointer 659 */ 660 #define xlate_dev_kmem_ptr(p) p 661 662 /* 663 * We don't do relaxed operations yet, at least not with this semantic 664 */ 665 #define readb_relaxed(addr) readb(addr) 666 #define readw_relaxed(addr) readw(addr) 667 #define readl_relaxed(addr) readl(addr) 668 #define readq_relaxed(addr) readq(addr) 669 #define writeb_relaxed(v, addr) writeb(v, addr) 670 #define writew_relaxed(v, addr) writew(v, addr) 671 #define writel_relaxed(v, addr) writel(v, addr) 672 #define writeq_relaxed(v, addr) writeq(v, addr) 673 674 #include <asm-generic/iomap.h> 675 676 #ifdef CONFIG_PPC32 677 #define mmiowb() 678 #else 679 /* 680 * Enforce synchronisation of stores vs. spin_unlock 681 * (this does it explicitly, though our implementation of spin_unlock 682 * does it implicitely too) 683 */ 684 static inline void mmiowb(void) 685 { 686 unsigned long tmp; 687 688 __asm__ __volatile__("sync; li %0,0; stb %0,%1(13)" 689 : "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync)) 690 : "memory"); 691 } 692 #endif /* !CONFIG_PPC32 */ 693 694 static inline void iosync(void) 695 { 696 __asm__ __volatile__ ("sync" : : : "memory"); 697 } 698 699 /* Enforce in-order execution of data I/O. 700 * No distinction between read/write on PPC; use eieio for all three. 701 * Those are fairly week though. They don't provide a barrier between 702 * MMIO and cacheable storage nor do they provide a barrier vs. locks, 703 * they only provide barriers between 2 __raw MMIO operations and 704 * possibly break write combining. 705 */ 706 #define iobarrier_rw() eieio() 707 #define iobarrier_r() eieio() 708 #define iobarrier_w() eieio() 709 710 711 /* 712 * output pause versions need a delay at least for the 713 * w83c105 ide controller in a p610. 714 */ 715 #define inb_p(port) inb(port) 716 #define outb_p(val, port) (udelay(1), outb((val), (port))) 717 #define inw_p(port) inw(port) 718 #define outw_p(val, port) (udelay(1), outw((val), (port))) 719 #define inl_p(port) inl(port) 720 #define outl_p(val, port) (udelay(1), outl((val), (port))) 721 722 723 #define IO_SPACE_LIMIT ~(0UL) 724 725 726 /** 727 * ioremap - map bus memory into CPU space 728 * @address: bus address of the memory 729 * @size: size of the resource to map 730 * 731 * ioremap performs a platform specific sequence of operations to 732 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 733 * writew/writel functions and the other mmio helpers. The returned 734 * address is not guaranteed to be usable directly as a virtual 735 * address. 736 * 737 * We provide a few variations of it: 738 * 739 * * ioremap is the standard one and provides non-cacheable guarded mappings 740 * and can be hooked by the platform via ppc_md 741 * 742 * * ioremap_prot allows to specify the page flags as an argument and can 743 * also be hooked by the platform via ppc_md. 744 * 745 * * ioremap_nocache is identical to ioremap 746 * 747 * * ioremap_wc enables write combining 748 * 749 * * iounmap undoes such a mapping and can be hooked 750 * 751 * * __ioremap_at (and the pending __iounmap_at) are low level functions to 752 * create hand-made mappings for use only by the PCI code and cannot 753 * currently be hooked. Must be page aligned. 754 * 755 * * __ioremap is the low level implementation used by ioremap and 756 * ioremap_prot and cannot be hooked (but can be used by a hook on one 757 * of the previous ones) 758 * 759 * * __ioremap_caller is the same as above but takes an explicit caller 760 * reference rather than using __builtin_return_address(0) 761 * 762 * * __iounmap, is the low level implementation used by iounmap and cannot 763 * be hooked (but can be used by a hook on iounmap) 764 * 765 */ 766 extern void __iomem *ioremap(phys_addr_t address, unsigned long size); 767 extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size, 768 unsigned long flags); 769 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size); 770 #define ioremap_nocache(addr, size) ioremap((addr), (size)) 771 #define ioremap_uc(addr, size) ioremap((addr), (size)) 772 #define ioremap_cache(addr, size) \ 773 ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL)) 774 775 extern void iounmap(volatile void __iomem *addr); 776 777 extern void __iomem *__ioremap(phys_addr_t, unsigned long size, 778 unsigned long flags); 779 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size, 780 unsigned long flags, void *caller); 781 782 extern void __iounmap(volatile void __iomem *addr); 783 784 extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea, 785 unsigned long size, unsigned long flags); 786 extern void __iounmap_at(void *ea, unsigned long size); 787 788 /* 789 * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation 790 * which needs some additional definitions here. They basically allow PIO 791 * space overall to be 1GB. This will work as long as we never try to use 792 * iomap to map MMIO below 1GB which should be fine on ppc64 793 */ 794 #define HAVE_ARCH_PIO_SIZE 1 795 #define PIO_OFFSET 0x00000000UL 796 #define PIO_MASK (FULL_IO_SIZE - 1) 797 #define PIO_RESERVED (FULL_IO_SIZE) 798 799 #define mmio_read16be(addr) readw_be(addr) 800 #define mmio_read32be(addr) readl_be(addr) 801 #define mmio_write16be(val, addr) writew_be(val, addr) 802 #define mmio_write32be(val, addr) writel_be(val, addr) 803 #define mmio_insb(addr, dst, count) readsb(addr, dst, count) 804 #define mmio_insw(addr, dst, count) readsw(addr, dst, count) 805 #define mmio_insl(addr, dst, count) readsl(addr, dst, count) 806 #define mmio_outsb(addr, src, count) writesb(addr, src, count) 807 #define mmio_outsw(addr, src, count) writesw(addr, src, count) 808 #define mmio_outsl(addr, src, count) writesl(addr, src, count) 809 810 /** 811 * virt_to_phys - map virtual addresses to physical 812 * @address: address to remap 813 * 814 * The returned physical address is the physical (CPU) mapping for 815 * the memory address given. It is only valid to use this function on 816 * addresses directly mapped or allocated via kmalloc. 817 * 818 * This function does not give bus mappings for DMA transfers. In 819 * almost all conceivable cases a device driver should not be using 820 * this function 821 */ 822 static inline unsigned long virt_to_phys(volatile void * address) 823 { 824 return __pa((unsigned long)address); 825 } 826 827 /** 828 * phys_to_virt - map physical address to virtual 829 * @address: address to remap 830 * 831 * The returned virtual address is a current CPU mapping for 832 * the memory address given. It is only valid to use this function on 833 * addresses that have a kernel mapping 834 * 835 * This function does not handle bus mappings for DMA transfers. In 836 * almost all conceivable cases a device driver should not be using 837 * this function 838 */ 839 static inline void * phys_to_virt(unsigned long address) 840 { 841 return (void *)__va(address); 842 } 843 844 /* 845 * Change "struct page" to physical address. 846 */ 847 #define page_to_phys(page) ((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT) 848 849 /* 850 * 32 bits still uses virt_to_bus() for it's implementation of DMA 851 * mappings se we have to keep it defined here. We also have some old 852 * drivers (shame shame shame) that use bus_to_virt() and haven't been 853 * fixed yet so I need to define it here. 854 */ 855 #ifdef CONFIG_PPC32 856 857 static inline unsigned long virt_to_bus(volatile void * address) 858 { 859 if (address == NULL) 860 return 0; 861 return __pa(address) + PCI_DRAM_OFFSET; 862 } 863 864 static inline void * bus_to_virt(unsigned long address) 865 { 866 if (address == 0) 867 return NULL; 868 return __va(address - PCI_DRAM_OFFSET); 869 } 870 871 #define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET) 872 873 #endif /* CONFIG_PPC32 */ 874 875 /* access ports */ 876 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v)) 877 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v)) 878 879 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v)) 880 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v)) 881 882 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v)) 883 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v)) 884 885 /* Clear and set bits in one shot. These macros can be used to clear and 886 * set multiple bits in a register using a single read-modify-write. These 887 * macros can also be used to set a multiple-bit bit pattern using a mask, 888 * by specifying the mask in the 'clear' parameter and the new bit pattern 889 * in the 'set' parameter. 890 */ 891 892 #define clrsetbits(type, addr, clear, set) \ 893 out_##type((addr), (in_##type(addr) & ~(clear)) | (set)) 894 895 #ifdef __powerpc64__ 896 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set) 897 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set) 898 #endif 899 900 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set) 901 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set) 902 903 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set) 904 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set) 905 906 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set) 907 908 #endif /* __KERNEL__ */ 909 910 #endif /* _ASM_POWERPC_IO_H */ 911