1 #ifndef _ASM_POWERPC_IO_H 2 #define _ASM_POWERPC_IO_H 3 #ifdef __KERNEL__ 4 5 /* 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 /* Check of existence of legacy devices */ 13 extern int check_legacy_ioport(unsigned long base_port); 14 #define I8042_DATA_REG 0x60 15 #define FDC_BASE 0x3f0 16 /* only relevant for PReP */ 17 #define _PIDXR 0x279 18 #define _PNPWRP 0xa79 19 #define PNPBIOS_BASE 0xf000 20 21 #include <linux/device.h> 22 #include <linux/io.h> 23 24 #include <linux/compiler.h> 25 #include <asm/page.h> 26 #include <asm/byteorder.h> 27 #include <asm/synch.h> 28 #include <asm/delay.h> 29 #include <asm/mmu.h> 30 31 #include <asm-generic/iomap.h> 32 33 #ifdef CONFIG_PPC64 34 #include <asm/paca.h> 35 #endif 36 37 #define SIO_CONFIG_RA 0x398 38 #define SIO_CONFIG_RD 0x399 39 40 #define SLOW_DOWN_IO 41 42 /* 32 bits uses slightly different variables for the various IO 43 * bases. Most of this file only uses _IO_BASE though which we 44 * define properly based on the platform 45 */ 46 #ifndef CONFIG_PCI 47 #define _IO_BASE 0 48 #define _ISA_MEM_BASE 0 49 #define PCI_DRAM_OFFSET 0 50 #elif defined(CONFIG_PPC32) 51 #define _IO_BASE isa_io_base 52 #define _ISA_MEM_BASE isa_mem_base 53 #define PCI_DRAM_OFFSET pci_dram_offset 54 #else 55 #define _IO_BASE pci_io_base 56 #define _ISA_MEM_BASE isa_mem_base 57 #define PCI_DRAM_OFFSET 0 58 #endif 59 60 extern unsigned long isa_io_base; 61 extern unsigned long pci_io_base; 62 extern unsigned long pci_dram_offset; 63 64 extern resource_size_t isa_mem_base; 65 66 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_INDIRECT_IO) 67 #error CONFIG_PPC_INDIRECT_IO is not yet supported on 32 bits 68 #endif 69 70 /* 71 * 72 * Low level MMIO accessors 73 * 74 * This provides the non-bus specific accessors to MMIO. Those are PowerPC 75 * specific and thus shouldn't be used in generic code. The accessors 76 * provided here are: 77 * 78 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64 79 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64 80 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns 81 * 82 * Those operate directly on a kernel virtual address. Note that the prototype 83 * for the out_* accessors has the arguments in opposite order from the usual 84 * linux PCI accessors. Unlike those, they take the address first and the value 85 * next. 86 * 87 * Note: I might drop the _ns suffix on the stream operations soon as it is 88 * simply normal for stream operations to not swap in the first place. 89 * 90 */ 91 92 #ifdef CONFIG_PPC64 93 #define IO_SET_SYNC_FLAG() do { local_paca->io_sync = 1; } while(0) 94 #else 95 #define IO_SET_SYNC_FLAG() 96 #endif 97 98 /* gcc 4.0 and older doesn't have 'Z' constraint */ 99 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0) 100 #define DEF_MMIO_IN_LE(name, size, insn) \ 101 static inline u##size name(const volatile u##size __iomem *addr) \ 102 { \ 103 u##size ret; \ 104 __asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync" \ 105 : "=r" (ret) : "r" (addr), "m" (*addr) : "memory"); \ 106 return ret; \ 107 } 108 109 #define DEF_MMIO_OUT_LE(name, size, insn) \ 110 static inline void name(volatile u##size __iomem *addr, u##size val) \ 111 { \ 112 __asm__ __volatile__("sync;"#insn" %1,0,%2" \ 113 : "=m" (*addr) : "r" (val), "r" (addr) : "memory"); \ 114 IO_SET_SYNC_FLAG(); \ 115 } 116 #else /* newer gcc */ 117 #define DEF_MMIO_IN_LE(name, size, insn) \ 118 static inline u##size name(const volatile u##size __iomem *addr) \ 119 { \ 120 u##size ret; \ 121 __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync" \ 122 : "=r" (ret) : "Z" (*addr) : "memory"); \ 123 return ret; \ 124 } 125 126 #define DEF_MMIO_OUT_LE(name, size, insn) \ 127 static inline void name(volatile u##size __iomem *addr, u##size val) \ 128 { \ 129 __asm__ __volatile__("sync;"#insn" %1,%y0" \ 130 : "=Z" (*addr) : "r" (val) : "memory"); \ 131 IO_SET_SYNC_FLAG(); \ 132 } 133 #endif 134 135 #define DEF_MMIO_IN_BE(name, size, insn) \ 136 static inline u##size name(const volatile u##size __iomem *addr) \ 137 { \ 138 u##size ret; \ 139 __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\ 140 : "=r" (ret) : "m" (*addr) : "memory"); \ 141 return ret; \ 142 } 143 144 #define DEF_MMIO_OUT_BE(name, size, insn) \ 145 static inline void name(volatile u##size __iomem *addr, u##size val) \ 146 { \ 147 __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0" \ 148 : "=m" (*addr) : "r" (val) : "memory"); \ 149 IO_SET_SYNC_FLAG(); \ 150 } 151 152 153 DEF_MMIO_IN_BE(in_8, 8, lbz); 154 DEF_MMIO_IN_BE(in_be16, 16, lhz); 155 DEF_MMIO_IN_BE(in_be32, 32, lwz); 156 DEF_MMIO_IN_LE(in_le16, 16, lhbrx); 157 DEF_MMIO_IN_LE(in_le32, 32, lwbrx); 158 159 DEF_MMIO_OUT_BE(out_8, 8, stb); 160 DEF_MMIO_OUT_BE(out_be16, 16, sth); 161 DEF_MMIO_OUT_BE(out_be32, 32, stw); 162 DEF_MMIO_OUT_LE(out_le16, 16, sthbrx); 163 DEF_MMIO_OUT_LE(out_le32, 32, stwbrx); 164 165 #ifdef __powerpc64__ 166 DEF_MMIO_OUT_BE(out_be64, 64, std); 167 DEF_MMIO_IN_BE(in_be64, 64, ld); 168 169 /* There is no asm instructions for 64 bits reverse loads and stores */ 170 static inline u64 in_le64(const volatile u64 __iomem *addr) 171 { 172 return swab64(in_be64(addr)); 173 } 174 175 static inline void out_le64(volatile u64 __iomem *addr, u64 val) 176 { 177 out_be64(addr, swab64(val)); 178 } 179 #endif /* __powerpc64__ */ 180 181 /* 182 * Low level IO stream instructions are defined out of line for now 183 */ 184 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count); 185 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count); 186 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count); 187 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count); 188 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count); 189 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count); 190 191 /* The _ns naming is historical and will be removed. For now, just #define 192 * the non _ns equivalent names 193 */ 194 #define _insw _insw_ns 195 #define _insl _insl_ns 196 #define _outsw _outsw_ns 197 #define _outsl _outsl_ns 198 199 200 /* 201 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line 202 */ 203 204 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n); 205 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src, 206 unsigned long n); 207 extern void _memcpy_toio(volatile void __iomem *dest, const void *src, 208 unsigned long n); 209 210 /* 211 * 212 * PCI and standard ISA accessors 213 * 214 * Those are globally defined linux accessors for devices on PCI or ISA 215 * busses. They follow the Linux defined semantics. The current implementation 216 * for PowerPC is as close as possible to the x86 version of these, and thus 217 * provides fairly heavy weight barriers for the non-raw versions 218 * 219 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_IO 220 * allowing the platform to provide its own implementation of some or all 221 * of the accessors. 222 */ 223 224 /* 225 * Include the EEH definitions when EEH is enabled only so they don't get 226 * in the way when building for 32 bits 227 */ 228 #ifdef CONFIG_EEH 229 #include <asm/eeh.h> 230 #endif 231 232 /* Shortcut to the MMIO argument pointer */ 233 #define PCI_IO_ADDR volatile void __iomem * 234 235 /* Indirect IO address tokens: 236 * 237 * When CONFIG_PPC_INDIRECT_IO is set, the platform can provide hooks 238 * on all IOs. (Note that this is all 64 bits only for now) 239 * 240 * To help platforms who may need to differenciate MMIO addresses in 241 * their hooks, a bitfield is reserved for use by the platform near the 242 * top of MMIO addresses (not PIO, those have to cope the hard way). 243 * 244 * This bit field is 12 bits and is at the top of the IO virtual 245 * addresses PCI_IO_INDIRECT_TOKEN_MASK. 246 * 247 * The kernel virtual space is thus: 248 * 249 * 0xD000000000000000 : vmalloc 250 * 0xD000080000000000 : PCI PHB IO space 251 * 0xD000080080000000 : ioremap 252 * 0xD0000fffffffffff : end of ioremap region 253 * 254 * Since the top 4 bits are reserved as the region ID, we use thus 255 * the next 12 bits and keep 4 bits available for the future if the 256 * virtual address space is ever to be extended. 257 * 258 * The direct IO mapping operations will then mask off those bits 259 * before doing the actual access, though that only happen when 260 * CONFIG_PPC_INDIRECT_IO is set, thus be careful when you use that 261 * mechanism 262 */ 263 264 #ifdef CONFIG_PPC_INDIRECT_IO 265 #define PCI_IO_IND_TOKEN_MASK 0x0fff000000000000ul 266 #define PCI_IO_IND_TOKEN_SHIFT 48 267 #define PCI_FIX_ADDR(addr) \ 268 ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK)) 269 #define PCI_GET_ADDR_TOKEN(addr) \ 270 (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \ 271 PCI_IO_IND_TOKEN_SHIFT) 272 #define PCI_SET_ADDR_TOKEN(addr, token) \ 273 do { \ 274 unsigned long __a = (unsigned long)(addr); \ 275 __a &= ~PCI_IO_IND_TOKEN_MASK; \ 276 __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \ 277 (addr) = (void __iomem *)__a; \ 278 } while(0) 279 #else 280 #define PCI_FIX_ADDR(addr) (addr) 281 #endif 282 283 284 /* 285 * Non ordered and non-swapping "raw" accessors 286 */ 287 288 static inline unsigned char __raw_readb(const volatile void __iomem *addr) 289 { 290 return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr); 291 } 292 static inline unsigned short __raw_readw(const volatile void __iomem *addr) 293 { 294 return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr); 295 } 296 static inline unsigned int __raw_readl(const volatile void __iomem *addr) 297 { 298 return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr); 299 } 300 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr) 301 { 302 *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v; 303 } 304 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr) 305 { 306 *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v; 307 } 308 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr) 309 { 310 *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v; 311 } 312 313 #ifdef __powerpc64__ 314 static inline unsigned long __raw_readq(const volatile void __iomem *addr) 315 { 316 return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr); 317 } 318 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr) 319 { 320 *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v; 321 } 322 #endif /* __powerpc64__ */ 323 324 /* 325 * 326 * PCI PIO and MMIO accessors. 327 * 328 * 329 * On 32 bits, PIO operations have a recovery mechanism in case they trigger 330 * machine checks (which they occasionally do when probing non existing 331 * IO ports on some platforms, like PowerMac and 8xx). 332 * I always found it to be of dubious reliability and I am tempted to get 333 * rid of it one of these days. So if you think it's important to keep it, 334 * please voice up asap. We never had it for 64 bits and I do not intend 335 * to port it over 336 */ 337 338 #ifdef CONFIG_PPC32 339 340 #define __do_in_asm(name, op) \ 341 static inline unsigned int name(unsigned int port) \ 342 { \ 343 unsigned int x; \ 344 __asm__ __volatile__( \ 345 "sync\n" \ 346 "0:" op " %0,0,%1\n" \ 347 "1: twi 0,%0,0\n" \ 348 "2: isync\n" \ 349 "3: nop\n" \ 350 "4:\n" \ 351 ".section .fixup,\"ax\"\n" \ 352 "5: li %0,-1\n" \ 353 " b 4b\n" \ 354 ".previous\n" \ 355 ".section __ex_table,\"a\"\n" \ 356 " .align 2\n" \ 357 " .long 0b,5b\n" \ 358 " .long 1b,5b\n" \ 359 " .long 2b,5b\n" \ 360 " .long 3b,5b\n" \ 361 ".previous" \ 362 : "=&r" (x) \ 363 : "r" (port + _IO_BASE) \ 364 : "memory"); \ 365 return x; \ 366 } 367 368 #define __do_out_asm(name, op) \ 369 static inline void name(unsigned int val, unsigned int port) \ 370 { \ 371 __asm__ __volatile__( \ 372 "sync\n" \ 373 "0:" op " %0,0,%1\n" \ 374 "1: sync\n" \ 375 "2:\n" \ 376 ".section __ex_table,\"a\"\n" \ 377 " .align 2\n" \ 378 " .long 0b,2b\n" \ 379 " .long 1b,2b\n" \ 380 ".previous" \ 381 : : "r" (val), "r" (port + _IO_BASE) \ 382 : "memory"); \ 383 } 384 385 __do_in_asm(_rec_inb, "lbzx") 386 __do_in_asm(_rec_inw, "lhbrx") 387 __do_in_asm(_rec_inl, "lwbrx") 388 __do_out_asm(_rec_outb, "stbx") 389 __do_out_asm(_rec_outw, "sthbrx") 390 __do_out_asm(_rec_outl, "stwbrx") 391 392 #endif /* CONFIG_PPC32 */ 393 394 /* The "__do_*" operations below provide the actual "base" implementation 395 * for each of the defined acccessor. Some of them use the out_* functions 396 * directly, some of them still use EEH, though we might change that in the 397 * future. Those macros below provide the necessary argument swapping and 398 * handling of the IO base for PIO. 399 * 400 * They are themselves used by the macros that define the actual accessors 401 * and can be used by the hooks if any. 402 * 403 * Note that PIO operations are always defined in terms of their corresonding 404 * MMIO operations. That allows platforms like iSeries who want to modify the 405 * behaviour of both to only hook on the MMIO version and get both. It's also 406 * possible to hook directly at the toplevel PIO operation if they have to 407 * be handled differently 408 */ 409 #define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val) 410 #define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val) 411 #define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val) 412 #define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val) 413 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val) 414 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val) 415 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val) 416 417 #ifdef CONFIG_EEH 418 #define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr)) 419 #define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr)) 420 #define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr)) 421 #define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr)) 422 #define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr)) 423 #define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr)) 424 #define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr)) 425 #else /* CONFIG_EEH */ 426 #define __do_readb(addr) in_8(PCI_FIX_ADDR(addr)) 427 #define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr)) 428 #define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr)) 429 #define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr)) 430 #define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr)) 431 #define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr)) 432 #define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr)) 433 #endif /* !defined(CONFIG_EEH) */ 434 435 #ifdef CONFIG_PPC32 436 #define __do_outb(val, port) _rec_outb(val, port) 437 #define __do_outw(val, port) _rec_outw(val, port) 438 #define __do_outl(val, port) _rec_outl(val, port) 439 #define __do_inb(port) _rec_inb(port) 440 #define __do_inw(port) _rec_inw(port) 441 #define __do_inl(port) _rec_inl(port) 442 #else /* CONFIG_PPC32 */ 443 #define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port); 444 #define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port); 445 #define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port); 446 #define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port); 447 #define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port); 448 #define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port); 449 #endif /* !CONFIG_PPC32 */ 450 451 #ifdef CONFIG_EEH 452 #define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n)) 453 #define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n)) 454 #define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n)) 455 #else /* CONFIG_EEH */ 456 #define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n)) 457 #define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n)) 458 #define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n)) 459 #endif /* !CONFIG_EEH */ 460 #define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n)) 461 #define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n)) 462 #define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n)) 463 464 #define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 465 #define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 466 #define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 467 #define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 468 #define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 469 #define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 470 471 #define __do_memset_io(addr, c, n) \ 472 _memset_io(PCI_FIX_ADDR(addr), c, n) 473 #define __do_memcpy_toio(dst, src, n) \ 474 _memcpy_toio(PCI_FIX_ADDR(dst), src, n) 475 476 #ifdef CONFIG_EEH 477 #define __do_memcpy_fromio(dst, src, n) \ 478 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n) 479 #else /* CONFIG_EEH */ 480 #define __do_memcpy_fromio(dst, src, n) \ 481 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n) 482 #endif /* !CONFIG_EEH */ 483 484 #ifdef CONFIG_PPC_INDIRECT_IO 485 #define DEF_PCI_HOOK(x) x 486 #else 487 #define DEF_PCI_HOOK(x) NULL 488 #endif 489 490 /* Structure containing all the hooks */ 491 extern struct ppc_pci_io { 492 493 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) ret (*name) at; 494 #define DEF_PCI_AC_NORET(name, at, al, space, aa) void (*name) at; 495 496 #include <asm/io-defs.h> 497 498 #undef DEF_PCI_AC_RET 499 #undef DEF_PCI_AC_NORET 500 501 } ppc_pci_io; 502 503 /* The inline wrappers */ 504 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) \ 505 static inline ret name at \ 506 { \ 507 if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL) \ 508 return ppc_pci_io.name al; \ 509 return __do_##name al; \ 510 } 511 512 #define DEF_PCI_AC_NORET(name, at, al, space, aa) \ 513 static inline void name at \ 514 { \ 515 if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL) \ 516 ppc_pci_io.name al; \ 517 else \ 518 __do_##name al; \ 519 } 520 521 #include <asm/io-defs.h> 522 523 #undef DEF_PCI_AC_RET 524 #undef DEF_PCI_AC_NORET 525 526 /* Some drivers check for the presence of readq & writeq with 527 * a #ifdef, so we make them happy here. 528 */ 529 #ifdef __powerpc64__ 530 #define readq readq 531 #define writeq writeq 532 #endif 533 534 /* 535 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 536 * access 537 */ 538 #define xlate_dev_mem_ptr(p) __va(p) 539 540 /* 541 * Convert a virtual cached pointer to an uncached pointer 542 */ 543 #define xlate_dev_kmem_ptr(p) p 544 545 /* 546 * We don't do relaxed operations yet, at least not with this semantic 547 */ 548 #define readb_relaxed(addr) readb(addr) 549 #define readw_relaxed(addr) readw(addr) 550 #define readl_relaxed(addr) readl(addr) 551 #define readq_relaxed(addr) readq(addr) 552 553 #ifdef CONFIG_PPC32 554 #define mmiowb() 555 #else 556 /* 557 * Enforce synchronisation of stores vs. spin_unlock 558 * (this does it explicitly, though our implementation of spin_unlock 559 * does it implicitely too) 560 */ 561 static inline void mmiowb(void) 562 { 563 unsigned long tmp; 564 565 __asm__ __volatile__("sync; li %0,0; stb %0,%1(13)" 566 : "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync)) 567 : "memory"); 568 } 569 #endif /* !CONFIG_PPC32 */ 570 571 static inline void iosync(void) 572 { 573 __asm__ __volatile__ ("sync" : : : "memory"); 574 } 575 576 /* Enforce in-order execution of data I/O. 577 * No distinction between read/write on PPC; use eieio for all three. 578 * Those are fairly week though. They don't provide a barrier between 579 * MMIO and cacheable storage nor do they provide a barrier vs. locks, 580 * they only provide barriers between 2 __raw MMIO operations and 581 * possibly break write combining. 582 */ 583 #define iobarrier_rw() eieio() 584 #define iobarrier_r() eieio() 585 #define iobarrier_w() eieio() 586 587 588 /* 589 * output pause versions need a delay at least for the 590 * w83c105 ide controller in a p610. 591 */ 592 #define inb_p(port) inb(port) 593 #define outb_p(val, port) (udelay(1), outb((val), (port))) 594 #define inw_p(port) inw(port) 595 #define outw_p(val, port) (udelay(1), outw((val), (port))) 596 #define inl_p(port) inl(port) 597 #define outl_p(val, port) (udelay(1), outl((val), (port))) 598 599 600 #define IO_SPACE_LIMIT ~(0UL) 601 602 603 /** 604 * ioremap - map bus memory into CPU space 605 * @address: bus address of the memory 606 * @size: size of the resource to map 607 * 608 * ioremap performs a platform specific sequence of operations to 609 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 610 * writew/writel functions and the other mmio helpers. The returned 611 * address is not guaranteed to be usable directly as a virtual 612 * address. 613 * 614 * We provide a few variations of it: 615 * 616 * * ioremap is the standard one and provides non-cacheable guarded mappings 617 * and can be hooked by the platform via ppc_md 618 * 619 * * ioremap_flags allows to specify the page flags as an argument and can 620 * also be hooked by the platform via ppc_md. ioremap_prot is the exact 621 * same thing as ioremap_flags. 622 * 623 * * ioremap_nocache is identical to ioremap 624 * 625 * * iounmap undoes such a mapping and can be hooked 626 * 627 * * __ioremap_at (and the pending __iounmap_at) are low level functions to 628 * create hand-made mappings for use only by the PCI code and cannot 629 * currently be hooked. Must be page aligned. 630 * 631 * * __ioremap is the low level implementation used by ioremap and 632 * ioremap_flags and cannot be hooked (but can be used by a hook on one 633 * of the previous ones) 634 * 635 * * __ioremap_caller is the same as above but takes an explicit caller 636 * reference rather than using __builtin_return_address(0) 637 * 638 * * __iounmap, is the low level implementation used by iounmap and cannot 639 * be hooked (but can be used by a hook on iounmap) 640 * 641 */ 642 extern void __iomem *ioremap(phys_addr_t address, unsigned long size); 643 extern void __iomem *ioremap_flags(phys_addr_t address, unsigned long size, 644 unsigned long flags); 645 #define ioremap_nocache(addr, size) ioremap((addr), (size)) 646 #define ioremap_prot(addr, size, prot) ioremap_flags((addr), (size), (prot)) 647 648 extern void iounmap(volatile void __iomem *addr); 649 650 extern void __iomem *__ioremap(phys_addr_t, unsigned long size, 651 unsigned long flags); 652 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size, 653 unsigned long flags, void *caller); 654 655 extern void __iounmap(volatile void __iomem *addr); 656 657 extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea, 658 unsigned long size, unsigned long flags); 659 extern void __iounmap_at(void *ea, unsigned long size); 660 661 /* 662 * When CONFIG_PPC_INDIRECT_IO is set, we use the generic iomap implementation 663 * which needs some additional definitions here. They basically allow PIO 664 * space overall to be 1GB. This will work as long as we never try to use 665 * iomap to map MMIO below 1GB which should be fine on ppc64 666 */ 667 #define HAVE_ARCH_PIO_SIZE 1 668 #define PIO_OFFSET 0x00000000UL 669 #define PIO_MASK (FULL_IO_SIZE - 1) 670 #define PIO_RESERVED (FULL_IO_SIZE) 671 672 #define mmio_read16be(addr) readw_be(addr) 673 #define mmio_read32be(addr) readl_be(addr) 674 #define mmio_write16be(val, addr) writew_be(val, addr) 675 #define mmio_write32be(val, addr) writel_be(val, addr) 676 #define mmio_insb(addr, dst, count) readsb(addr, dst, count) 677 #define mmio_insw(addr, dst, count) readsw(addr, dst, count) 678 #define mmio_insl(addr, dst, count) readsl(addr, dst, count) 679 #define mmio_outsb(addr, src, count) writesb(addr, src, count) 680 #define mmio_outsw(addr, src, count) writesw(addr, src, count) 681 #define mmio_outsl(addr, src, count) writesl(addr, src, count) 682 683 /** 684 * virt_to_phys - map virtual addresses to physical 685 * @address: address to remap 686 * 687 * The returned physical address is the physical (CPU) mapping for 688 * the memory address given. It is only valid to use this function on 689 * addresses directly mapped or allocated via kmalloc. 690 * 691 * This function does not give bus mappings for DMA transfers. In 692 * almost all conceivable cases a device driver should not be using 693 * this function 694 */ 695 static inline unsigned long virt_to_phys(volatile void * address) 696 { 697 return __pa((unsigned long)address); 698 } 699 700 /** 701 * phys_to_virt - map physical address to virtual 702 * @address: address to remap 703 * 704 * The returned virtual address is a current CPU mapping for 705 * the memory address given. It is only valid to use this function on 706 * addresses that have a kernel mapping 707 * 708 * This function does not handle bus mappings for DMA transfers. In 709 * almost all conceivable cases a device driver should not be using 710 * this function 711 */ 712 static inline void * phys_to_virt(unsigned long address) 713 { 714 return (void *)__va(address); 715 } 716 717 /* 718 * Change "struct page" to physical address. 719 */ 720 #define page_to_phys(page) ((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT) 721 722 /* 723 * 32 bits still uses virt_to_bus() for it's implementation of DMA 724 * mappings se we have to keep it defined here. We also have some old 725 * drivers (shame shame shame) that use bus_to_virt() and haven't been 726 * fixed yet so I need to define it here. 727 */ 728 #ifdef CONFIG_PPC32 729 730 static inline unsigned long virt_to_bus(volatile void * address) 731 { 732 if (address == NULL) 733 return 0; 734 return __pa(address) + PCI_DRAM_OFFSET; 735 } 736 737 static inline void * bus_to_virt(unsigned long address) 738 { 739 if (address == 0) 740 return NULL; 741 return __va(address - PCI_DRAM_OFFSET); 742 } 743 744 #define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET) 745 746 #endif /* CONFIG_PPC32 */ 747 748 /* access ports */ 749 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v)) 750 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v)) 751 752 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v)) 753 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v)) 754 755 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v)) 756 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v)) 757 758 /* Clear and set bits in one shot. These macros can be used to clear and 759 * set multiple bits in a register using a single read-modify-write. These 760 * macros can also be used to set a multiple-bit bit pattern using a mask, 761 * by specifying the mask in the 'clear' parameter and the new bit pattern 762 * in the 'set' parameter. 763 */ 764 765 #define clrsetbits(type, addr, clear, set) \ 766 out_##type((addr), (in_##type(addr) & ~(clear)) | (set)) 767 768 #ifdef __powerpc64__ 769 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set) 770 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set) 771 #endif 772 773 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set) 774 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set) 775 776 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set) 777 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set) 778 779 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set) 780 781 void __iomem *devm_ioremap_prot(struct device *dev, resource_size_t offset, 782 size_t size, unsigned long flags); 783 784 #endif /* __KERNEL__ */ 785 786 #endif /* _ASM_POWERPC_IO_H */ 787