xref: /openbmc/linux/arch/powerpc/include/asm/io.h (revision d2ba09c1)
1 #ifndef _ASM_POWERPC_IO_H
2 #define _ASM_POWERPC_IO_H
3 #ifdef __KERNEL__
4 
5 #define ARCH_HAS_IOREMAP_WC
6 
7 /*
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or (at your option) any later version.
12  */
13 
14 /* Check of existence of legacy devices */
15 extern int check_legacy_ioport(unsigned long base_port);
16 #define I8042_DATA_REG	0x60
17 #define FDC_BASE	0x3f0
18 
19 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
20 extern struct pci_dev *isa_bridge_pcidev;
21 /*
22  * has legacy ISA devices ?
23  */
24 #define arch_has_dev_port()	(isa_bridge_pcidev != NULL || isa_io_special)
25 #endif
26 
27 #include <linux/device.h>
28 #include <linux/compiler.h>
29 #include <asm/page.h>
30 #include <asm/byteorder.h>
31 #include <asm/synch.h>
32 #include <asm/delay.h>
33 #include <asm/mmu.h>
34 #include <asm/ppc_asm.h>
35 
36 #ifdef CONFIG_PPC64
37 #include <asm/paca.h>
38 #endif
39 
40 #define SIO_CONFIG_RA	0x398
41 #define SIO_CONFIG_RD	0x399
42 
43 #define SLOW_DOWN_IO
44 
45 /* 32 bits uses slightly different variables for the various IO
46  * bases. Most of this file only uses _IO_BASE though which we
47  * define properly based on the platform
48  */
49 #ifndef CONFIG_PCI
50 #define _IO_BASE	0
51 #define _ISA_MEM_BASE	0
52 #define PCI_DRAM_OFFSET 0
53 #elif defined(CONFIG_PPC32)
54 #define _IO_BASE	isa_io_base
55 #define _ISA_MEM_BASE	isa_mem_base
56 #define PCI_DRAM_OFFSET	pci_dram_offset
57 #else
58 #define _IO_BASE	pci_io_base
59 #define _ISA_MEM_BASE	isa_mem_base
60 #define PCI_DRAM_OFFSET	0
61 #endif
62 
63 extern unsigned long isa_io_base;
64 extern unsigned long pci_io_base;
65 extern unsigned long pci_dram_offset;
66 
67 extern resource_size_t isa_mem_base;
68 
69 /* Boolean set by platform if PIO accesses are suppored while _IO_BASE
70  * is not set or addresses cannot be translated to MMIO. This is typically
71  * set when the platform supports "special" PIO accesses via a non memory
72  * mapped mechanism, and allows things like the early udbg UART code to
73  * function.
74  */
75 extern bool isa_io_special;
76 
77 #ifdef CONFIG_PPC32
78 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
79 #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
80 #endif
81 #endif
82 
83 /*
84  *
85  * Low level MMIO accessors
86  *
87  * This provides the non-bus specific accessors to MMIO. Those are PowerPC
88  * specific and thus shouldn't be used in generic code. The accessors
89  * provided here are:
90  *
91  *	in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
92  *	out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
93  *	_insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
94  *
95  * Those operate directly on a kernel virtual address. Note that the prototype
96  * for the out_* accessors has the arguments in opposite order from the usual
97  * linux PCI accessors. Unlike those, they take the address first and the value
98  * next.
99  *
100  * Note: I might drop the _ns suffix on the stream operations soon as it is
101  * simply normal for stream operations to not swap in the first place.
102  *
103  */
104 
105 #ifdef CONFIG_PPC64
106 #define IO_SET_SYNC_FLAG()	do { local_paca->io_sync = 1; } while(0)
107 #else
108 #define IO_SET_SYNC_FLAG()
109 #endif
110 
111 /* gcc 4.0 and older doesn't have 'Z' constraint */
112 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0)
113 #define DEF_MMIO_IN_X(name, size, insn)				\
114 static inline u##size name(const volatile u##size __iomem *addr)	\
115 {									\
116 	u##size ret;							\
117 	__asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync"	\
118 		: "=r" (ret) : "r" (addr), "m" (*addr) : "memory");	\
119 	return ret;							\
120 }
121 
122 #define DEF_MMIO_OUT_X(name, size, insn)				\
123 static inline void name(volatile u##size __iomem *addr, u##size val)	\
124 {									\
125 	__asm__ __volatile__("sync;"#insn" %1,0,%2"			\
126 		: "=m" (*addr) : "r" (val), "r" (addr) : "memory");	\
127 	IO_SET_SYNC_FLAG();						\
128 }
129 #else /* newer gcc */
130 #define DEF_MMIO_IN_X(name, size, insn)				\
131 static inline u##size name(const volatile u##size __iomem *addr)	\
132 {									\
133 	u##size ret;							\
134 	__asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"	\
135 		: "=r" (ret) : "Z" (*addr) : "memory");			\
136 	return ret;							\
137 }
138 
139 #define DEF_MMIO_OUT_X(name, size, insn)				\
140 static inline void name(volatile u##size __iomem *addr, u##size val)	\
141 {									\
142 	__asm__ __volatile__("sync;"#insn" %1,%y0"			\
143 		: "=Z" (*addr) : "r" (val) : "memory");			\
144 	IO_SET_SYNC_FLAG();						\
145 }
146 #endif
147 
148 #define DEF_MMIO_IN_D(name, size, insn)				\
149 static inline u##size name(const volatile u##size __iomem *addr)	\
150 {									\
151 	u##size ret;							\
152 	__asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
153 		: "=r" (ret) : "m" (*addr) : "memory");			\
154 	return ret;							\
155 }
156 
157 #define DEF_MMIO_OUT_D(name, size, insn)				\
158 static inline void name(volatile u##size __iomem *addr, u##size val)	\
159 {									\
160 	__asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"			\
161 		: "=m" (*addr) : "r" (val) : "memory");			\
162 	IO_SET_SYNC_FLAG();						\
163 }
164 
165 DEF_MMIO_IN_D(in_8,     8, lbz);
166 DEF_MMIO_OUT_D(out_8,   8, stb);
167 
168 #ifdef __BIG_ENDIAN__
169 DEF_MMIO_IN_D(in_be16, 16, lhz);
170 DEF_MMIO_IN_D(in_be32, 32, lwz);
171 DEF_MMIO_IN_X(in_le16, 16, lhbrx);
172 DEF_MMIO_IN_X(in_le32, 32, lwbrx);
173 
174 DEF_MMIO_OUT_D(out_be16, 16, sth);
175 DEF_MMIO_OUT_D(out_be32, 32, stw);
176 DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
177 DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
178 #else
179 DEF_MMIO_IN_X(in_be16, 16, lhbrx);
180 DEF_MMIO_IN_X(in_be32, 32, lwbrx);
181 DEF_MMIO_IN_D(in_le16, 16, lhz);
182 DEF_MMIO_IN_D(in_le32, 32, lwz);
183 
184 DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
185 DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
186 DEF_MMIO_OUT_D(out_le16, 16, sth);
187 DEF_MMIO_OUT_D(out_le32, 32, stw);
188 
189 #endif /* __BIG_ENDIAN */
190 
191 #ifdef __powerpc64__
192 
193 #ifdef __BIG_ENDIAN__
194 DEF_MMIO_OUT_D(out_be64, 64, std);
195 DEF_MMIO_IN_D(in_be64, 64, ld);
196 
197 /* There is no asm instructions for 64 bits reverse loads and stores */
198 static inline u64 in_le64(const volatile u64 __iomem *addr)
199 {
200 	return swab64(in_be64(addr));
201 }
202 
203 static inline void out_le64(volatile u64 __iomem *addr, u64 val)
204 {
205 	out_be64(addr, swab64(val));
206 }
207 #else
208 DEF_MMIO_OUT_D(out_le64, 64, std);
209 DEF_MMIO_IN_D(in_le64, 64, ld);
210 
211 /* There is no asm instructions for 64 bits reverse loads and stores */
212 static inline u64 in_be64(const volatile u64 __iomem *addr)
213 {
214 	return swab64(in_le64(addr));
215 }
216 
217 static inline void out_be64(volatile u64 __iomem *addr, u64 val)
218 {
219 	out_le64(addr, swab64(val));
220 }
221 
222 #endif
223 #endif /* __powerpc64__ */
224 
225 /*
226  * Low level IO stream instructions are defined out of line for now
227  */
228 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
229 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
230 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
231 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
232 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
233 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
234 
235 /* The _ns naming is historical and will be removed. For now, just #define
236  * the non _ns equivalent names
237  */
238 #define _insw	_insw_ns
239 #define _insl	_insl_ns
240 #define _outsw	_outsw_ns
241 #define _outsl	_outsl_ns
242 
243 
244 /*
245  * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
246  */
247 
248 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
249 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
250 			   unsigned long n);
251 extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
252 			 unsigned long n);
253 
254 /*
255  *
256  * PCI and standard ISA accessors
257  *
258  * Those are globally defined linux accessors for devices on PCI or ISA
259  * busses. They follow the Linux defined semantics. The current implementation
260  * for PowerPC is as close as possible to the x86 version of these, and thus
261  * provides fairly heavy weight barriers for the non-raw versions
262  *
263  * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
264  * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
265  * own implementation of some or all of the accessors.
266  */
267 
268 /*
269  * Include the EEH definitions when EEH is enabled only so they don't get
270  * in the way when building for 32 bits
271  */
272 #ifdef CONFIG_EEH
273 #include <asm/eeh.h>
274 #endif
275 
276 /* Shortcut to the MMIO argument pointer */
277 #define PCI_IO_ADDR	volatile void __iomem *
278 
279 /* Indirect IO address tokens:
280  *
281  * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
282  * on all MMIOs. (Note that this is all 64 bits only for now)
283  *
284  * To help platforms who may need to differentiate MMIO addresses in
285  * their hooks, a bitfield is reserved for use by the platform near the
286  * top of MMIO addresses (not PIO, those have to cope the hard way).
287  *
288  * This bit field is 12 bits and is at the top of the IO virtual
289  * addresses PCI_IO_INDIRECT_TOKEN_MASK.
290  *
291  * The kernel virtual space is thus:
292  *
293  *  0xD000000000000000		: vmalloc
294  *  0xD000080000000000		: PCI PHB IO space
295  *  0xD000080080000000		: ioremap
296  *  0xD0000fffffffffff		: end of ioremap region
297  *
298  * Since the top 4 bits are reserved as the region ID, we use thus
299  * the next 12 bits and keep 4 bits available for the future if the
300  * virtual address space is ever to be extended.
301  *
302  * The direct IO mapping operations will then mask off those bits
303  * before doing the actual access, though that only happen when
304  * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
305  * mechanism
306  *
307  * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
308  * all PIO functions call through a hook.
309  */
310 
311 #ifdef CONFIG_PPC_INDIRECT_MMIO
312 #define PCI_IO_IND_TOKEN_MASK	0x0fff000000000000ul
313 #define PCI_IO_IND_TOKEN_SHIFT	48
314 #define PCI_FIX_ADDR(addr)						\
315 	((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
316 #define PCI_GET_ADDR_TOKEN(addr)					\
317 	(((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> 		\
318 		PCI_IO_IND_TOKEN_SHIFT)
319 #define PCI_SET_ADDR_TOKEN(addr, token) 				\
320 do {									\
321 	unsigned long __a = (unsigned long)(addr);			\
322 	__a &= ~PCI_IO_IND_TOKEN_MASK;					\
323 	__a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;	\
324 	(addr) = (void __iomem *)__a;					\
325 } while(0)
326 #else
327 #define PCI_FIX_ADDR(addr) (addr)
328 #endif
329 
330 
331 /*
332  * Non ordered and non-swapping "raw" accessors
333  */
334 
335 static inline unsigned char __raw_readb(const volatile void __iomem *addr)
336 {
337 	return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
338 }
339 static inline unsigned short __raw_readw(const volatile void __iomem *addr)
340 {
341 	return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
342 }
343 static inline unsigned int __raw_readl(const volatile void __iomem *addr)
344 {
345 	return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
346 }
347 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
348 {
349 	*(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
350 }
351 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
352 {
353 	*(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
354 }
355 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
356 {
357 	*(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
358 }
359 
360 #ifdef __powerpc64__
361 static inline unsigned long __raw_readq(const volatile void __iomem *addr)
362 {
363 	return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
364 }
365 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
366 {
367 	*(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
368 }
369 
370 /*
371  * Real mode versions of the above. Those instructions are only supposed
372  * to be used in hypervisor real mode as per the architecture spec.
373  */
374 static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr)
375 {
376 	__asm__ __volatile__("stbcix %0,0,%1"
377 		: : "r" (val), "r" (paddr) : "memory");
378 }
379 
380 static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr)
381 {
382 	__asm__ __volatile__("sthcix %0,0,%1"
383 		: : "r" (val), "r" (paddr) : "memory");
384 }
385 
386 static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr)
387 {
388 	__asm__ __volatile__("stwcix %0,0,%1"
389 		: : "r" (val), "r" (paddr) : "memory");
390 }
391 
392 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
393 {
394 	__asm__ __volatile__("stdcix %0,0,%1"
395 		: : "r" (val), "r" (paddr) : "memory");
396 }
397 
398 static inline u8 __raw_rm_readb(volatile void __iomem *paddr)
399 {
400 	u8 ret;
401 	__asm__ __volatile__("lbzcix %0,0, %1"
402 			     : "=r" (ret) : "r" (paddr) : "memory");
403 	return ret;
404 }
405 
406 static inline u16 __raw_rm_readw(volatile void __iomem *paddr)
407 {
408 	u16 ret;
409 	__asm__ __volatile__("lhzcix %0,0, %1"
410 			     : "=r" (ret) : "r" (paddr) : "memory");
411 	return ret;
412 }
413 
414 static inline u32 __raw_rm_readl(volatile void __iomem *paddr)
415 {
416 	u32 ret;
417 	__asm__ __volatile__("lwzcix %0,0, %1"
418 			     : "=r" (ret) : "r" (paddr) : "memory");
419 	return ret;
420 }
421 
422 static inline u64 __raw_rm_readq(volatile void __iomem *paddr)
423 {
424 	u64 ret;
425 	__asm__ __volatile__("ldcix %0,0, %1"
426 			     : "=r" (ret) : "r" (paddr) : "memory");
427 	return ret;
428 }
429 #endif /* __powerpc64__ */
430 
431 /*
432  *
433  * PCI PIO and MMIO accessors.
434  *
435  *
436  * On 32 bits, PIO operations have a recovery mechanism in case they trigger
437  * machine checks (which they occasionally do when probing non existing
438  * IO ports on some platforms, like PowerMac and 8xx).
439  * I always found it to be of dubious reliability and I am tempted to get
440  * rid of it one of these days. So if you think it's important to keep it,
441  * please voice up asap. We never had it for 64 bits and I do not intend
442  * to port it over
443  */
444 
445 #ifdef CONFIG_PPC32
446 
447 #define __do_in_asm(name, op)				\
448 static inline unsigned int name(unsigned int port)	\
449 {							\
450 	unsigned int x;					\
451 	__asm__ __volatile__(				\
452 		"sync\n"				\
453 		"0:"	op "	%0,0,%1\n"		\
454 		"1:	twi	0,%0,0\n"		\
455 		"2:	isync\n"			\
456 		"3:	nop\n"				\
457 		"4:\n"					\
458 		".section .fixup,\"ax\"\n"		\
459 		"5:	li	%0,-1\n"		\
460 		"	b	4b\n"			\
461 		".previous\n"				\
462 		EX_TABLE(0b, 5b)			\
463 		EX_TABLE(1b, 5b)			\
464 		EX_TABLE(2b, 5b)			\
465 		EX_TABLE(3b, 5b)			\
466 		: "=&r" (x)				\
467 		: "r" (port + _IO_BASE)			\
468 		: "memory");  				\
469 	return x;					\
470 }
471 
472 #define __do_out_asm(name, op)				\
473 static inline void name(unsigned int val, unsigned int port) \
474 {							\
475 	__asm__ __volatile__(				\
476 		"sync\n"				\
477 		"0:" op " %0,0,%1\n"			\
478 		"1:	sync\n"				\
479 		"2:\n"					\
480 		EX_TABLE(0b, 2b)			\
481 		EX_TABLE(1b, 2b)			\
482 		: : "r" (val), "r" (port + _IO_BASE)	\
483 		: "memory");   	   	   		\
484 }
485 
486 __do_in_asm(_rec_inb, "lbzx")
487 __do_in_asm(_rec_inw, "lhbrx")
488 __do_in_asm(_rec_inl, "lwbrx")
489 __do_out_asm(_rec_outb, "stbx")
490 __do_out_asm(_rec_outw, "sthbrx")
491 __do_out_asm(_rec_outl, "stwbrx")
492 
493 #endif /* CONFIG_PPC32 */
494 
495 /* The "__do_*" operations below provide the actual "base" implementation
496  * for each of the defined accessors. Some of them use the out_* functions
497  * directly, some of them still use EEH, though we might change that in the
498  * future. Those macros below provide the necessary argument swapping and
499  * handling of the IO base for PIO.
500  *
501  * They are themselves used by the macros that define the actual accessors
502  * and can be used by the hooks if any.
503  *
504  * Note that PIO operations are always defined in terms of their corresonding
505  * MMIO operations. That allows platforms like iSeries who want to modify the
506  * behaviour of both to only hook on the MMIO version and get both. It's also
507  * possible to hook directly at the toplevel PIO operation if they have to
508  * be handled differently
509  */
510 #define __do_writeb(val, addr)	out_8(PCI_FIX_ADDR(addr), val)
511 #define __do_writew(val, addr)	out_le16(PCI_FIX_ADDR(addr), val)
512 #define __do_writel(val, addr)	out_le32(PCI_FIX_ADDR(addr), val)
513 #define __do_writeq(val, addr)	out_le64(PCI_FIX_ADDR(addr), val)
514 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
515 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
516 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
517 
518 #ifdef CONFIG_EEH
519 #define __do_readb(addr)	eeh_readb(PCI_FIX_ADDR(addr))
520 #define __do_readw(addr)	eeh_readw(PCI_FIX_ADDR(addr))
521 #define __do_readl(addr)	eeh_readl(PCI_FIX_ADDR(addr))
522 #define __do_readq(addr)	eeh_readq(PCI_FIX_ADDR(addr))
523 #define __do_readw_be(addr)	eeh_readw_be(PCI_FIX_ADDR(addr))
524 #define __do_readl_be(addr)	eeh_readl_be(PCI_FIX_ADDR(addr))
525 #define __do_readq_be(addr)	eeh_readq_be(PCI_FIX_ADDR(addr))
526 #else /* CONFIG_EEH */
527 #define __do_readb(addr)	in_8(PCI_FIX_ADDR(addr))
528 #define __do_readw(addr)	in_le16(PCI_FIX_ADDR(addr))
529 #define __do_readl(addr)	in_le32(PCI_FIX_ADDR(addr))
530 #define __do_readq(addr)	in_le64(PCI_FIX_ADDR(addr))
531 #define __do_readw_be(addr)	in_be16(PCI_FIX_ADDR(addr))
532 #define __do_readl_be(addr)	in_be32(PCI_FIX_ADDR(addr))
533 #define __do_readq_be(addr)	in_be64(PCI_FIX_ADDR(addr))
534 #endif /* !defined(CONFIG_EEH) */
535 
536 #ifdef CONFIG_PPC32
537 #define __do_outb(val, port)	_rec_outb(val, port)
538 #define __do_outw(val, port)	_rec_outw(val, port)
539 #define __do_outl(val, port)	_rec_outl(val, port)
540 #define __do_inb(port)		_rec_inb(port)
541 #define __do_inw(port)		_rec_inw(port)
542 #define __do_inl(port)		_rec_inl(port)
543 #else /* CONFIG_PPC32 */
544 #define __do_outb(val, port)	writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
545 #define __do_outw(val, port)	writew(val,(PCI_IO_ADDR)_IO_BASE+port);
546 #define __do_outl(val, port)	writel(val,(PCI_IO_ADDR)_IO_BASE+port);
547 #define __do_inb(port)		readb((PCI_IO_ADDR)_IO_BASE + port);
548 #define __do_inw(port)		readw((PCI_IO_ADDR)_IO_BASE + port);
549 #define __do_inl(port)		readl((PCI_IO_ADDR)_IO_BASE + port);
550 #endif /* !CONFIG_PPC32 */
551 
552 #ifdef CONFIG_EEH
553 #define __do_readsb(a, b, n)	eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
554 #define __do_readsw(a, b, n)	eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
555 #define __do_readsl(a, b, n)	eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
556 #else /* CONFIG_EEH */
557 #define __do_readsb(a, b, n)	_insb(PCI_FIX_ADDR(a), (b), (n))
558 #define __do_readsw(a, b, n)	_insw(PCI_FIX_ADDR(a), (b), (n))
559 #define __do_readsl(a, b, n)	_insl(PCI_FIX_ADDR(a), (b), (n))
560 #endif /* !CONFIG_EEH */
561 #define __do_writesb(a, b, n)	_outsb(PCI_FIX_ADDR(a),(b),(n))
562 #define __do_writesw(a, b, n)	_outsw(PCI_FIX_ADDR(a),(b),(n))
563 #define __do_writesl(a, b, n)	_outsl(PCI_FIX_ADDR(a),(b),(n))
564 
565 #define __do_insb(p, b, n)	readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
566 #define __do_insw(p, b, n)	readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
567 #define __do_insl(p, b, n)	readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
568 #define __do_outsb(p, b, n)	writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
569 #define __do_outsw(p, b, n)	writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
570 #define __do_outsl(p, b, n)	writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
571 
572 #define __do_memset_io(addr, c, n)	\
573 				_memset_io(PCI_FIX_ADDR(addr), c, n)
574 #define __do_memcpy_toio(dst, src, n)	\
575 				_memcpy_toio(PCI_FIX_ADDR(dst), src, n)
576 
577 #ifdef CONFIG_EEH
578 #define __do_memcpy_fromio(dst, src, n)	\
579 				eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
580 #else /* CONFIG_EEH */
581 #define __do_memcpy_fromio(dst, src, n)	\
582 				_memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
583 #endif /* !CONFIG_EEH */
584 
585 #ifdef CONFIG_PPC_INDIRECT_PIO
586 #define DEF_PCI_HOOK_pio(x)	x
587 #else
588 #define DEF_PCI_HOOK_pio(x)	NULL
589 #endif
590 
591 #ifdef CONFIG_PPC_INDIRECT_MMIO
592 #define DEF_PCI_HOOK_mem(x)	x
593 #else
594 #define DEF_PCI_HOOK_mem(x)	NULL
595 #endif
596 
597 /* Structure containing all the hooks */
598 extern struct ppc_pci_io {
599 
600 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)	ret (*name) at;
601 #define DEF_PCI_AC_NORET(name, at, al, space, aa)	void (*name) at;
602 
603 #include <asm/io-defs.h>
604 
605 #undef DEF_PCI_AC_RET
606 #undef DEF_PCI_AC_NORET
607 
608 } ppc_pci_io;
609 
610 /* The inline wrappers */
611 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)		\
612 static inline ret name at					\
613 {								\
614 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)	\
615 		return ppc_pci_io.name al;			\
616 	return __do_##name al;					\
617 }
618 
619 #define DEF_PCI_AC_NORET(name, at, al, space, aa)		\
620 static inline void name at					\
621 {								\
622 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)		\
623 		ppc_pci_io.name al;				\
624 	else							\
625 		__do_##name al;					\
626 }
627 
628 #include <asm/io-defs.h>
629 
630 #undef DEF_PCI_AC_RET
631 #undef DEF_PCI_AC_NORET
632 
633 /* Some drivers check for the presence of readq & writeq with
634  * a #ifdef, so we make them happy here.
635  */
636 #ifdef __powerpc64__
637 #define readq	readq
638 #define writeq	writeq
639 #endif
640 
641 /*
642  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
643  * access
644  */
645 #define xlate_dev_mem_ptr(p)	__va(p)
646 
647 /*
648  * Convert a virtual cached pointer to an uncached pointer
649  */
650 #define xlate_dev_kmem_ptr(p)	p
651 
652 /*
653  * We don't do relaxed operations yet, at least not with this semantic
654  */
655 #define readb_relaxed(addr)	readb(addr)
656 #define readw_relaxed(addr)	readw(addr)
657 #define readl_relaxed(addr)	readl(addr)
658 #define readq_relaxed(addr)	readq(addr)
659 #define writeb_relaxed(v, addr)	writeb(v, addr)
660 #define writew_relaxed(v, addr)	writew(v, addr)
661 #define writel_relaxed(v, addr)	writel(v, addr)
662 #define writeq_relaxed(v, addr)	writeq(v, addr)
663 
664 #include <asm-generic/iomap.h>
665 
666 #ifdef CONFIG_PPC32
667 #define mmiowb()
668 #else
669 /*
670  * Enforce synchronisation of stores vs. spin_unlock
671  * (this does it explicitly, though our implementation of spin_unlock
672  * does it implicitely too)
673  */
674 static inline void mmiowb(void)
675 {
676 	unsigned long tmp;
677 
678 	__asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
679 	: "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
680 	: "memory");
681 }
682 #endif /* !CONFIG_PPC32 */
683 
684 static inline void iosync(void)
685 {
686         __asm__ __volatile__ ("sync" : : : "memory");
687 }
688 
689 /* Enforce in-order execution of data I/O.
690  * No distinction between read/write on PPC; use eieio for all three.
691  * Those are fairly week though. They don't provide a barrier between
692  * MMIO and cacheable storage nor do they provide a barrier vs. locks,
693  * they only provide barriers between 2 __raw MMIO operations and
694  * possibly break write combining.
695  */
696 #define iobarrier_rw() eieio()
697 #define iobarrier_r()  eieio()
698 #define iobarrier_w()  eieio()
699 
700 
701 /*
702  * output pause versions need a delay at least for the
703  * w83c105 ide controller in a p610.
704  */
705 #define inb_p(port)             inb(port)
706 #define outb_p(val, port)       (udelay(1), outb((val), (port)))
707 #define inw_p(port)             inw(port)
708 #define outw_p(val, port)       (udelay(1), outw((val), (port)))
709 #define inl_p(port)             inl(port)
710 #define outl_p(val, port)       (udelay(1), outl((val), (port)))
711 
712 
713 #define IO_SPACE_LIMIT ~(0UL)
714 
715 
716 /**
717  * ioremap     -   map bus memory into CPU space
718  * @address:   bus address of the memory
719  * @size:      size of the resource to map
720  *
721  * ioremap performs a platform specific sequence of operations to
722  * make bus memory CPU accessible via the readb/readw/readl/writeb/
723  * writew/writel functions and the other mmio helpers. The returned
724  * address is not guaranteed to be usable directly as a virtual
725  * address.
726  *
727  * We provide a few variations of it:
728  *
729  * * ioremap is the standard one and provides non-cacheable guarded mappings
730  *   and can be hooked by the platform via ppc_md
731  *
732  * * ioremap_prot allows to specify the page flags as an argument and can
733  *   also be hooked by the platform via ppc_md.
734  *
735  * * ioremap_nocache is identical to ioremap
736  *
737  * * ioremap_wc enables write combining
738  *
739  * * iounmap undoes such a mapping and can be hooked
740  *
741  * * __ioremap_at (and the pending __iounmap_at) are low level functions to
742  *   create hand-made mappings for use only by the PCI code and cannot
743  *   currently be hooked. Must be page aligned.
744  *
745  * * __ioremap is the low level implementation used by ioremap and
746  *   ioremap_prot and cannot be hooked (but can be used by a hook on one
747  *   of the previous ones)
748  *
749  * * __ioremap_caller is the same as above but takes an explicit caller
750  *   reference rather than using __builtin_return_address(0)
751  *
752  * * __iounmap, is the low level implementation used by iounmap and cannot
753  *   be hooked (but can be used by a hook on iounmap)
754  *
755  */
756 extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
757 extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
758 				  unsigned long flags);
759 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
760 #define ioremap_nocache(addr, size)	ioremap((addr), (size))
761 #define ioremap_uc(addr, size)		ioremap((addr), (size))
762 #define ioremap_cache(addr, size) \
763 	ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL))
764 
765 extern void iounmap(volatile void __iomem *addr);
766 
767 extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
768 			       unsigned long flags);
769 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
770 				      unsigned long flags, void *caller);
771 
772 extern void __iounmap(volatile void __iomem *addr);
773 
774 extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
775 				   unsigned long size, unsigned long flags);
776 extern void __iounmap_at(void *ea, unsigned long size);
777 
778 /*
779  * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
780  * which needs some additional definitions here. They basically allow PIO
781  * space overall to be 1GB. This will work as long as we never try to use
782  * iomap to map MMIO below 1GB which should be fine on ppc64
783  */
784 #define HAVE_ARCH_PIO_SIZE		1
785 #define PIO_OFFSET			0x00000000UL
786 #define PIO_MASK			(FULL_IO_SIZE - 1)
787 #define PIO_RESERVED			(FULL_IO_SIZE)
788 
789 #define mmio_read16be(addr)		readw_be(addr)
790 #define mmio_read32be(addr)		readl_be(addr)
791 #define mmio_write16be(val, addr)	writew_be(val, addr)
792 #define mmio_write32be(val, addr)	writel_be(val, addr)
793 #define mmio_insb(addr, dst, count)	readsb(addr, dst, count)
794 #define mmio_insw(addr, dst, count)	readsw(addr, dst, count)
795 #define mmio_insl(addr, dst, count)	readsl(addr, dst, count)
796 #define mmio_outsb(addr, src, count)	writesb(addr, src, count)
797 #define mmio_outsw(addr, src, count)	writesw(addr, src, count)
798 #define mmio_outsl(addr, src, count)	writesl(addr, src, count)
799 
800 /**
801  *	virt_to_phys	-	map virtual addresses to physical
802  *	@address: address to remap
803  *
804  *	The returned physical address is the physical (CPU) mapping for
805  *	the memory address given. It is only valid to use this function on
806  *	addresses directly mapped or allocated via kmalloc.
807  *
808  *	This function does not give bus mappings for DMA transfers. In
809  *	almost all conceivable cases a device driver should not be using
810  *	this function
811  */
812 static inline unsigned long virt_to_phys(volatile void * address)
813 {
814 	return __pa((unsigned long)address);
815 }
816 
817 /**
818  *	phys_to_virt	-	map physical address to virtual
819  *	@address: address to remap
820  *
821  *	The returned virtual address is a current CPU mapping for
822  *	the memory address given. It is only valid to use this function on
823  *	addresses that have a kernel mapping
824  *
825  *	This function does not handle bus mappings for DMA transfers. In
826  *	almost all conceivable cases a device driver should not be using
827  *	this function
828  */
829 static inline void * phys_to_virt(unsigned long address)
830 {
831 	return (void *)__va(address);
832 }
833 
834 /*
835  * Change "struct page" to physical address.
836  */
837 #define page_to_phys(page)	((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT)
838 
839 /*
840  * 32 bits still uses virt_to_bus() for it's implementation of DMA
841  * mappings se we have to keep it defined here. We also have some old
842  * drivers (shame shame shame) that use bus_to_virt() and haven't been
843  * fixed yet so I need to define it here.
844  */
845 #ifdef CONFIG_PPC32
846 
847 static inline unsigned long virt_to_bus(volatile void * address)
848 {
849         if (address == NULL)
850 		return 0;
851         return __pa(address) + PCI_DRAM_OFFSET;
852 }
853 
854 static inline void * bus_to_virt(unsigned long address)
855 {
856         if (address == 0)
857 		return NULL;
858         return __va(address - PCI_DRAM_OFFSET);
859 }
860 
861 #define page_to_bus(page)	(page_to_phys(page) + PCI_DRAM_OFFSET)
862 
863 #endif /* CONFIG_PPC32 */
864 
865 /* access ports */
866 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v))
867 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
868 
869 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v))
870 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
871 
872 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v))
873 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
874 
875 /* Clear and set bits in one shot.  These macros can be used to clear and
876  * set multiple bits in a register using a single read-modify-write.  These
877  * macros can also be used to set a multiple-bit bit pattern using a mask,
878  * by specifying the mask in the 'clear' parameter and the new bit pattern
879  * in the 'set' parameter.
880  */
881 
882 #define clrsetbits(type, addr, clear, set) \
883 	out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
884 
885 #ifdef __powerpc64__
886 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
887 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
888 #endif
889 
890 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
891 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
892 
893 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
894 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
895 
896 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
897 
898 #endif /* __KERNEL__ */
899 
900 #endif /* _ASM_POWERPC_IO_H */
901