xref: /openbmc/linux/arch/powerpc/include/asm/io.h (revision be709d48)
1 #ifndef _ASM_POWERPC_IO_H
2 #define _ASM_POWERPC_IO_H
3 #ifdef __KERNEL__
4 
5 #define ARCH_HAS_IOREMAP_WC
6 #ifdef CONFIG_PPC32
7 #define ARCH_HAS_IOREMAP_WT
8 #endif
9 
10 /*
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version
14  * 2 of the License, or (at your option) any later version.
15  */
16 
17 /* Check of existence of legacy devices */
18 extern int check_legacy_ioport(unsigned long base_port);
19 #define I8042_DATA_REG	0x60
20 #define FDC_BASE	0x3f0
21 
22 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
23 extern struct pci_dev *isa_bridge_pcidev;
24 /*
25  * has legacy ISA devices ?
26  */
27 #define arch_has_dev_port()	(isa_bridge_pcidev != NULL || isa_io_special)
28 #endif
29 
30 #include <linux/device.h>
31 #include <linux/compiler.h>
32 #include <linux/mm.h>
33 #include <asm/page.h>
34 #include <asm/byteorder.h>
35 #include <asm/synch.h>
36 #include <asm/delay.h>
37 #include <asm/mmu.h>
38 #include <asm/ppc_asm.h>
39 #include <asm/pgtable.h>
40 
41 #ifdef CONFIG_PPC64
42 #include <asm/paca.h>
43 #endif
44 
45 #define SIO_CONFIG_RA	0x398
46 #define SIO_CONFIG_RD	0x399
47 
48 #define SLOW_DOWN_IO
49 
50 /* 32 bits uses slightly different variables for the various IO
51  * bases. Most of this file only uses _IO_BASE though which we
52  * define properly based on the platform
53  */
54 #ifndef CONFIG_PCI
55 #define _IO_BASE	0
56 #define _ISA_MEM_BASE	0
57 #define PCI_DRAM_OFFSET 0
58 #elif defined(CONFIG_PPC32)
59 #define _IO_BASE	isa_io_base
60 #define _ISA_MEM_BASE	isa_mem_base
61 #define PCI_DRAM_OFFSET	pci_dram_offset
62 #else
63 #define _IO_BASE	pci_io_base
64 #define _ISA_MEM_BASE	isa_mem_base
65 #define PCI_DRAM_OFFSET	0
66 #endif
67 
68 extern unsigned long isa_io_base;
69 extern unsigned long pci_io_base;
70 extern unsigned long pci_dram_offset;
71 
72 extern resource_size_t isa_mem_base;
73 
74 /* Boolean set by platform if PIO accesses are suppored while _IO_BASE
75  * is not set or addresses cannot be translated to MMIO. This is typically
76  * set when the platform supports "special" PIO accesses via a non memory
77  * mapped mechanism, and allows things like the early udbg UART code to
78  * function.
79  */
80 extern bool isa_io_special;
81 
82 #ifdef CONFIG_PPC32
83 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
84 #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
85 #endif
86 #endif
87 
88 /*
89  *
90  * Low level MMIO accessors
91  *
92  * This provides the non-bus specific accessors to MMIO. Those are PowerPC
93  * specific and thus shouldn't be used in generic code. The accessors
94  * provided here are:
95  *
96  *	in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
97  *	out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
98  *	_insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
99  *
100  * Those operate directly on a kernel virtual address. Note that the prototype
101  * for the out_* accessors has the arguments in opposite order from the usual
102  * linux PCI accessors. Unlike those, they take the address first and the value
103  * next.
104  *
105  * Note: I might drop the _ns suffix on the stream operations soon as it is
106  * simply normal for stream operations to not swap in the first place.
107  *
108  */
109 
110 #ifdef CONFIG_PPC64
111 #define IO_SET_SYNC_FLAG()	do { local_paca->io_sync = 1; } while(0)
112 #else
113 #define IO_SET_SYNC_FLAG()
114 #endif
115 
116 #define DEF_MMIO_IN_X(name, size, insn)				\
117 static inline u##size name(const volatile u##size __iomem *addr)	\
118 {									\
119 	u##size ret;							\
120 	__asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"	\
121 		: "=r" (ret) : "Z" (*addr) : "memory");			\
122 	return ret;							\
123 }
124 
125 #define DEF_MMIO_OUT_X(name, size, insn)				\
126 static inline void name(volatile u##size __iomem *addr, u##size val)	\
127 {									\
128 	__asm__ __volatile__("sync;"#insn" %1,%y0"			\
129 		: "=Z" (*addr) : "r" (val) : "memory");			\
130 	IO_SET_SYNC_FLAG();						\
131 }
132 
133 #define DEF_MMIO_IN_D(name, size, insn)				\
134 static inline u##size name(const volatile u##size __iomem *addr)	\
135 {									\
136 	u##size ret;							\
137 	__asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
138 		: "=r" (ret) : "m" (*addr) : "memory");			\
139 	return ret;							\
140 }
141 
142 #define DEF_MMIO_OUT_D(name, size, insn)				\
143 static inline void name(volatile u##size __iomem *addr, u##size val)	\
144 {									\
145 	__asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"			\
146 		: "=m" (*addr) : "r" (val) : "memory");			\
147 	IO_SET_SYNC_FLAG();						\
148 }
149 
150 DEF_MMIO_IN_D(in_8,     8, lbz);
151 DEF_MMIO_OUT_D(out_8,   8, stb);
152 
153 #ifdef __BIG_ENDIAN__
154 DEF_MMIO_IN_D(in_be16, 16, lhz);
155 DEF_MMIO_IN_D(in_be32, 32, lwz);
156 DEF_MMIO_IN_X(in_le16, 16, lhbrx);
157 DEF_MMIO_IN_X(in_le32, 32, lwbrx);
158 
159 DEF_MMIO_OUT_D(out_be16, 16, sth);
160 DEF_MMIO_OUT_D(out_be32, 32, stw);
161 DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
162 DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
163 #else
164 DEF_MMIO_IN_X(in_be16, 16, lhbrx);
165 DEF_MMIO_IN_X(in_be32, 32, lwbrx);
166 DEF_MMIO_IN_D(in_le16, 16, lhz);
167 DEF_MMIO_IN_D(in_le32, 32, lwz);
168 
169 DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
170 DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
171 DEF_MMIO_OUT_D(out_le16, 16, sth);
172 DEF_MMIO_OUT_D(out_le32, 32, stw);
173 
174 #endif /* __BIG_ENDIAN */
175 
176 #ifdef __powerpc64__
177 
178 #ifdef __BIG_ENDIAN__
179 DEF_MMIO_OUT_D(out_be64, 64, std);
180 DEF_MMIO_IN_D(in_be64, 64, ld);
181 
182 /* There is no asm instructions for 64 bits reverse loads and stores */
183 static inline u64 in_le64(const volatile u64 __iomem *addr)
184 {
185 	return swab64(in_be64(addr));
186 }
187 
188 static inline void out_le64(volatile u64 __iomem *addr, u64 val)
189 {
190 	out_be64(addr, swab64(val));
191 }
192 #else
193 DEF_MMIO_OUT_D(out_le64, 64, std);
194 DEF_MMIO_IN_D(in_le64, 64, ld);
195 
196 /* There is no asm instructions for 64 bits reverse loads and stores */
197 static inline u64 in_be64(const volatile u64 __iomem *addr)
198 {
199 	return swab64(in_le64(addr));
200 }
201 
202 static inline void out_be64(volatile u64 __iomem *addr, u64 val)
203 {
204 	out_le64(addr, swab64(val));
205 }
206 
207 #endif
208 #endif /* __powerpc64__ */
209 
210 /*
211  * Low level IO stream instructions are defined out of line for now
212  */
213 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
214 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
215 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
216 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
217 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
218 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
219 
220 /* The _ns naming is historical and will be removed. For now, just #define
221  * the non _ns equivalent names
222  */
223 #define _insw	_insw_ns
224 #define _insl	_insl_ns
225 #define _outsw	_outsw_ns
226 #define _outsl	_outsl_ns
227 
228 
229 /*
230  * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
231  */
232 
233 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
234 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
235 			   unsigned long n);
236 extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
237 			 unsigned long n);
238 
239 /*
240  *
241  * PCI and standard ISA accessors
242  *
243  * Those are globally defined linux accessors for devices on PCI or ISA
244  * busses. They follow the Linux defined semantics. The current implementation
245  * for PowerPC is as close as possible to the x86 version of these, and thus
246  * provides fairly heavy weight barriers for the non-raw versions
247  *
248  * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
249  * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
250  * own implementation of some or all of the accessors.
251  */
252 
253 /*
254  * Include the EEH definitions when EEH is enabled only so they don't get
255  * in the way when building for 32 bits
256  */
257 #ifdef CONFIG_EEH
258 #include <asm/eeh.h>
259 #endif
260 
261 /* Shortcut to the MMIO argument pointer */
262 #define PCI_IO_ADDR	volatile void __iomem *
263 
264 /* Indirect IO address tokens:
265  *
266  * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
267  * on all MMIOs. (Note that this is all 64 bits only for now)
268  *
269  * To help platforms who may need to differentiate MMIO addresses in
270  * their hooks, a bitfield is reserved for use by the platform near the
271  * top of MMIO addresses (not PIO, those have to cope the hard way).
272  *
273  * The highest address in the kernel virtual space are:
274  *
275  *  d0003fffffffffff	# with Hash MMU
276  *  c00fffffffffffff	# with Radix MMU
277  *
278  * The top 4 bits are reserved as the region ID on hash, leaving us 8 bits
279  * that can be used for the field.
280  *
281  * The direct IO mapping operations will then mask off those bits
282  * before doing the actual access, though that only happen when
283  * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
284  * mechanism
285  *
286  * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
287  * all PIO functions call through a hook.
288  */
289 
290 #ifdef CONFIG_PPC_INDIRECT_MMIO
291 #define PCI_IO_IND_TOKEN_SHIFT	52
292 #define PCI_IO_IND_TOKEN_MASK	(0xfful << PCI_IO_IND_TOKEN_SHIFT)
293 #define PCI_FIX_ADDR(addr)						\
294 	((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
295 #define PCI_GET_ADDR_TOKEN(addr)					\
296 	(((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> 		\
297 		PCI_IO_IND_TOKEN_SHIFT)
298 #define PCI_SET_ADDR_TOKEN(addr, token) 				\
299 do {									\
300 	unsigned long __a = (unsigned long)(addr);			\
301 	__a &= ~PCI_IO_IND_TOKEN_MASK;					\
302 	__a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;	\
303 	(addr) = (void __iomem *)__a;					\
304 } while(0)
305 #else
306 #define PCI_FIX_ADDR(addr) (addr)
307 #endif
308 
309 
310 /*
311  * Non ordered and non-swapping "raw" accessors
312  */
313 
314 static inline unsigned char __raw_readb(const volatile void __iomem *addr)
315 {
316 	return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
317 }
318 static inline unsigned short __raw_readw(const volatile void __iomem *addr)
319 {
320 	return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
321 }
322 static inline unsigned int __raw_readl(const volatile void __iomem *addr)
323 {
324 	return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
325 }
326 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
327 {
328 	*(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
329 }
330 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
331 {
332 	*(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
333 }
334 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
335 {
336 	*(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
337 }
338 
339 #ifdef __powerpc64__
340 static inline unsigned long __raw_readq(const volatile void __iomem *addr)
341 {
342 	return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
343 }
344 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
345 {
346 	*(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
347 }
348 
349 static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr)
350 {
351 	__raw_writeq((__force unsigned long)cpu_to_be64(v), addr);
352 }
353 
354 /*
355  * Real mode versions of the above. Those instructions are only supposed
356  * to be used in hypervisor real mode as per the architecture spec.
357  */
358 static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr)
359 {
360 	__asm__ __volatile__("stbcix %0,0,%1"
361 		: : "r" (val), "r" (paddr) : "memory");
362 }
363 
364 static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr)
365 {
366 	__asm__ __volatile__("sthcix %0,0,%1"
367 		: : "r" (val), "r" (paddr) : "memory");
368 }
369 
370 static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr)
371 {
372 	__asm__ __volatile__("stwcix %0,0,%1"
373 		: : "r" (val), "r" (paddr) : "memory");
374 }
375 
376 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
377 {
378 	__asm__ __volatile__("stdcix %0,0,%1"
379 		: : "r" (val), "r" (paddr) : "memory");
380 }
381 
382 static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr)
383 {
384 	__raw_rm_writeq((__force u64)cpu_to_be64(val), paddr);
385 }
386 
387 static inline u8 __raw_rm_readb(volatile void __iomem *paddr)
388 {
389 	u8 ret;
390 	__asm__ __volatile__("lbzcix %0,0, %1"
391 			     : "=r" (ret) : "r" (paddr) : "memory");
392 	return ret;
393 }
394 
395 static inline u16 __raw_rm_readw(volatile void __iomem *paddr)
396 {
397 	u16 ret;
398 	__asm__ __volatile__("lhzcix %0,0, %1"
399 			     : "=r" (ret) : "r" (paddr) : "memory");
400 	return ret;
401 }
402 
403 static inline u32 __raw_rm_readl(volatile void __iomem *paddr)
404 {
405 	u32 ret;
406 	__asm__ __volatile__("lwzcix %0,0, %1"
407 			     : "=r" (ret) : "r" (paddr) : "memory");
408 	return ret;
409 }
410 
411 static inline u64 __raw_rm_readq(volatile void __iomem *paddr)
412 {
413 	u64 ret;
414 	__asm__ __volatile__("ldcix %0,0, %1"
415 			     : "=r" (ret) : "r" (paddr) : "memory");
416 	return ret;
417 }
418 #endif /* __powerpc64__ */
419 
420 /*
421  *
422  * PCI PIO and MMIO accessors.
423  *
424  *
425  * On 32 bits, PIO operations have a recovery mechanism in case they trigger
426  * machine checks (which they occasionally do when probing non existing
427  * IO ports on some platforms, like PowerMac and 8xx).
428  * I always found it to be of dubious reliability and I am tempted to get
429  * rid of it one of these days. So if you think it's important to keep it,
430  * please voice up asap. We never had it for 64 bits and I do not intend
431  * to port it over
432  */
433 
434 #ifdef CONFIG_PPC32
435 
436 #define __do_in_asm(name, op)				\
437 static inline unsigned int name(unsigned int port)	\
438 {							\
439 	unsigned int x;					\
440 	__asm__ __volatile__(				\
441 		"sync\n"				\
442 		"0:"	op "	%0,0,%1\n"		\
443 		"1:	twi	0,%0,0\n"		\
444 		"2:	isync\n"			\
445 		"3:	nop\n"				\
446 		"4:\n"					\
447 		".section .fixup,\"ax\"\n"		\
448 		"5:	li	%0,-1\n"		\
449 		"	b	4b\n"			\
450 		".previous\n"				\
451 		EX_TABLE(0b, 5b)			\
452 		EX_TABLE(1b, 5b)			\
453 		EX_TABLE(2b, 5b)			\
454 		EX_TABLE(3b, 5b)			\
455 		: "=&r" (x)				\
456 		: "r" (port + _IO_BASE)			\
457 		: "memory");  				\
458 	return x;					\
459 }
460 
461 #define __do_out_asm(name, op)				\
462 static inline void name(unsigned int val, unsigned int port) \
463 {							\
464 	__asm__ __volatile__(				\
465 		"sync\n"				\
466 		"0:" op " %0,0,%1\n"			\
467 		"1:	sync\n"				\
468 		"2:\n"					\
469 		EX_TABLE(0b, 2b)			\
470 		EX_TABLE(1b, 2b)			\
471 		: : "r" (val), "r" (port + _IO_BASE)	\
472 		: "memory");   	   	   		\
473 }
474 
475 __do_in_asm(_rec_inb, "lbzx")
476 __do_in_asm(_rec_inw, "lhbrx")
477 __do_in_asm(_rec_inl, "lwbrx")
478 __do_out_asm(_rec_outb, "stbx")
479 __do_out_asm(_rec_outw, "sthbrx")
480 __do_out_asm(_rec_outl, "stwbrx")
481 
482 #endif /* CONFIG_PPC32 */
483 
484 /* The "__do_*" operations below provide the actual "base" implementation
485  * for each of the defined accessors. Some of them use the out_* functions
486  * directly, some of them still use EEH, though we might change that in the
487  * future. Those macros below provide the necessary argument swapping and
488  * handling of the IO base for PIO.
489  *
490  * They are themselves used by the macros that define the actual accessors
491  * and can be used by the hooks if any.
492  *
493  * Note that PIO operations are always defined in terms of their corresonding
494  * MMIO operations. That allows platforms like iSeries who want to modify the
495  * behaviour of both to only hook on the MMIO version and get both. It's also
496  * possible to hook directly at the toplevel PIO operation if they have to
497  * be handled differently
498  */
499 #define __do_writeb(val, addr)	out_8(PCI_FIX_ADDR(addr), val)
500 #define __do_writew(val, addr)	out_le16(PCI_FIX_ADDR(addr), val)
501 #define __do_writel(val, addr)	out_le32(PCI_FIX_ADDR(addr), val)
502 #define __do_writeq(val, addr)	out_le64(PCI_FIX_ADDR(addr), val)
503 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
504 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
505 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
506 
507 #ifdef CONFIG_EEH
508 #define __do_readb(addr)	eeh_readb(PCI_FIX_ADDR(addr))
509 #define __do_readw(addr)	eeh_readw(PCI_FIX_ADDR(addr))
510 #define __do_readl(addr)	eeh_readl(PCI_FIX_ADDR(addr))
511 #define __do_readq(addr)	eeh_readq(PCI_FIX_ADDR(addr))
512 #define __do_readw_be(addr)	eeh_readw_be(PCI_FIX_ADDR(addr))
513 #define __do_readl_be(addr)	eeh_readl_be(PCI_FIX_ADDR(addr))
514 #define __do_readq_be(addr)	eeh_readq_be(PCI_FIX_ADDR(addr))
515 #else /* CONFIG_EEH */
516 #define __do_readb(addr)	in_8(PCI_FIX_ADDR(addr))
517 #define __do_readw(addr)	in_le16(PCI_FIX_ADDR(addr))
518 #define __do_readl(addr)	in_le32(PCI_FIX_ADDR(addr))
519 #define __do_readq(addr)	in_le64(PCI_FIX_ADDR(addr))
520 #define __do_readw_be(addr)	in_be16(PCI_FIX_ADDR(addr))
521 #define __do_readl_be(addr)	in_be32(PCI_FIX_ADDR(addr))
522 #define __do_readq_be(addr)	in_be64(PCI_FIX_ADDR(addr))
523 #endif /* !defined(CONFIG_EEH) */
524 
525 #ifdef CONFIG_PPC32
526 #define __do_outb(val, port)	_rec_outb(val, port)
527 #define __do_outw(val, port)	_rec_outw(val, port)
528 #define __do_outl(val, port)	_rec_outl(val, port)
529 #define __do_inb(port)		_rec_inb(port)
530 #define __do_inw(port)		_rec_inw(port)
531 #define __do_inl(port)		_rec_inl(port)
532 #else /* CONFIG_PPC32 */
533 #define __do_outb(val, port)	writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
534 #define __do_outw(val, port)	writew(val,(PCI_IO_ADDR)_IO_BASE+port);
535 #define __do_outl(val, port)	writel(val,(PCI_IO_ADDR)_IO_BASE+port);
536 #define __do_inb(port)		readb((PCI_IO_ADDR)_IO_BASE + port);
537 #define __do_inw(port)		readw((PCI_IO_ADDR)_IO_BASE + port);
538 #define __do_inl(port)		readl((PCI_IO_ADDR)_IO_BASE + port);
539 #endif /* !CONFIG_PPC32 */
540 
541 #ifdef CONFIG_EEH
542 #define __do_readsb(a, b, n)	eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
543 #define __do_readsw(a, b, n)	eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
544 #define __do_readsl(a, b, n)	eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
545 #else /* CONFIG_EEH */
546 #define __do_readsb(a, b, n)	_insb(PCI_FIX_ADDR(a), (b), (n))
547 #define __do_readsw(a, b, n)	_insw(PCI_FIX_ADDR(a), (b), (n))
548 #define __do_readsl(a, b, n)	_insl(PCI_FIX_ADDR(a), (b), (n))
549 #endif /* !CONFIG_EEH */
550 #define __do_writesb(a, b, n)	_outsb(PCI_FIX_ADDR(a),(b),(n))
551 #define __do_writesw(a, b, n)	_outsw(PCI_FIX_ADDR(a),(b),(n))
552 #define __do_writesl(a, b, n)	_outsl(PCI_FIX_ADDR(a),(b),(n))
553 
554 #define __do_insb(p, b, n)	readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
555 #define __do_insw(p, b, n)	readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
556 #define __do_insl(p, b, n)	readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
557 #define __do_outsb(p, b, n)	writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
558 #define __do_outsw(p, b, n)	writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
559 #define __do_outsl(p, b, n)	writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
560 
561 #define __do_memset_io(addr, c, n)	\
562 				_memset_io(PCI_FIX_ADDR(addr), c, n)
563 #define __do_memcpy_toio(dst, src, n)	\
564 				_memcpy_toio(PCI_FIX_ADDR(dst), src, n)
565 
566 #ifdef CONFIG_EEH
567 #define __do_memcpy_fromio(dst, src, n)	\
568 				eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
569 #else /* CONFIG_EEH */
570 #define __do_memcpy_fromio(dst, src, n)	\
571 				_memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
572 #endif /* !CONFIG_EEH */
573 
574 #ifdef CONFIG_PPC_INDIRECT_PIO
575 #define DEF_PCI_HOOK_pio(x)	x
576 #else
577 #define DEF_PCI_HOOK_pio(x)	NULL
578 #endif
579 
580 #ifdef CONFIG_PPC_INDIRECT_MMIO
581 #define DEF_PCI_HOOK_mem(x)	x
582 #else
583 #define DEF_PCI_HOOK_mem(x)	NULL
584 #endif
585 
586 /* Structure containing all the hooks */
587 extern struct ppc_pci_io {
588 
589 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)	ret (*name) at;
590 #define DEF_PCI_AC_NORET(name, at, al, space, aa)	void (*name) at;
591 
592 #include <asm/io-defs.h>
593 
594 #undef DEF_PCI_AC_RET
595 #undef DEF_PCI_AC_NORET
596 
597 } ppc_pci_io;
598 
599 /* The inline wrappers */
600 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)		\
601 static inline ret name at					\
602 {								\
603 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)	\
604 		return ppc_pci_io.name al;			\
605 	return __do_##name al;					\
606 }
607 
608 #define DEF_PCI_AC_NORET(name, at, al, space, aa)		\
609 static inline void name at					\
610 {								\
611 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)		\
612 		ppc_pci_io.name al;				\
613 	else							\
614 		__do_##name al;					\
615 }
616 
617 #include <asm/io-defs.h>
618 
619 #undef DEF_PCI_AC_RET
620 #undef DEF_PCI_AC_NORET
621 
622 /* Some drivers check for the presence of readq & writeq with
623  * a #ifdef, so we make them happy here.
624  */
625 #ifdef __powerpc64__
626 #define readq	readq
627 #define writeq	writeq
628 #endif
629 
630 /*
631  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
632  * access
633  */
634 #define xlate_dev_mem_ptr(p)	__va(p)
635 
636 /*
637  * Convert a virtual cached pointer to an uncached pointer
638  */
639 #define xlate_dev_kmem_ptr(p)	p
640 
641 /*
642  * We don't do relaxed operations yet, at least not with this semantic
643  */
644 #define readb_relaxed(addr)	readb(addr)
645 #define readw_relaxed(addr)	readw(addr)
646 #define readl_relaxed(addr)	readl(addr)
647 #define readq_relaxed(addr)	readq(addr)
648 #define writeb_relaxed(v, addr)	writeb(v, addr)
649 #define writew_relaxed(v, addr)	writew(v, addr)
650 #define writel_relaxed(v, addr)	writel(v, addr)
651 #define writeq_relaxed(v, addr)	writeq(v, addr)
652 
653 #include <asm-generic/iomap.h>
654 
655 #ifdef CONFIG_PPC32
656 #define mmiowb()
657 #else
658 /*
659  * Enforce synchronisation of stores vs. spin_unlock
660  * (this does it explicitly, though our implementation of spin_unlock
661  * does it implicitely too)
662  */
663 static inline void mmiowb(void)
664 {
665 	unsigned long tmp;
666 
667 	__asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
668 	: "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
669 	: "memory");
670 }
671 #endif /* !CONFIG_PPC32 */
672 
673 static inline void iosync(void)
674 {
675         __asm__ __volatile__ ("sync" : : : "memory");
676 }
677 
678 /* Enforce in-order execution of data I/O.
679  * No distinction between read/write on PPC; use eieio for all three.
680  * Those are fairly week though. They don't provide a barrier between
681  * MMIO and cacheable storage nor do they provide a barrier vs. locks,
682  * they only provide barriers between 2 __raw MMIO operations and
683  * possibly break write combining.
684  */
685 #define iobarrier_rw() eieio()
686 #define iobarrier_r()  eieio()
687 #define iobarrier_w()  eieio()
688 
689 
690 /*
691  * output pause versions need a delay at least for the
692  * w83c105 ide controller in a p610.
693  */
694 #define inb_p(port)             inb(port)
695 #define outb_p(val, port)       (udelay(1), outb((val), (port)))
696 #define inw_p(port)             inw(port)
697 #define outw_p(val, port)       (udelay(1), outw((val), (port)))
698 #define inl_p(port)             inl(port)
699 #define outl_p(val, port)       (udelay(1), outl((val), (port)))
700 
701 
702 #define IO_SPACE_LIMIT ~(0UL)
703 
704 
705 /**
706  * ioremap     -   map bus memory into CPU space
707  * @address:   bus address of the memory
708  * @size:      size of the resource to map
709  *
710  * ioremap performs a platform specific sequence of operations to
711  * make bus memory CPU accessible via the readb/readw/readl/writeb/
712  * writew/writel functions and the other mmio helpers. The returned
713  * address is not guaranteed to be usable directly as a virtual
714  * address.
715  *
716  * We provide a few variations of it:
717  *
718  * * ioremap is the standard one and provides non-cacheable guarded mappings
719  *   and can be hooked by the platform via ppc_md
720  *
721  * * ioremap_prot allows to specify the page flags as an argument and can
722  *   also be hooked by the platform via ppc_md.
723  *
724  * * ioremap_nocache is identical to ioremap
725  *
726  * * ioremap_wc enables write combining
727  *
728  * * ioremap_wt enables write through
729  *
730  * * ioremap_coherent maps coherent cached memory
731  *
732  * * iounmap undoes such a mapping and can be hooked
733  *
734  * * __ioremap_at (and the pending __iounmap_at) are low level functions to
735  *   create hand-made mappings for use only by the PCI code and cannot
736  *   currently be hooked. Must be page aligned.
737  *
738  * * __ioremap is the low level implementation used by ioremap and
739  *   ioremap_prot and cannot be hooked (but can be used by a hook on one
740  *   of the previous ones)
741  *
742  * * __ioremap_caller is the same as above but takes an explicit caller
743  *   reference rather than using __builtin_return_address(0)
744  *
745  * * __iounmap, is the low level implementation used by iounmap and cannot
746  *   be hooked (but can be used by a hook on iounmap)
747  *
748  */
749 extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
750 extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
751 				  unsigned long flags);
752 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
753 void __iomem *ioremap_wt(phys_addr_t address, unsigned long size);
754 void __iomem *ioremap_coherent(phys_addr_t address, unsigned long size);
755 #define ioremap_nocache(addr, size)	ioremap((addr), (size))
756 #define ioremap_uc(addr, size)		ioremap((addr), (size))
757 #define ioremap_cache(addr, size) \
758 	ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL))
759 
760 extern void iounmap(volatile void __iomem *addr);
761 
762 extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
763 			       unsigned long flags);
764 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
765 				      pgprot_t prot, void *caller);
766 
767 extern void __iounmap(volatile void __iomem *addr);
768 
769 extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
770 				   unsigned long size, pgprot_t prot);
771 extern void __iounmap_at(void *ea, unsigned long size);
772 
773 /*
774  * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
775  * which needs some additional definitions here. They basically allow PIO
776  * space overall to be 1GB. This will work as long as we never try to use
777  * iomap to map MMIO below 1GB which should be fine on ppc64
778  */
779 #define HAVE_ARCH_PIO_SIZE		1
780 #define PIO_OFFSET			0x00000000UL
781 #define PIO_MASK			(FULL_IO_SIZE - 1)
782 #define PIO_RESERVED			(FULL_IO_SIZE)
783 
784 #define mmio_read16be(addr)		readw_be(addr)
785 #define mmio_read32be(addr)		readl_be(addr)
786 #define mmio_read64be(addr)		readq_be(addr)
787 #define mmio_write16be(val, addr)	writew_be(val, addr)
788 #define mmio_write32be(val, addr)	writel_be(val, addr)
789 #define mmio_write64be(val, addr)	writeq_be(val, addr)
790 #define mmio_insb(addr, dst, count)	readsb(addr, dst, count)
791 #define mmio_insw(addr, dst, count)	readsw(addr, dst, count)
792 #define mmio_insl(addr, dst, count)	readsl(addr, dst, count)
793 #define mmio_outsb(addr, src, count)	writesb(addr, src, count)
794 #define mmio_outsw(addr, src, count)	writesw(addr, src, count)
795 #define mmio_outsl(addr, src, count)	writesl(addr, src, count)
796 
797 /**
798  *	virt_to_phys	-	map virtual addresses to physical
799  *	@address: address to remap
800  *
801  *	The returned physical address is the physical (CPU) mapping for
802  *	the memory address given. It is only valid to use this function on
803  *	addresses directly mapped or allocated via kmalloc.
804  *
805  *	This function does not give bus mappings for DMA transfers. In
806  *	almost all conceivable cases a device driver should not be using
807  *	this function
808  */
809 static inline unsigned long virt_to_phys(volatile void * address)
810 {
811 	WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !virt_addr_valid(address));
812 
813 	return __pa((unsigned long)address);
814 }
815 
816 /**
817  *	phys_to_virt	-	map physical address to virtual
818  *	@address: address to remap
819  *
820  *	The returned virtual address is a current CPU mapping for
821  *	the memory address given. It is only valid to use this function on
822  *	addresses that have a kernel mapping
823  *
824  *	This function does not handle bus mappings for DMA transfers. In
825  *	almost all conceivable cases a device driver should not be using
826  *	this function
827  */
828 static inline void * phys_to_virt(unsigned long address)
829 {
830 	return (void *)__va(address);
831 }
832 
833 /*
834  * Change "struct page" to physical address.
835  */
836 static inline phys_addr_t page_to_phys(struct page *page)
837 {
838 	unsigned long pfn = page_to_pfn(page);
839 
840 	WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !pfn_valid(pfn));
841 
842 	return PFN_PHYS(pfn);
843 }
844 
845 /*
846  * 32 bits still uses virt_to_bus() for it's implementation of DMA
847  * mappings se we have to keep it defined here. We also have some old
848  * drivers (shame shame shame) that use bus_to_virt() and haven't been
849  * fixed yet so I need to define it here.
850  */
851 #ifdef CONFIG_PPC32
852 
853 static inline unsigned long virt_to_bus(volatile void * address)
854 {
855         if (address == NULL)
856 		return 0;
857         return __pa(address) + PCI_DRAM_OFFSET;
858 }
859 
860 static inline void * bus_to_virt(unsigned long address)
861 {
862         if (address == 0)
863 		return NULL;
864         return __va(address - PCI_DRAM_OFFSET);
865 }
866 
867 #define page_to_bus(page)	(page_to_phys(page) + PCI_DRAM_OFFSET)
868 
869 #endif /* CONFIG_PPC32 */
870 
871 /* access ports */
872 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v))
873 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
874 
875 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v))
876 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
877 
878 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v))
879 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
880 
881 /* Clear and set bits in one shot.  These macros can be used to clear and
882  * set multiple bits in a register using a single read-modify-write.  These
883  * macros can also be used to set a multiple-bit bit pattern using a mask,
884  * by specifying the mask in the 'clear' parameter and the new bit pattern
885  * in the 'set' parameter.
886  */
887 
888 #define clrsetbits(type, addr, clear, set) \
889 	out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
890 
891 #ifdef __powerpc64__
892 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
893 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
894 #endif
895 
896 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
897 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
898 
899 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
900 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
901 
902 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
903 
904 #endif /* __KERNEL__ */
905 
906 #endif /* _ASM_POWERPC_IO_H */
907