xref: /openbmc/linux/arch/powerpc/include/asm/io.h (revision a1c7c49c2091926962f8c1c866d386febffec5d8)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 #ifndef _ASM_POWERPC_IO_H
3 #define _ASM_POWERPC_IO_H
4 #ifdef __KERNEL__
5 
6 #define ARCH_HAS_IOREMAP_WC
7 #ifdef CONFIG_PPC32
8 #define ARCH_HAS_IOREMAP_WT
9 #endif
10 
11 /*
12  */
13 
14 /* Check of existence of legacy devices */
15 extern int check_legacy_ioport(unsigned long base_port);
16 #define I8042_DATA_REG	0x60
17 #define FDC_BASE	0x3f0
18 
19 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
20 extern struct pci_dev *isa_bridge_pcidev;
21 /*
22  * has legacy ISA devices ?
23  */
24 #define arch_has_dev_port()	(isa_bridge_pcidev != NULL || isa_io_special)
25 #endif
26 
27 #include <linux/device.h>
28 #include <linux/compiler.h>
29 #include <linux/mm.h>
30 #include <asm/page.h>
31 #include <asm/byteorder.h>
32 #include <asm/synch.h>
33 #include <asm/delay.h>
34 #include <asm/mmiowb.h>
35 #include <asm/mmu.h>
36 #include <asm/ppc_asm.h>
37 
38 #define SIO_CONFIG_RA	0x398
39 #define SIO_CONFIG_RD	0x399
40 
41 #define SLOW_DOWN_IO
42 
43 /* 32 bits uses slightly different variables for the various IO
44  * bases. Most of this file only uses _IO_BASE though which we
45  * define properly based on the platform
46  */
47 #ifndef CONFIG_PCI
48 #define _IO_BASE	0
49 #define _ISA_MEM_BASE	0
50 #define PCI_DRAM_OFFSET 0
51 #elif defined(CONFIG_PPC32)
52 #define _IO_BASE	isa_io_base
53 #define _ISA_MEM_BASE	isa_mem_base
54 #define PCI_DRAM_OFFSET	pci_dram_offset
55 #else
56 #define _IO_BASE	pci_io_base
57 #define _ISA_MEM_BASE	isa_mem_base
58 #define PCI_DRAM_OFFSET	0
59 #endif
60 
61 extern unsigned long isa_io_base;
62 extern unsigned long pci_io_base;
63 extern unsigned long pci_dram_offset;
64 
65 extern resource_size_t isa_mem_base;
66 
67 /* Boolean set by platform if PIO accesses are suppored while _IO_BASE
68  * is not set or addresses cannot be translated to MMIO. This is typically
69  * set when the platform supports "special" PIO accesses via a non memory
70  * mapped mechanism, and allows things like the early udbg UART code to
71  * function.
72  */
73 extern bool isa_io_special;
74 
75 #ifdef CONFIG_PPC32
76 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
77 #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
78 #endif
79 #endif
80 
81 /*
82  *
83  * Low level MMIO accessors
84  *
85  * This provides the non-bus specific accessors to MMIO. Those are PowerPC
86  * specific and thus shouldn't be used in generic code. The accessors
87  * provided here are:
88  *
89  *	in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
90  *	out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
91  *	_insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
92  *
93  * Those operate directly on a kernel virtual address. Note that the prototype
94  * for the out_* accessors has the arguments in opposite order from the usual
95  * linux PCI accessors. Unlike those, they take the address first and the value
96  * next.
97  *
98  * Note: I might drop the _ns suffix on the stream operations soon as it is
99  * simply normal for stream operations to not swap in the first place.
100  *
101  */
102 
103 #define DEF_MMIO_IN_X(name, size, insn)				\
104 static inline u##size name(const volatile u##size __iomem *addr)	\
105 {									\
106 	u##size ret;							\
107 	__asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"	\
108 		: "=r" (ret) : "Z" (*addr) : "memory");			\
109 	return ret;							\
110 }
111 
112 #define DEF_MMIO_OUT_X(name, size, insn)				\
113 static inline void name(volatile u##size __iomem *addr, u##size val)	\
114 {									\
115 	__asm__ __volatile__("sync;"#insn" %1,%y0"			\
116 		: "=Z" (*addr) : "r" (val) : "memory");			\
117 	mmiowb_set_pending();						\
118 }
119 
120 #define DEF_MMIO_IN_D(name, size, insn)				\
121 static inline u##size name(const volatile u##size __iomem *addr)	\
122 {									\
123 	u##size ret;							\
124 	__asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
125 		: "=r" (ret) : "m<>" (*addr) : "memory");	\
126 	return ret;							\
127 }
128 
129 #define DEF_MMIO_OUT_D(name, size, insn)				\
130 static inline void name(volatile u##size __iomem *addr, u##size val)	\
131 {									\
132 	__asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"			\
133 		: "=m<>" (*addr) : "r" (val) : "memory");	\
134 	mmiowb_set_pending();						\
135 }
136 
137 DEF_MMIO_IN_D(in_8,     8, lbz);
138 DEF_MMIO_OUT_D(out_8,   8, stb);
139 
140 #ifdef __BIG_ENDIAN__
141 DEF_MMIO_IN_D(in_be16, 16, lhz);
142 DEF_MMIO_IN_D(in_be32, 32, lwz);
143 DEF_MMIO_IN_X(in_le16, 16, lhbrx);
144 DEF_MMIO_IN_X(in_le32, 32, lwbrx);
145 
146 DEF_MMIO_OUT_D(out_be16, 16, sth);
147 DEF_MMIO_OUT_D(out_be32, 32, stw);
148 DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
149 DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
150 #else
151 DEF_MMIO_IN_X(in_be16, 16, lhbrx);
152 DEF_MMIO_IN_X(in_be32, 32, lwbrx);
153 DEF_MMIO_IN_D(in_le16, 16, lhz);
154 DEF_MMIO_IN_D(in_le32, 32, lwz);
155 
156 DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
157 DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
158 DEF_MMIO_OUT_D(out_le16, 16, sth);
159 DEF_MMIO_OUT_D(out_le32, 32, stw);
160 
161 #endif /* __BIG_ENDIAN */
162 
163 #ifdef __powerpc64__
164 
165 #ifdef __BIG_ENDIAN__
166 DEF_MMIO_OUT_D(out_be64, 64, std);
167 DEF_MMIO_IN_D(in_be64, 64, ld);
168 
169 /* There is no asm instructions for 64 bits reverse loads and stores */
170 static inline u64 in_le64(const volatile u64 __iomem *addr)
171 {
172 	return swab64(in_be64(addr));
173 }
174 
175 static inline void out_le64(volatile u64 __iomem *addr, u64 val)
176 {
177 	out_be64(addr, swab64(val));
178 }
179 #else
180 DEF_MMIO_OUT_D(out_le64, 64, std);
181 DEF_MMIO_IN_D(in_le64, 64, ld);
182 
183 /* There is no asm instructions for 64 bits reverse loads and stores */
184 static inline u64 in_be64(const volatile u64 __iomem *addr)
185 {
186 	return swab64(in_le64(addr));
187 }
188 
189 static inline void out_be64(volatile u64 __iomem *addr, u64 val)
190 {
191 	out_le64(addr, swab64(val));
192 }
193 
194 #endif
195 #endif /* __powerpc64__ */
196 
197 /*
198  * Low level IO stream instructions are defined out of line for now
199  */
200 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
201 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
202 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
203 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
204 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
205 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
206 
207 /* The _ns naming is historical and will be removed. For now, just #define
208  * the non _ns equivalent names
209  */
210 #define _insw	_insw_ns
211 #define _insl	_insl_ns
212 #define _outsw	_outsw_ns
213 #define _outsl	_outsl_ns
214 
215 
216 /*
217  * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
218  */
219 
220 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
221 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
222 			   unsigned long n);
223 extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
224 			 unsigned long n);
225 
226 /*
227  *
228  * PCI and standard ISA accessors
229  *
230  * Those are globally defined linux accessors for devices on PCI or ISA
231  * busses. They follow the Linux defined semantics. The current implementation
232  * for PowerPC is as close as possible to the x86 version of these, and thus
233  * provides fairly heavy weight barriers for the non-raw versions
234  *
235  * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
236  * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
237  * own implementation of some or all of the accessors.
238  */
239 
240 /*
241  * Include the EEH definitions when EEH is enabled only so they don't get
242  * in the way when building for 32 bits
243  */
244 #ifdef CONFIG_EEH
245 #include <asm/eeh.h>
246 #endif
247 
248 /* Shortcut to the MMIO argument pointer */
249 #define PCI_IO_ADDR	volatile void __iomem *
250 
251 /* Indirect IO address tokens:
252  *
253  * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
254  * on all MMIOs. (Note that this is all 64 bits only for now)
255  *
256  * To help platforms who may need to differentiate MMIO addresses in
257  * their hooks, a bitfield is reserved for use by the platform near the
258  * top of MMIO addresses (not PIO, those have to cope the hard way).
259  *
260  * The highest address in the kernel virtual space are:
261  *
262  *  d0003fffffffffff	# with Hash MMU
263  *  c00fffffffffffff	# with Radix MMU
264  *
265  * The top 4 bits are reserved as the region ID on hash, leaving us 8 bits
266  * that can be used for the field.
267  *
268  * The direct IO mapping operations will then mask off those bits
269  * before doing the actual access, though that only happen when
270  * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
271  * mechanism
272  *
273  * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
274  * all PIO functions call through a hook.
275  */
276 
277 #ifdef CONFIG_PPC_INDIRECT_MMIO
278 #define PCI_IO_IND_TOKEN_SHIFT	52
279 #define PCI_IO_IND_TOKEN_MASK	(0xfful << PCI_IO_IND_TOKEN_SHIFT)
280 #define PCI_FIX_ADDR(addr)						\
281 	((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
282 #define PCI_GET_ADDR_TOKEN(addr)					\
283 	(((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> 		\
284 		PCI_IO_IND_TOKEN_SHIFT)
285 #define PCI_SET_ADDR_TOKEN(addr, token) 				\
286 do {									\
287 	unsigned long __a = (unsigned long)(addr);			\
288 	__a &= ~PCI_IO_IND_TOKEN_MASK;					\
289 	__a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;	\
290 	(addr) = (void __iomem *)__a;					\
291 } while(0)
292 #else
293 #define PCI_FIX_ADDR(addr) (addr)
294 #endif
295 
296 
297 /*
298  * Non ordered and non-swapping "raw" accessors
299  */
300 
301 static inline unsigned char __raw_readb(const volatile void __iomem *addr)
302 {
303 	return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
304 }
305 #define __raw_readb __raw_readb
306 
307 static inline unsigned short __raw_readw(const volatile void __iomem *addr)
308 {
309 	return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
310 }
311 #define __raw_readw __raw_readw
312 
313 static inline unsigned int __raw_readl(const volatile void __iomem *addr)
314 {
315 	return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
316 }
317 #define __raw_readl __raw_readl
318 
319 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
320 {
321 	*(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
322 }
323 #define __raw_writeb __raw_writeb
324 
325 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
326 {
327 	*(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
328 }
329 #define __raw_writew __raw_writew
330 
331 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
332 {
333 	*(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
334 }
335 #define __raw_writel __raw_writel
336 
337 #ifdef __powerpc64__
338 static inline unsigned long __raw_readq(const volatile void __iomem *addr)
339 {
340 	return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
341 }
342 #define __raw_readq __raw_readq
343 
344 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
345 {
346 	*(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
347 }
348 #define __raw_writeq __raw_writeq
349 
350 static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr)
351 {
352 	__raw_writeq((__force unsigned long)cpu_to_be64(v), addr);
353 }
354 #define __raw_writeq_be __raw_writeq_be
355 
356 /*
357  * Real mode versions of the above. Those instructions are only supposed
358  * to be used in hypervisor real mode as per the architecture spec.
359  */
360 static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr)
361 {
362 	__asm__ __volatile__("stbcix %0,0,%1"
363 		: : "r" (val), "r" (paddr) : "memory");
364 }
365 
366 static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr)
367 {
368 	__asm__ __volatile__("sthcix %0,0,%1"
369 		: : "r" (val), "r" (paddr) : "memory");
370 }
371 
372 static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr)
373 {
374 	__asm__ __volatile__("stwcix %0,0,%1"
375 		: : "r" (val), "r" (paddr) : "memory");
376 }
377 
378 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
379 {
380 	__asm__ __volatile__("stdcix %0,0,%1"
381 		: : "r" (val), "r" (paddr) : "memory");
382 }
383 
384 static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr)
385 {
386 	__raw_rm_writeq((__force u64)cpu_to_be64(val), paddr);
387 }
388 
389 static inline u8 __raw_rm_readb(volatile void __iomem *paddr)
390 {
391 	u8 ret;
392 	__asm__ __volatile__("lbzcix %0,0, %1"
393 			     : "=r" (ret) : "r" (paddr) : "memory");
394 	return ret;
395 }
396 
397 static inline u16 __raw_rm_readw(volatile void __iomem *paddr)
398 {
399 	u16 ret;
400 	__asm__ __volatile__("lhzcix %0,0, %1"
401 			     : "=r" (ret) : "r" (paddr) : "memory");
402 	return ret;
403 }
404 
405 static inline u32 __raw_rm_readl(volatile void __iomem *paddr)
406 {
407 	u32 ret;
408 	__asm__ __volatile__("lwzcix %0,0, %1"
409 			     : "=r" (ret) : "r" (paddr) : "memory");
410 	return ret;
411 }
412 
413 static inline u64 __raw_rm_readq(volatile void __iomem *paddr)
414 {
415 	u64 ret;
416 	__asm__ __volatile__("ldcix %0,0, %1"
417 			     : "=r" (ret) : "r" (paddr) : "memory");
418 	return ret;
419 }
420 #endif /* __powerpc64__ */
421 
422 /*
423  *
424  * PCI PIO and MMIO accessors.
425  *
426  *
427  * On 32 bits, PIO operations have a recovery mechanism in case they trigger
428  * machine checks (which they occasionally do when probing non existing
429  * IO ports on some platforms, like PowerMac and 8xx).
430  * I always found it to be of dubious reliability and I am tempted to get
431  * rid of it one of these days. So if you think it's important to keep it,
432  * please voice up asap. We never had it for 64 bits and I do not intend
433  * to port it over
434  */
435 
436 #ifdef CONFIG_PPC32
437 
438 #define __do_in_asm(name, op)				\
439 static inline unsigned int name(unsigned int port)	\
440 {							\
441 	unsigned int x;					\
442 	__asm__ __volatile__(				\
443 		"sync\n"				\
444 		"0:"	op "	%0,0,%1\n"		\
445 		"1:	twi	0,%0,0\n"		\
446 		"2:	isync\n"			\
447 		"3:	nop\n"				\
448 		"4:\n"					\
449 		".section .fixup,\"ax\"\n"		\
450 		"5:	li	%0,-1\n"		\
451 		"	b	4b\n"			\
452 		".previous\n"				\
453 		EX_TABLE(0b, 5b)			\
454 		EX_TABLE(1b, 5b)			\
455 		EX_TABLE(2b, 5b)			\
456 		EX_TABLE(3b, 5b)			\
457 		: "=&r" (x)				\
458 		: "r" (port + _IO_BASE)			\
459 		: "memory");  				\
460 	return x;					\
461 }
462 
463 #define __do_out_asm(name, op)				\
464 static inline void name(unsigned int val, unsigned int port) \
465 {							\
466 	__asm__ __volatile__(				\
467 		"sync\n"				\
468 		"0:" op " %0,0,%1\n"			\
469 		"1:	sync\n"				\
470 		"2:\n"					\
471 		EX_TABLE(0b, 2b)			\
472 		EX_TABLE(1b, 2b)			\
473 		: : "r" (val), "r" (port + _IO_BASE)	\
474 		: "memory");   	   	   		\
475 }
476 
477 __do_in_asm(_rec_inb, "lbzx")
478 __do_in_asm(_rec_inw, "lhbrx")
479 __do_in_asm(_rec_inl, "lwbrx")
480 __do_out_asm(_rec_outb, "stbx")
481 __do_out_asm(_rec_outw, "sthbrx")
482 __do_out_asm(_rec_outl, "stwbrx")
483 
484 #endif /* CONFIG_PPC32 */
485 
486 /* The "__do_*" operations below provide the actual "base" implementation
487  * for each of the defined accessors. Some of them use the out_* functions
488  * directly, some of them still use EEH, though we might change that in the
489  * future. Those macros below provide the necessary argument swapping and
490  * handling of the IO base for PIO.
491  *
492  * They are themselves used by the macros that define the actual accessors
493  * and can be used by the hooks if any.
494  *
495  * Note that PIO operations are always defined in terms of their corresonding
496  * MMIO operations. That allows platforms like iSeries who want to modify the
497  * behaviour of both to only hook on the MMIO version and get both. It's also
498  * possible to hook directly at the toplevel PIO operation if they have to
499  * be handled differently
500  */
501 #define __do_writeb(val, addr)	out_8(PCI_FIX_ADDR(addr), val)
502 #define __do_writew(val, addr)	out_le16(PCI_FIX_ADDR(addr), val)
503 #define __do_writel(val, addr)	out_le32(PCI_FIX_ADDR(addr), val)
504 #define __do_writeq(val, addr)	out_le64(PCI_FIX_ADDR(addr), val)
505 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
506 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
507 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
508 
509 #ifdef CONFIG_EEH
510 #define __do_readb(addr)	eeh_readb(PCI_FIX_ADDR(addr))
511 #define __do_readw(addr)	eeh_readw(PCI_FIX_ADDR(addr))
512 #define __do_readl(addr)	eeh_readl(PCI_FIX_ADDR(addr))
513 #define __do_readq(addr)	eeh_readq(PCI_FIX_ADDR(addr))
514 #define __do_readw_be(addr)	eeh_readw_be(PCI_FIX_ADDR(addr))
515 #define __do_readl_be(addr)	eeh_readl_be(PCI_FIX_ADDR(addr))
516 #define __do_readq_be(addr)	eeh_readq_be(PCI_FIX_ADDR(addr))
517 #else /* CONFIG_EEH */
518 #define __do_readb(addr)	in_8(PCI_FIX_ADDR(addr))
519 #define __do_readw(addr)	in_le16(PCI_FIX_ADDR(addr))
520 #define __do_readl(addr)	in_le32(PCI_FIX_ADDR(addr))
521 #define __do_readq(addr)	in_le64(PCI_FIX_ADDR(addr))
522 #define __do_readw_be(addr)	in_be16(PCI_FIX_ADDR(addr))
523 #define __do_readl_be(addr)	in_be32(PCI_FIX_ADDR(addr))
524 #define __do_readq_be(addr)	in_be64(PCI_FIX_ADDR(addr))
525 #endif /* !defined(CONFIG_EEH) */
526 
527 #ifdef CONFIG_PPC32
528 #define __do_outb(val, port)	_rec_outb(val, port)
529 #define __do_outw(val, port)	_rec_outw(val, port)
530 #define __do_outl(val, port)	_rec_outl(val, port)
531 #define __do_inb(port)		_rec_inb(port)
532 #define __do_inw(port)		_rec_inw(port)
533 #define __do_inl(port)		_rec_inl(port)
534 #else /* CONFIG_PPC32 */
535 #define __do_outb(val, port)	writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
536 #define __do_outw(val, port)	writew(val,(PCI_IO_ADDR)_IO_BASE+port);
537 #define __do_outl(val, port)	writel(val,(PCI_IO_ADDR)_IO_BASE+port);
538 #define __do_inb(port)		readb((PCI_IO_ADDR)_IO_BASE + port);
539 #define __do_inw(port)		readw((PCI_IO_ADDR)_IO_BASE + port);
540 #define __do_inl(port)		readl((PCI_IO_ADDR)_IO_BASE + port);
541 #endif /* !CONFIG_PPC32 */
542 
543 #ifdef CONFIG_EEH
544 #define __do_readsb(a, b, n)	eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
545 #define __do_readsw(a, b, n)	eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
546 #define __do_readsl(a, b, n)	eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
547 #else /* CONFIG_EEH */
548 #define __do_readsb(a, b, n)	_insb(PCI_FIX_ADDR(a), (b), (n))
549 #define __do_readsw(a, b, n)	_insw(PCI_FIX_ADDR(a), (b), (n))
550 #define __do_readsl(a, b, n)	_insl(PCI_FIX_ADDR(a), (b), (n))
551 #endif /* !CONFIG_EEH */
552 #define __do_writesb(a, b, n)	_outsb(PCI_FIX_ADDR(a),(b),(n))
553 #define __do_writesw(a, b, n)	_outsw(PCI_FIX_ADDR(a),(b),(n))
554 #define __do_writesl(a, b, n)	_outsl(PCI_FIX_ADDR(a),(b),(n))
555 
556 #define __do_insb(p, b, n)	readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
557 #define __do_insw(p, b, n)	readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
558 #define __do_insl(p, b, n)	readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
559 #define __do_outsb(p, b, n)	writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
560 #define __do_outsw(p, b, n)	writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
561 #define __do_outsl(p, b, n)	writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
562 
563 #define __do_memset_io(addr, c, n)	\
564 				_memset_io(PCI_FIX_ADDR(addr), c, n)
565 #define __do_memcpy_toio(dst, src, n)	\
566 				_memcpy_toio(PCI_FIX_ADDR(dst), src, n)
567 
568 #ifdef CONFIG_EEH
569 #define __do_memcpy_fromio(dst, src, n)	\
570 				eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
571 #else /* CONFIG_EEH */
572 #define __do_memcpy_fromio(dst, src, n)	\
573 				_memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
574 #endif /* !CONFIG_EEH */
575 
576 #ifdef CONFIG_PPC_INDIRECT_PIO
577 #define DEF_PCI_HOOK_pio(x)	x
578 #else
579 #define DEF_PCI_HOOK_pio(x)	NULL
580 #endif
581 
582 #ifdef CONFIG_PPC_INDIRECT_MMIO
583 #define DEF_PCI_HOOK_mem(x)	x
584 #else
585 #define DEF_PCI_HOOK_mem(x)	NULL
586 #endif
587 
588 /* Structure containing all the hooks */
589 extern struct ppc_pci_io {
590 
591 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)	ret (*name) at;
592 #define DEF_PCI_AC_NORET(name, at, al, space, aa)	void (*name) at;
593 
594 #include <asm/io-defs.h>
595 
596 #undef DEF_PCI_AC_RET
597 #undef DEF_PCI_AC_NORET
598 
599 } ppc_pci_io;
600 
601 /* The inline wrappers */
602 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)		\
603 static inline ret name at					\
604 {								\
605 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)	\
606 		return ppc_pci_io.name al;			\
607 	return __do_##name al;					\
608 }
609 
610 #define DEF_PCI_AC_NORET(name, at, al, space, aa)		\
611 static inline void name at					\
612 {								\
613 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)		\
614 		ppc_pci_io.name al;				\
615 	else							\
616 		__do_##name al;					\
617 }
618 
619 #include <asm/io-defs.h>
620 
621 #undef DEF_PCI_AC_RET
622 #undef DEF_PCI_AC_NORET
623 
624 /* Some drivers check for the presence of readq & writeq with
625  * a #ifdef, so we make them happy here.
626  */
627 #define readb readb
628 #define readw readw
629 #define readl readl
630 #define writeb writeb
631 #define writew writew
632 #define writel writel
633 #define readsb readsb
634 #define readsw readsw
635 #define readsl readsl
636 #define writesb writesb
637 #define writesw writesw
638 #define writesl writesl
639 #define inb inb
640 #define inw inw
641 #define inl inl
642 #define outb outb
643 #define outw outw
644 #define outl outl
645 #define insb insb
646 #define insw insw
647 #define insl insl
648 #define outsb outsb
649 #define outsw outsw
650 #define outsl outsl
651 #ifdef __powerpc64__
652 #define readq	readq
653 #define writeq	writeq
654 #endif
655 #define memset_io memset_io
656 #define memcpy_fromio memcpy_fromio
657 #define memcpy_toio memcpy_toio
658 
659 /*
660  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
661  * access
662  */
663 #define xlate_dev_mem_ptr(p)	__va(p)
664 
665 /*
666  * We don't do relaxed operations yet, at least not with this semantic
667  */
668 #define readb_relaxed(addr)	readb(addr)
669 #define readw_relaxed(addr)	readw(addr)
670 #define readl_relaxed(addr)	readl(addr)
671 #define readq_relaxed(addr)	readq(addr)
672 #define writeb_relaxed(v, addr)	writeb(v, addr)
673 #define writew_relaxed(v, addr)	writew(v, addr)
674 #define writel_relaxed(v, addr)	writel(v, addr)
675 #define writeq_relaxed(v, addr)	writeq(v, addr)
676 
677 #ifdef CONFIG_GENERIC_IOMAP
678 #include <asm-generic/iomap.h>
679 #else
680 /*
681  * Here comes the implementation of the IOMAP interfaces.
682  */
683 static inline unsigned int ioread16be(const void __iomem *addr)
684 {
685 	return readw_be(addr);
686 }
687 #define ioread16be ioread16be
688 
689 static inline unsigned int ioread32be(const void __iomem *addr)
690 {
691 	return readl_be(addr);
692 }
693 #define ioread32be ioread32be
694 
695 #ifdef __powerpc64__
696 static inline u64 ioread64_lo_hi(const void __iomem *addr)
697 {
698 	return readq(addr);
699 }
700 #define ioread64_lo_hi ioread64_lo_hi
701 
702 static inline u64 ioread64_hi_lo(const void __iomem *addr)
703 {
704 	return readq(addr);
705 }
706 #define ioread64_hi_lo ioread64_hi_lo
707 
708 static inline u64 ioread64be(const void __iomem *addr)
709 {
710 	return readq_be(addr);
711 }
712 #define ioread64be ioread64be
713 
714 static inline u64 ioread64be_lo_hi(const void __iomem *addr)
715 {
716 	return readq_be(addr);
717 }
718 #define ioread64be_lo_hi ioread64be_lo_hi
719 
720 static inline u64 ioread64be_hi_lo(const void __iomem *addr)
721 {
722 	return readq_be(addr);
723 }
724 #define ioread64be_hi_lo ioread64be_hi_lo
725 #endif /* __powerpc64__ */
726 
727 static inline void iowrite16be(u16 val, void __iomem *addr)
728 {
729 	writew_be(val, addr);
730 }
731 #define iowrite16be iowrite16be
732 
733 static inline void iowrite32be(u32 val, void __iomem *addr)
734 {
735 	writel_be(val, addr);
736 }
737 #define iowrite32be iowrite32be
738 
739 #ifdef __powerpc64__
740 static inline void iowrite64_lo_hi(u64 val, void __iomem *addr)
741 {
742 	writeq(val, addr);
743 }
744 #define iowrite64_lo_hi iowrite64_lo_hi
745 
746 static inline void iowrite64_hi_lo(u64 val, void __iomem *addr)
747 {
748 	writeq(val, addr);
749 }
750 #define iowrite64_hi_lo iowrite64_hi_lo
751 
752 static inline void iowrite64be(u64 val, void __iomem *addr)
753 {
754 	writeq_be(val, addr);
755 }
756 #define iowrite64be iowrite64be
757 
758 static inline void iowrite64be_lo_hi(u64 val, void __iomem *addr)
759 {
760 	writeq_be(val, addr);
761 }
762 #define iowrite64be_lo_hi iowrite64be_lo_hi
763 
764 static inline void iowrite64be_hi_lo(u64 val, void __iomem *addr)
765 {
766 	writeq_be(val, addr);
767 }
768 #define iowrite64be_hi_lo iowrite64be_hi_lo
769 #endif /* __powerpc64__ */
770 
771 struct pci_dev;
772 void pci_iounmap(struct pci_dev *dev, void __iomem *addr);
773 #define pci_iounmap pci_iounmap
774 void __iomem *ioport_map(unsigned long port, unsigned int len);
775 #define ioport_map ioport_map
776 #endif
777 
778 static inline void iosync(void)
779 {
780         __asm__ __volatile__ ("sync" : : : "memory");
781 }
782 
783 /* Enforce in-order execution of data I/O.
784  * No distinction between read/write on PPC; use eieio for all three.
785  * Those are fairly week though. They don't provide a barrier between
786  * MMIO and cacheable storage nor do they provide a barrier vs. locks,
787  * they only provide barriers between 2 __raw MMIO operations and
788  * possibly break write combining.
789  */
790 #define iobarrier_rw() eieio()
791 #define iobarrier_r()  eieio()
792 #define iobarrier_w()  eieio()
793 
794 
795 /*
796  * output pause versions need a delay at least for the
797  * w83c105 ide controller in a p610.
798  */
799 #define inb_p(port)             inb(port)
800 #define outb_p(val, port)       (udelay(1), outb((val), (port)))
801 #define inw_p(port)             inw(port)
802 #define outw_p(val, port)       (udelay(1), outw((val), (port)))
803 #define inl_p(port)             inl(port)
804 #define outl_p(val, port)       (udelay(1), outl((val), (port)))
805 
806 
807 #define IO_SPACE_LIMIT ~(0UL)
808 
809 /**
810  * ioremap     -   map bus memory into CPU space
811  * @address:   bus address of the memory
812  * @size:      size of the resource to map
813  *
814  * ioremap performs a platform specific sequence of operations to
815  * make bus memory CPU accessible via the readb/readw/readl/writeb/
816  * writew/writel functions and the other mmio helpers. The returned
817  * address is not guaranteed to be usable directly as a virtual
818  * address.
819  *
820  * We provide a few variations of it:
821  *
822  * * ioremap is the standard one and provides non-cacheable guarded mappings
823  *   and can be hooked by the platform via ppc_md
824  *
825  * * ioremap_prot allows to specify the page flags as an argument and can
826  *   also be hooked by the platform via ppc_md.
827  *
828  * * ioremap_wc enables write combining
829  *
830  * * ioremap_wt enables write through
831  *
832  * * ioremap_coherent maps coherent cached memory
833  *
834  * * iounmap undoes such a mapping and can be hooked
835  *
836  * * __ioremap_caller is the same as above but takes an explicit caller
837  *   reference rather than using __builtin_return_address(0)
838  *
839  */
840 extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
841 extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
842 				  unsigned long flags);
843 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
844 #define ioremap_wc ioremap_wc
845 
846 #ifdef CONFIG_PPC32
847 void __iomem *ioremap_wt(phys_addr_t address, unsigned long size);
848 #define ioremap_wt ioremap_wt
849 #endif
850 
851 void __iomem *ioremap_coherent(phys_addr_t address, unsigned long size);
852 #define ioremap_uc(addr, size)		ioremap((addr), (size))
853 #define ioremap_cache(addr, size) \
854 	ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL))
855 
856 extern void iounmap(volatile void __iomem *addr);
857 
858 void __iomem *ioremap_phb(phys_addr_t paddr, unsigned long size);
859 
860 int early_ioremap_range(unsigned long ea, phys_addr_t pa,
861 			unsigned long size, pgprot_t prot);
862 void __iomem *do_ioremap(phys_addr_t pa, phys_addr_t offset, unsigned long size,
863 			 pgprot_t prot, void *caller);
864 
865 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
866 				      pgprot_t prot, void *caller);
867 
868 /*
869  * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
870  * which needs some additional definitions here. They basically allow PIO
871  * space overall to be 1GB. This will work as long as we never try to use
872  * iomap to map MMIO below 1GB which should be fine on ppc64
873  */
874 #define HAVE_ARCH_PIO_SIZE		1
875 #define PIO_OFFSET			0x00000000UL
876 #define PIO_MASK			(FULL_IO_SIZE - 1)
877 #define PIO_RESERVED			(FULL_IO_SIZE)
878 
879 #define mmio_read16be(addr)		readw_be(addr)
880 #define mmio_read32be(addr)		readl_be(addr)
881 #define mmio_read64be(addr)		readq_be(addr)
882 #define mmio_write16be(val, addr)	writew_be(val, addr)
883 #define mmio_write32be(val, addr)	writel_be(val, addr)
884 #define mmio_write64be(val, addr)	writeq_be(val, addr)
885 #define mmio_insb(addr, dst, count)	readsb(addr, dst, count)
886 #define mmio_insw(addr, dst, count)	readsw(addr, dst, count)
887 #define mmio_insl(addr, dst, count)	readsl(addr, dst, count)
888 #define mmio_outsb(addr, src, count)	writesb(addr, src, count)
889 #define mmio_outsw(addr, src, count)	writesw(addr, src, count)
890 #define mmio_outsl(addr, src, count)	writesl(addr, src, count)
891 
892 /**
893  *	virt_to_phys	-	map virtual addresses to physical
894  *	@address: address to remap
895  *
896  *	The returned physical address is the physical (CPU) mapping for
897  *	the memory address given. It is only valid to use this function on
898  *	addresses directly mapped or allocated via kmalloc.
899  *
900  *	This function does not give bus mappings for DMA transfers. In
901  *	almost all conceivable cases a device driver should not be using
902  *	this function
903  */
904 static inline unsigned long virt_to_phys(volatile void * address)
905 {
906 	WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !virt_addr_valid(address));
907 
908 	return __pa((unsigned long)address);
909 }
910 #define virt_to_phys virt_to_phys
911 
912 /**
913  *	phys_to_virt	-	map physical address to virtual
914  *	@address: address to remap
915  *
916  *	The returned virtual address is a current CPU mapping for
917  *	the memory address given. It is only valid to use this function on
918  *	addresses that have a kernel mapping
919  *
920  *	This function does not handle bus mappings for DMA transfers. In
921  *	almost all conceivable cases a device driver should not be using
922  *	this function
923  */
924 static inline void * phys_to_virt(unsigned long address)
925 {
926 	return (void *)__va(address);
927 }
928 #define phys_to_virt phys_to_virt
929 
930 /*
931  * Change "struct page" to physical address.
932  */
933 static inline phys_addr_t page_to_phys(struct page *page)
934 {
935 	unsigned long pfn = page_to_pfn(page);
936 
937 	WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !pfn_valid(pfn));
938 
939 	return PFN_PHYS(pfn);
940 }
941 
942 /*
943  * 32 bits still uses virt_to_bus() for it's implementation of DMA
944  * mappings se we have to keep it defined here. We also have some old
945  * drivers (shame shame shame) that use bus_to_virt() and haven't been
946  * fixed yet so I need to define it here.
947  */
948 #ifdef CONFIG_PPC32
949 
950 static inline unsigned long virt_to_bus(volatile void * address)
951 {
952         if (address == NULL)
953 		return 0;
954         return __pa(address) + PCI_DRAM_OFFSET;
955 }
956 #define virt_to_bus virt_to_bus
957 
958 static inline void * bus_to_virt(unsigned long address)
959 {
960         if (address == 0)
961 		return NULL;
962         return __va(address - PCI_DRAM_OFFSET);
963 }
964 #define bus_to_virt bus_to_virt
965 
966 #define page_to_bus(page)	(page_to_phys(page) + PCI_DRAM_OFFSET)
967 
968 #endif /* CONFIG_PPC32 */
969 
970 /* access ports */
971 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v))
972 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
973 
974 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v))
975 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
976 
977 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v))
978 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
979 
980 /* Clear and set bits in one shot.  These macros can be used to clear and
981  * set multiple bits in a register using a single read-modify-write.  These
982  * macros can also be used to set a multiple-bit bit pattern using a mask,
983  * by specifying the mask in the 'clear' parameter and the new bit pattern
984  * in the 'set' parameter.
985  */
986 
987 #define clrsetbits(type, addr, clear, set) \
988 	out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
989 
990 #ifdef __powerpc64__
991 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
992 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
993 #endif
994 
995 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
996 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
997 
998 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
999 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
1000 
1001 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
1002 
1003 #include <asm-generic/io.h>
1004 
1005 #endif /* __KERNEL__ */
1006 
1007 #endif /* _ASM_POWERPC_IO_H */
1008