1 #ifndef _ASM_POWERPC_IO_H 2 #define _ASM_POWERPC_IO_H 3 #ifdef __KERNEL__ 4 5 #define ARCH_HAS_IOREMAP_WC 6 7 /* 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 /* Check of existence of legacy devices */ 15 extern int check_legacy_ioport(unsigned long base_port); 16 #define I8042_DATA_REG 0x60 17 #define FDC_BASE 0x3f0 18 19 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI) 20 extern struct pci_dev *isa_bridge_pcidev; 21 /* 22 * has legacy ISA devices ? 23 */ 24 #define arch_has_dev_port() (isa_bridge_pcidev != NULL || isa_io_special) 25 #endif 26 27 #include <linux/device.h> 28 #include <linux/io.h> 29 30 #include <linux/compiler.h> 31 #include <asm/page.h> 32 #include <asm/byteorder.h> 33 #include <asm/synch.h> 34 #include <asm/delay.h> 35 #include <asm/mmu.h> 36 #include <asm/ppc_asm.h> 37 38 #include <asm-generic/iomap.h> 39 40 #ifdef CONFIG_PPC64 41 #include <asm/paca.h> 42 #endif 43 44 #define SIO_CONFIG_RA 0x398 45 #define SIO_CONFIG_RD 0x399 46 47 #define SLOW_DOWN_IO 48 49 /* 32 bits uses slightly different variables for the various IO 50 * bases. Most of this file only uses _IO_BASE though which we 51 * define properly based on the platform 52 */ 53 #ifndef CONFIG_PCI 54 #define _IO_BASE 0 55 #define _ISA_MEM_BASE 0 56 #define PCI_DRAM_OFFSET 0 57 #elif defined(CONFIG_PPC32) 58 #define _IO_BASE isa_io_base 59 #define _ISA_MEM_BASE isa_mem_base 60 #define PCI_DRAM_OFFSET pci_dram_offset 61 #else 62 #define _IO_BASE pci_io_base 63 #define _ISA_MEM_BASE isa_mem_base 64 #define PCI_DRAM_OFFSET 0 65 #endif 66 67 extern unsigned long isa_io_base; 68 extern unsigned long pci_io_base; 69 extern unsigned long pci_dram_offset; 70 71 extern resource_size_t isa_mem_base; 72 73 /* Boolean set by platform if PIO accesses are suppored while _IO_BASE 74 * is not set or addresses cannot be translated to MMIO. This is typically 75 * set when the platform supports "special" PIO accesses via a non memory 76 * mapped mechanism, and allows things like the early udbg UART code to 77 * function. 78 */ 79 extern bool isa_io_special; 80 81 #ifdef CONFIG_PPC32 82 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) 83 #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits 84 #endif 85 #endif 86 87 /* 88 * 89 * Low level MMIO accessors 90 * 91 * This provides the non-bus specific accessors to MMIO. Those are PowerPC 92 * specific and thus shouldn't be used in generic code. The accessors 93 * provided here are: 94 * 95 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64 96 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64 97 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns 98 * 99 * Those operate directly on a kernel virtual address. Note that the prototype 100 * for the out_* accessors has the arguments in opposite order from the usual 101 * linux PCI accessors. Unlike those, they take the address first and the value 102 * next. 103 * 104 * Note: I might drop the _ns suffix on the stream operations soon as it is 105 * simply normal for stream operations to not swap in the first place. 106 * 107 */ 108 109 #ifdef CONFIG_PPC64 110 #define IO_SET_SYNC_FLAG() do { local_paca->io_sync = 1; } while(0) 111 #else 112 #define IO_SET_SYNC_FLAG() 113 #endif 114 115 /* gcc 4.0 and older doesn't have 'Z' constraint */ 116 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0) 117 #define DEF_MMIO_IN_X(name, size, insn) \ 118 static inline u##size name(const volatile u##size __iomem *addr) \ 119 { \ 120 u##size ret; \ 121 __asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync" \ 122 : "=r" (ret) : "r" (addr), "m" (*addr) : "memory"); \ 123 return ret; \ 124 } 125 126 #define DEF_MMIO_OUT_X(name, size, insn) \ 127 static inline void name(volatile u##size __iomem *addr, u##size val) \ 128 { \ 129 __asm__ __volatile__("sync;"#insn" %1,0,%2" \ 130 : "=m" (*addr) : "r" (val), "r" (addr) : "memory"); \ 131 IO_SET_SYNC_FLAG(); \ 132 } 133 #else /* newer gcc */ 134 #define DEF_MMIO_IN_X(name, size, insn) \ 135 static inline u##size name(const volatile u##size __iomem *addr) \ 136 { \ 137 u##size ret; \ 138 __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync" \ 139 : "=r" (ret) : "Z" (*addr) : "memory"); \ 140 return ret; \ 141 } 142 143 #define DEF_MMIO_OUT_X(name, size, insn) \ 144 static inline void name(volatile u##size __iomem *addr, u##size val) \ 145 { \ 146 __asm__ __volatile__("sync;"#insn" %1,%y0" \ 147 : "=Z" (*addr) : "r" (val) : "memory"); \ 148 IO_SET_SYNC_FLAG(); \ 149 } 150 #endif 151 152 #define DEF_MMIO_IN_D(name, size, insn) \ 153 static inline u##size name(const volatile u##size __iomem *addr) \ 154 { \ 155 u##size ret; \ 156 __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\ 157 : "=r" (ret) : "m" (*addr) : "memory"); \ 158 return ret; \ 159 } 160 161 #define DEF_MMIO_OUT_D(name, size, insn) \ 162 static inline void name(volatile u##size __iomem *addr, u##size val) \ 163 { \ 164 __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0" \ 165 : "=m" (*addr) : "r" (val) : "memory"); \ 166 IO_SET_SYNC_FLAG(); \ 167 } 168 169 DEF_MMIO_IN_D(in_8, 8, lbz); 170 DEF_MMIO_OUT_D(out_8, 8, stb); 171 172 #ifdef __BIG_ENDIAN__ 173 DEF_MMIO_IN_D(in_be16, 16, lhz); 174 DEF_MMIO_IN_D(in_be32, 32, lwz); 175 DEF_MMIO_IN_X(in_le16, 16, lhbrx); 176 DEF_MMIO_IN_X(in_le32, 32, lwbrx); 177 178 DEF_MMIO_OUT_D(out_be16, 16, sth); 179 DEF_MMIO_OUT_D(out_be32, 32, stw); 180 DEF_MMIO_OUT_X(out_le16, 16, sthbrx); 181 DEF_MMIO_OUT_X(out_le32, 32, stwbrx); 182 #else 183 DEF_MMIO_IN_X(in_be16, 16, lhbrx); 184 DEF_MMIO_IN_X(in_be32, 32, lwbrx); 185 DEF_MMIO_IN_D(in_le16, 16, lhz); 186 DEF_MMIO_IN_D(in_le32, 32, lwz); 187 188 DEF_MMIO_OUT_X(out_be16, 16, sthbrx); 189 DEF_MMIO_OUT_X(out_be32, 32, stwbrx); 190 DEF_MMIO_OUT_D(out_le16, 16, sth); 191 DEF_MMIO_OUT_D(out_le32, 32, stw); 192 193 #endif /* __BIG_ENDIAN */ 194 195 /* 196 * Cache inhibitied accessors for use in real mode, you don't want to use these 197 * unless you know what you're doing. 198 * 199 * NB. These use the cpu byte ordering. 200 */ 201 DEF_MMIO_OUT_X(out_rm8, 8, stbcix); 202 DEF_MMIO_OUT_X(out_rm16, 16, sthcix); 203 DEF_MMIO_OUT_X(out_rm32, 32, stwcix); 204 DEF_MMIO_IN_X(in_rm8, 8, lbzcix); 205 DEF_MMIO_IN_X(in_rm16, 16, lhzcix); 206 DEF_MMIO_IN_X(in_rm32, 32, lwzcix); 207 208 #ifdef __powerpc64__ 209 210 DEF_MMIO_OUT_X(out_rm64, 64, stdcix); 211 DEF_MMIO_IN_X(in_rm64, 64, ldcix); 212 213 #ifdef __BIG_ENDIAN__ 214 DEF_MMIO_OUT_D(out_be64, 64, std); 215 DEF_MMIO_IN_D(in_be64, 64, ld); 216 217 /* There is no asm instructions for 64 bits reverse loads and stores */ 218 static inline u64 in_le64(const volatile u64 __iomem *addr) 219 { 220 return swab64(in_be64(addr)); 221 } 222 223 static inline void out_le64(volatile u64 __iomem *addr, u64 val) 224 { 225 out_be64(addr, swab64(val)); 226 } 227 #else 228 DEF_MMIO_OUT_D(out_le64, 64, std); 229 DEF_MMIO_IN_D(in_le64, 64, ld); 230 231 /* There is no asm instructions for 64 bits reverse loads and stores */ 232 static inline u64 in_be64(const volatile u64 __iomem *addr) 233 { 234 return swab64(in_le64(addr)); 235 } 236 237 static inline void out_be64(volatile u64 __iomem *addr, u64 val) 238 { 239 out_le64(addr, swab64(val)); 240 } 241 242 #endif 243 #endif /* __powerpc64__ */ 244 245 246 /* 247 * Simple Cache inhibited accessors 248 * Unlike the DEF_MMIO_* macros, these don't include any h/w memory 249 * barriers, callers need to manage memory barriers on their own. 250 * These can only be used in hypervisor real mode. 251 */ 252 253 static inline u32 _lwzcix(unsigned long addr) 254 { 255 u32 ret; 256 257 __asm__ __volatile__("lwzcix %0,0, %1" 258 : "=r" (ret) : "r" (addr) : "memory"); 259 return ret; 260 } 261 262 static inline void _stbcix(u64 addr, u8 val) 263 { 264 __asm__ __volatile__("stbcix %0,0,%1" 265 : : "r" (val), "r" (addr) : "memory"); 266 } 267 268 static inline void _stwcix(u64 addr, u32 val) 269 { 270 __asm__ __volatile__("stwcix %0,0,%1" 271 : : "r" (val), "r" (addr) : "memory"); 272 } 273 274 /* 275 * Low level IO stream instructions are defined out of line for now 276 */ 277 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count); 278 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count); 279 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count); 280 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count); 281 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count); 282 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count); 283 284 /* The _ns naming is historical and will be removed. For now, just #define 285 * the non _ns equivalent names 286 */ 287 #define _insw _insw_ns 288 #define _insl _insl_ns 289 #define _outsw _outsw_ns 290 #define _outsl _outsl_ns 291 292 293 /* 294 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line 295 */ 296 297 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n); 298 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src, 299 unsigned long n); 300 extern void _memcpy_toio(volatile void __iomem *dest, const void *src, 301 unsigned long n); 302 303 /* 304 * 305 * PCI and standard ISA accessors 306 * 307 * Those are globally defined linux accessors for devices on PCI or ISA 308 * busses. They follow the Linux defined semantics. The current implementation 309 * for PowerPC is as close as possible to the x86 version of these, and thus 310 * provides fairly heavy weight barriers for the non-raw versions 311 * 312 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO 313 * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its 314 * own implementation of some or all of the accessors. 315 */ 316 317 /* 318 * Include the EEH definitions when EEH is enabled only so they don't get 319 * in the way when building for 32 bits 320 */ 321 #ifdef CONFIG_EEH 322 #include <asm/eeh.h> 323 #endif 324 325 /* Shortcut to the MMIO argument pointer */ 326 #define PCI_IO_ADDR volatile void __iomem * 327 328 /* Indirect IO address tokens: 329 * 330 * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks 331 * on all MMIOs. (Note that this is all 64 bits only for now) 332 * 333 * To help platforms who may need to differentiate MMIO addresses in 334 * their hooks, a bitfield is reserved for use by the platform near the 335 * top of MMIO addresses (not PIO, those have to cope the hard way). 336 * 337 * This bit field is 12 bits and is at the top of the IO virtual 338 * addresses PCI_IO_INDIRECT_TOKEN_MASK. 339 * 340 * The kernel virtual space is thus: 341 * 342 * 0xD000000000000000 : vmalloc 343 * 0xD000080000000000 : PCI PHB IO space 344 * 0xD000080080000000 : ioremap 345 * 0xD0000fffffffffff : end of ioremap region 346 * 347 * Since the top 4 bits are reserved as the region ID, we use thus 348 * the next 12 bits and keep 4 bits available for the future if the 349 * virtual address space is ever to be extended. 350 * 351 * The direct IO mapping operations will then mask off those bits 352 * before doing the actual access, though that only happen when 353 * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that 354 * mechanism 355 * 356 * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes 357 * all PIO functions call through a hook. 358 */ 359 360 #ifdef CONFIG_PPC_INDIRECT_MMIO 361 #define PCI_IO_IND_TOKEN_MASK 0x0fff000000000000ul 362 #define PCI_IO_IND_TOKEN_SHIFT 48 363 #define PCI_FIX_ADDR(addr) \ 364 ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK)) 365 #define PCI_GET_ADDR_TOKEN(addr) \ 366 (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \ 367 PCI_IO_IND_TOKEN_SHIFT) 368 #define PCI_SET_ADDR_TOKEN(addr, token) \ 369 do { \ 370 unsigned long __a = (unsigned long)(addr); \ 371 __a &= ~PCI_IO_IND_TOKEN_MASK; \ 372 __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \ 373 (addr) = (void __iomem *)__a; \ 374 } while(0) 375 #else 376 #define PCI_FIX_ADDR(addr) (addr) 377 #endif 378 379 380 /* 381 * Non ordered and non-swapping "raw" accessors 382 */ 383 384 static inline unsigned char __raw_readb(const volatile void __iomem *addr) 385 { 386 return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr); 387 } 388 static inline unsigned short __raw_readw(const volatile void __iomem *addr) 389 { 390 return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr); 391 } 392 static inline unsigned int __raw_readl(const volatile void __iomem *addr) 393 { 394 return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr); 395 } 396 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr) 397 { 398 *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v; 399 } 400 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr) 401 { 402 *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v; 403 } 404 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr) 405 { 406 *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v; 407 } 408 409 #ifdef __powerpc64__ 410 static inline unsigned long __raw_readq(const volatile void __iomem *addr) 411 { 412 return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr); 413 } 414 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr) 415 { 416 *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v; 417 } 418 419 /* 420 * Real mode version of the above. stdcix is only supposed to be used 421 * in hypervisor real mode as per the architecture spec. 422 */ 423 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr) 424 { 425 __asm__ __volatile__("stdcix %0,0,%1" 426 : : "r" (val), "r" (paddr) : "memory"); 427 } 428 429 #endif /* __powerpc64__ */ 430 431 /* 432 * 433 * PCI PIO and MMIO accessors. 434 * 435 * 436 * On 32 bits, PIO operations have a recovery mechanism in case they trigger 437 * machine checks (which they occasionally do when probing non existing 438 * IO ports on some platforms, like PowerMac and 8xx). 439 * I always found it to be of dubious reliability and I am tempted to get 440 * rid of it one of these days. So if you think it's important to keep it, 441 * please voice up asap. We never had it for 64 bits and I do not intend 442 * to port it over 443 */ 444 445 #ifdef CONFIG_PPC32 446 447 #define __do_in_asm(name, op) \ 448 static inline unsigned int name(unsigned int port) \ 449 { \ 450 unsigned int x; \ 451 __asm__ __volatile__( \ 452 "sync\n" \ 453 "0:" op " %0,0,%1\n" \ 454 "1: twi 0,%0,0\n" \ 455 "2: isync\n" \ 456 "3: nop\n" \ 457 "4:\n" \ 458 ".section .fixup,\"ax\"\n" \ 459 "5: li %0,-1\n" \ 460 " b 4b\n" \ 461 ".previous\n" \ 462 EX_TABLE(0b, 5b) \ 463 EX_TABLE(1b, 5b) \ 464 EX_TABLE(2b, 5b) \ 465 EX_TABLE(3b, 5b) \ 466 : "=&r" (x) \ 467 : "r" (port + _IO_BASE) \ 468 : "memory"); \ 469 return x; \ 470 } 471 472 #define __do_out_asm(name, op) \ 473 static inline void name(unsigned int val, unsigned int port) \ 474 { \ 475 __asm__ __volatile__( \ 476 "sync\n" \ 477 "0:" op " %0,0,%1\n" \ 478 "1: sync\n" \ 479 "2:\n" \ 480 EX_TABLE(0b, 2b) \ 481 EX_TABLE(1b, 2b) \ 482 : : "r" (val), "r" (port + _IO_BASE) \ 483 : "memory"); \ 484 } 485 486 __do_in_asm(_rec_inb, "lbzx") 487 __do_in_asm(_rec_inw, "lhbrx") 488 __do_in_asm(_rec_inl, "lwbrx") 489 __do_out_asm(_rec_outb, "stbx") 490 __do_out_asm(_rec_outw, "sthbrx") 491 __do_out_asm(_rec_outl, "stwbrx") 492 493 #endif /* CONFIG_PPC32 */ 494 495 /* The "__do_*" operations below provide the actual "base" implementation 496 * for each of the defined accessors. Some of them use the out_* functions 497 * directly, some of them still use EEH, though we might change that in the 498 * future. Those macros below provide the necessary argument swapping and 499 * handling of the IO base for PIO. 500 * 501 * They are themselves used by the macros that define the actual accessors 502 * and can be used by the hooks if any. 503 * 504 * Note that PIO operations are always defined in terms of their corresonding 505 * MMIO operations. That allows platforms like iSeries who want to modify the 506 * behaviour of both to only hook on the MMIO version and get both. It's also 507 * possible to hook directly at the toplevel PIO operation if they have to 508 * be handled differently 509 */ 510 #define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val) 511 #define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val) 512 #define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val) 513 #define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val) 514 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val) 515 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val) 516 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val) 517 518 #ifdef CONFIG_EEH 519 #define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr)) 520 #define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr)) 521 #define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr)) 522 #define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr)) 523 #define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr)) 524 #define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr)) 525 #define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr)) 526 #else /* CONFIG_EEH */ 527 #define __do_readb(addr) in_8(PCI_FIX_ADDR(addr)) 528 #define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr)) 529 #define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr)) 530 #define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr)) 531 #define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr)) 532 #define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr)) 533 #define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr)) 534 #endif /* !defined(CONFIG_EEH) */ 535 536 #ifdef CONFIG_PPC32 537 #define __do_outb(val, port) _rec_outb(val, port) 538 #define __do_outw(val, port) _rec_outw(val, port) 539 #define __do_outl(val, port) _rec_outl(val, port) 540 #define __do_inb(port) _rec_inb(port) 541 #define __do_inw(port) _rec_inw(port) 542 #define __do_inl(port) _rec_inl(port) 543 #else /* CONFIG_PPC32 */ 544 #define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port); 545 #define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port); 546 #define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port); 547 #define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port); 548 #define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port); 549 #define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port); 550 #endif /* !CONFIG_PPC32 */ 551 552 #ifdef CONFIG_EEH 553 #define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n)) 554 #define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n)) 555 #define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n)) 556 #else /* CONFIG_EEH */ 557 #define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n)) 558 #define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n)) 559 #define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n)) 560 #endif /* !CONFIG_EEH */ 561 #define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n)) 562 #define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n)) 563 #define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n)) 564 565 #define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 566 #define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 567 #define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 568 #define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 569 #define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 570 #define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 571 572 #define __do_memset_io(addr, c, n) \ 573 _memset_io(PCI_FIX_ADDR(addr), c, n) 574 #define __do_memcpy_toio(dst, src, n) \ 575 _memcpy_toio(PCI_FIX_ADDR(dst), src, n) 576 577 #ifdef CONFIG_EEH 578 #define __do_memcpy_fromio(dst, src, n) \ 579 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n) 580 #else /* CONFIG_EEH */ 581 #define __do_memcpy_fromio(dst, src, n) \ 582 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n) 583 #endif /* !CONFIG_EEH */ 584 585 #ifdef CONFIG_PPC_INDIRECT_PIO 586 #define DEF_PCI_HOOK_pio(x) x 587 #else 588 #define DEF_PCI_HOOK_pio(x) NULL 589 #endif 590 591 #ifdef CONFIG_PPC_INDIRECT_MMIO 592 #define DEF_PCI_HOOK_mem(x) x 593 #else 594 #define DEF_PCI_HOOK_mem(x) NULL 595 #endif 596 597 /* Structure containing all the hooks */ 598 extern struct ppc_pci_io { 599 600 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) ret (*name) at; 601 #define DEF_PCI_AC_NORET(name, at, al, space, aa) void (*name) at; 602 603 #include <asm/io-defs.h> 604 605 #undef DEF_PCI_AC_RET 606 #undef DEF_PCI_AC_NORET 607 608 } ppc_pci_io; 609 610 /* The inline wrappers */ 611 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) \ 612 static inline ret name at \ 613 { \ 614 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \ 615 return ppc_pci_io.name al; \ 616 return __do_##name al; \ 617 } 618 619 #define DEF_PCI_AC_NORET(name, at, al, space, aa) \ 620 static inline void name at \ 621 { \ 622 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \ 623 ppc_pci_io.name al; \ 624 else \ 625 __do_##name al; \ 626 } 627 628 #include <asm/io-defs.h> 629 630 #undef DEF_PCI_AC_RET 631 #undef DEF_PCI_AC_NORET 632 633 /* Some drivers check for the presence of readq & writeq with 634 * a #ifdef, so we make them happy here. 635 */ 636 #ifdef __powerpc64__ 637 #define readq readq 638 #define writeq writeq 639 #endif 640 641 /* 642 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 643 * access 644 */ 645 #define xlate_dev_mem_ptr(p) __va(p) 646 647 /* 648 * Convert a virtual cached pointer to an uncached pointer 649 */ 650 #define xlate_dev_kmem_ptr(p) p 651 652 /* 653 * We don't do relaxed operations yet, at least not with this semantic 654 */ 655 #define readb_relaxed(addr) readb(addr) 656 #define readw_relaxed(addr) readw(addr) 657 #define readl_relaxed(addr) readl(addr) 658 #define readq_relaxed(addr) readq(addr) 659 #define writeb_relaxed(v, addr) writeb(v, addr) 660 #define writew_relaxed(v, addr) writew(v, addr) 661 #define writel_relaxed(v, addr) writel(v, addr) 662 #define writeq_relaxed(v, addr) writeq(v, addr) 663 664 #ifdef CONFIG_PPC32 665 #define mmiowb() 666 #else 667 /* 668 * Enforce synchronisation of stores vs. spin_unlock 669 * (this does it explicitly, though our implementation of spin_unlock 670 * does it implicitely too) 671 */ 672 static inline void mmiowb(void) 673 { 674 unsigned long tmp; 675 676 __asm__ __volatile__("sync; li %0,0; stb %0,%1(13)" 677 : "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync)) 678 : "memory"); 679 } 680 #endif /* !CONFIG_PPC32 */ 681 682 static inline void iosync(void) 683 { 684 __asm__ __volatile__ ("sync" : : : "memory"); 685 } 686 687 /* Enforce in-order execution of data I/O. 688 * No distinction between read/write on PPC; use eieio for all three. 689 * Those are fairly week though. They don't provide a barrier between 690 * MMIO and cacheable storage nor do they provide a barrier vs. locks, 691 * they only provide barriers between 2 __raw MMIO operations and 692 * possibly break write combining. 693 */ 694 #define iobarrier_rw() eieio() 695 #define iobarrier_r() eieio() 696 #define iobarrier_w() eieio() 697 698 699 /* 700 * output pause versions need a delay at least for the 701 * w83c105 ide controller in a p610. 702 */ 703 #define inb_p(port) inb(port) 704 #define outb_p(val, port) (udelay(1), outb((val), (port))) 705 #define inw_p(port) inw(port) 706 #define outw_p(val, port) (udelay(1), outw((val), (port))) 707 #define inl_p(port) inl(port) 708 #define outl_p(val, port) (udelay(1), outl((val), (port))) 709 710 711 #define IO_SPACE_LIMIT ~(0UL) 712 713 714 /** 715 * ioremap - map bus memory into CPU space 716 * @address: bus address of the memory 717 * @size: size of the resource to map 718 * 719 * ioremap performs a platform specific sequence of operations to 720 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 721 * writew/writel functions and the other mmio helpers. The returned 722 * address is not guaranteed to be usable directly as a virtual 723 * address. 724 * 725 * We provide a few variations of it: 726 * 727 * * ioremap is the standard one and provides non-cacheable guarded mappings 728 * and can be hooked by the platform via ppc_md 729 * 730 * * ioremap_prot allows to specify the page flags as an argument and can 731 * also be hooked by the platform via ppc_md. 732 * 733 * * ioremap_nocache is identical to ioremap 734 * 735 * * ioremap_wc enables write combining 736 * 737 * * iounmap undoes such a mapping and can be hooked 738 * 739 * * __ioremap_at (and the pending __iounmap_at) are low level functions to 740 * create hand-made mappings for use only by the PCI code and cannot 741 * currently be hooked. Must be page aligned. 742 * 743 * * __ioremap is the low level implementation used by ioremap and 744 * ioremap_prot and cannot be hooked (but can be used by a hook on one 745 * of the previous ones) 746 * 747 * * __ioremap_caller is the same as above but takes an explicit caller 748 * reference rather than using __builtin_return_address(0) 749 * 750 * * __iounmap, is the low level implementation used by iounmap and cannot 751 * be hooked (but can be used by a hook on iounmap) 752 * 753 */ 754 extern void __iomem *ioremap(phys_addr_t address, unsigned long size); 755 extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size, 756 unsigned long flags); 757 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size); 758 #define ioremap_nocache(addr, size) ioremap((addr), (size)) 759 #define ioremap_uc(addr, size) ioremap((addr), (size)) 760 761 extern void iounmap(volatile void __iomem *addr); 762 763 extern void __iomem *__ioremap(phys_addr_t, unsigned long size, 764 unsigned long flags); 765 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size, 766 unsigned long flags, void *caller); 767 768 extern void __iounmap(volatile void __iomem *addr); 769 770 extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea, 771 unsigned long size, unsigned long flags); 772 extern void __iounmap_at(void *ea, unsigned long size); 773 774 /* 775 * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation 776 * which needs some additional definitions here. They basically allow PIO 777 * space overall to be 1GB. This will work as long as we never try to use 778 * iomap to map MMIO below 1GB which should be fine on ppc64 779 */ 780 #define HAVE_ARCH_PIO_SIZE 1 781 #define PIO_OFFSET 0x00000000UL 782 #define PIO_MASK (FULL_IO_SIZE - 1) 783 #define PIO_RESERVED (FULL_IO_SIZE) 784 785 #define mmio_read16be(addr) readw_be(addr) 786 #define mmio_read32be(addr) readl_be(addr) 787 #define mmio_write16be(val, addr) writew_be(val, addr) 788 #define mmio_write32be(val, addr) writel_be(val, addr) 789 #define mmio_insb(addr, dst, count) readsb(addr, dst, count) 790 #define mmio_insw(addr, dst, count) readsw(addr, dst, count) 791 #define mmio_insl(addr, dst, count) readsl(addr, dst, count) 792 #define mmio_outsb(addr, src, count) writesb(addr, src, count) 793 #define mmio_outsw(addr, src, count) writesw(addr, src, count) 794 #define mmio_outsl(addr, src, count) writesl(addr, src, count) 795 796 /** 797 * virt_to_phys - map virtual addresses to physical 798 * @address: address to remap 799 * 800 * The returned physical address is the physical (CPU) mapping for 801 * the memory address given. It is only valid to use this function on 802 * addresses directly mapped or allocated via kmalloc. 803 * 804 * This function does not give bus mappings for DMA transfers. In 805 * almost all conceivable cases a device driver should not be using 806 * this function 807 */ 808 static inline unsigned long virt_to_phys(volatile void * address) 809 { 810 return __pa((unsigned long)address); 811 } 812 813 /** 814 * phys_to_virt - map physical address to virtual 815 * @address: address to remap 816 * 817 * The returned virtual address is a current CPU mapping for 818 * the memory address given. It is only valid to use this function on 819 * addresses that have a kernel mapping 820 * 821 * This function does not handle bus mappings for DMA transfers. In 822 * almost all conceivable cases a device driver should not be using 823 * this function 824 */ 825 static inline void * phys_to_virt(unsigned long address) 826 { 827 return (void *)__va(address); 828 } 829 830 /* 831 * Change "struct page" to physical address. 832 */ 833 #define page_to_phys(page) ((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT) 834 835 /* 836 * 32 bits still uses virt_to_bus() for it's implementation of DMA 837 * mappings se we have to keep it defined here. We also have some old 838 * drivers (shame shame shame) that use bus_to_virt() and haven't been 839 * fixed yet so I need to define it here. 840 */ 841 #ifdef CONFIG_PPC32 842 843 static inline unsigned long virt_to_bus(volatile void * address) 844 { 845 if (address == NULL) 846 return 0; 847 return __pa(address) + PCI_DRAM_OFFSET; 848 } 849 850 static inline void * bus_to_virt(unsigned long address) 851 { 852 if (address == 0) 853 return NULL; 854 return __va(address - PCI_DRAM_OFFSET); 855 } 856 857 #define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET) 858 859 #endif /* CONFIG_PPC32 */ 860 861 /* access ports */ 862 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v)) 863 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v)) 864 865 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v)) 866 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v)) 867 868 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v)) 869 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v)) 870 871 /* Clear and set bits in one shot. These macros can be used to clear and 872 * set multiple bits in a register using a single read-modify-write. These 873 * macros can also be used to set a multiple-bit bit pattern using a mask, 874 * by specifying the mask in the 'clear' parameter and the new bit pattern 875 * in the 'set' parameter. 876 */ 877 878 #define clrsetbits(type, addr, clear, set) \ 879 out_##type((addr), (in_##type(addr) & ~(clear)) | (set)) 880 881 #ifdef __powerpc64__ 882 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set) 883 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set) 884 #endif 885 886 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set) 887 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set) 888 889 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set) 890 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set) 891 892 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set) 893 894 #endif /* __KERNEL__ */ 895 896 #endif /* _ASM_POWERPC_IO_H */ 897