xref: /openbmc/linux/arch/powerpc/include/asm/io.h (revision 8730046c)
1 #ifndef _ASM_POWERPC_IO_H
2 #define _ASM_POWERPC_IO_H
3 #ifdef __KERNEL__
4 
5 #define ARCH_HAS_IOREMAP_WC
6 
7 /*
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or (at your option) any later version.
12  */
13 
14 /* Check of existence of legacy devices */
15 extern int check_legacy_ioport(unsigned long base_port);
16 #define I8042_DATA_REG	0x60
17 #define FDC_BASE	0x3f0
18 
19 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
20 extern struct pci_dev *isa_bridge_pcidev;
21 /*
22  * has legacy ISA devices ?
23  */
24 #define arch_has_dev_port()	(isa_bridge_pcidev != NULL || isa_io_special)
25 #endif
26 
27 #include <linux/device.h>
28 #include <linux/io.h>
29 
30 #include <linux/compiler.h>
31 #include <asm/page.h>
32 #include <asm/byteorder.h>
33 #include <asm/synch.h>
34 #include <asm/delay.h>
35 #include <asm/mmu.h>
36 #include <asm/ppc_asm.h>
37 
38 #include <asm-generic/iomap.h>
39 
40 #ifdef CONFIG_PPC64
41 #include <asm/paca.h>
42 #endif
43 
44 #define SIO_CONFIG_RA	0x398
45 #define SIO_CONFIG_RD	0x399
46 
47 #define SLOW_DOWN_IO
48 
49 /* 32 bits uses slightly different variables for the various IO
50  * bases. Most of this file only uses _IO_BASE though which we
51  * define properly based on the platform
52  */
53 #ifndef CONFIG_PCI
54 #define _IO_BASE	0
55 #define _ISA_MEM_BASE	0
56 #define PCI_DRAM_OFFSET 0
57 #elif defined(CONFIG_PPC32)
58 #define _IO_BASE	isa_io_base
59 #define _ISA_MEM_BASE	isa_mem_base
60 #define PCI_DRAM_OFFSET	pci_dram_offset
61 #else
62 #define _IO_BASE	pci_io_base
63 #define _ISA_MEM_BASE	isa_mem_base
64 #define PCI_DRAM_OFFSET	0
65 #endif
66 
67 extern unsigned long isa_io_base;
68 extern unsigned long pci_io_base;
69 extern unsigned long pci_dram_offset;
70 
71 extern resource_size_t isa_mem_base;
72 
73 /* Boolean set by platform if PIO accesses are suppored while _IO_BASE
74  * is not set or addresses cannot be translated to MMIO. This is typically
75  * set when the platform supports "special" PIO accesses via a non memory
76  * mapped mechanism, and allows things like the early udbg UART code to
77  * function.
78  */
79 extern bool isa_io_special;
80 
81 #ifdef CONFIG_PPC32
82 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
83 #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
84 #endif
85 #endif
86 
87 /*
88  *
89  * Low level MMIO accessors
90  *
91  * This provides the non-bus specific accessors to MMIO. Those are PowerPC
92  * specific and thus shouldn't be used in generic code. The accessors
93  * provided here are:
94  *
95  *	in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
96  *	out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
97  *	_insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
98  *
99  * Those operate directly on a kernel virtual address. Note that the prototype
100  * for the out_* accessors has the arguments in opposite order from the usual
101  * linux PCI accessors. Unlike those, they take the address first and the value
102  * next.
103  *
104  * Note: I might drop the _ns suffix on the stream operations soon as it is
105  * simply normal for stream operations to not swap in the first place.
106  *
107  */
108 
109 #ifdef CONFIG_PPC64
110 #define IO_SET_SYNC_FLAG()	do { local_paca->io_sync = 1; } while(0)
111 #else
112 #define IO_SET_SYNC_FLAG()
113 #endif
114 
115 /* gcc 4.0 and older doesn't have 'Z' constraint */
116 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0)
117 #define DEF_MMIO_IN_X(name, size, insn)				\
118 static inline u##size name(const volatile u##size __iomem *addr)	\
119 {									\
120 	u##size ret;							\
121 	__asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync"	\
122 		: "=r" (ret) : "r" (addr), "m" (*addr) : "memory");	\
123 	return ret;							\
124 }
125 
126 #define DEF_MMIO_OUT_X(name, size, insn)				\
127 static inline void name(volatile u##size __iomem *addr, u##size val)	\
128 {									\
129 	__asm__ __volatile__("sync;"#insn" %1,0,%2"			\
130 		: "=m" (*addr) : "r" (val), "r" (addr) : "memory");	\
131 	IO_SET_SYNC_FLAG();						\
132 }
133 #else /* newer gcc */
134 #define DEF_MMIO_IN_X(name, size, insn)				\
135 static inline u##size name(const volatile u##size __iomem *addr)	\
136 {									\
137 	u##size ret;							\
138 	__asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"	\
139 		: "=r" (ret) : "Z" (*addr) : "memory");			\
140 	return ret;							\
141 }
142 
143 #define DEF_MMIO_OUT_X(name, size, insn)				\
144 static inline void name(volatile u##size __iomem *addr, u##size val)	\
145 {									\
146 	__asm__ __volatile__("sync;"#insn" %1,%y0"			\
147 		: "=Z" (*addr) : "r" (val) : "memory");			\
148 	IO_SET_SYNC_FLAG();						\
149 }
150 #endif
151 
152 #define DEF_MMIO_IN_D(name, size, insn)				\
153 static inline u##size name(const volatile u##size __iomem *addr)	\
154 {									\
155 	u##size ret;							\
156 	__asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
157 		: "=r" (ret) : "m" (*addr) : "memory");			\
158 	return ret;							\
159 }
160 
161 #define DEF_MMIO_OUT_D(name, size, insn)				\
162 static inline void name(volatile u##size __iomem *addr, u##size val)	\
163 {									\
164 	__asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"			\
165 		: "=m" (*addr) : "r" (val) : "memory");			\
166 	IO_SET_SYNC_FLAG();						\
167 }
168 
169 DEF_MMIO_IN_D(in_8,     8, lbz);
170 DEF_MMIO_OUT_D(out_8,   8, stb);
171 
172 #ifdef __BIG_ENDIAN__
173 DEF_MMIO_IN_D(in_be16, 16, lhz);
174 DEF_MMIO_IN_D(in_be32, 32, lwz);
175 DEF_MMIO_IN_X(in_le16, 16, lhbrx);
176 DEF_MMIO_IN_X(in_le32, 32, lwbrx);
177 
178 DEF_MMIO_OUT_D(out_be16, 16, sth);
179 DEF_MMIO_OUT_D(out_be32, 32, stw);
180 DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
181 DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
182 #else
183 DEF_MMIO_IN_X(in_be16, 16, lhbrx);
184 DEF_MMIO_IN_X(in_be32, 32, lwbrx);
185 DEF_MMIO_IN_D(in_le16, 16, lhz);
186 DEF_MMIO_IN_D(in_le32, 32, lwz);
187 
188 DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
189 DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
190 DEF_MMIO_OUT_D(out_le16, 16, sth);
191 DEF_MMIO_OUT_D(out_le32, 32, stw);
192 
193 #endif /* __BIG_ENDIAN */
194 
195 /*
196  * Cache inhibitied accessors for use in real mode, you don't want to use these
197  * unless you know what you're doing.
198  *
199  * NB. These use the cpu byte ordering.
200  */
201 DEF_MMIO_OUT_X(out_rm8,   8, stbcix);
202 DEF_MMIO_OUT_X(out_rm16, 16, sthcix);
203 DEF_MMIO_OUT_X(out_rm32, 32, stwcix);
204 DEF_MMIO_IN_X(in_rm8,   8, lbzcix);
205 DEF_MMIO_IN_X(in_rm16, 16, lhzcix);
206 DEF_MMIO_IN_X(in_rm32, 32, lwzcix);
207 
208 #ifdef __powerpc64__
209 
210 DEF_MMIO_OUT_X(out_rm64, 64, stdcix);
211 DEF_MMIO_IN_X(in_rm64, 64, ldcix);
212 
213 #ifdef __BIG_ENDIAN__
214 DEF_MMIO_OUT_D(out_be64, 64, std);
215 DEF_MMIO_IN_D(in_be64, 64, ld);
216 
217 /* There is no asm instructions for 64 bits reverse loads and stores */
218 static inline u64 in_le64(const volatile u64 __iomem *addr)
219 {
220 	return swab64(in_be64(addr));
221 }
222 
223 static inline void out_le64(volatile u64 __iomem *addr, u64 val)
224 {
225 	out_be64(addr, swab64(val));
226 }
227 #else
228 DEF_MMIO_OUT_D(out_le64, 64, std);
229 DEF_MMIO_IN_D(in_le64, 64, ld);
230 
231 /* There is no asm instructions for 64 bits reverse loads and stores */
232 static inline u64 in_be64(const volatile u64 __iomem *addr)
233 {
234 	return swab64(in_le64(addr));
235 }
236 
237 static inline void out_be64(volatile u64 __iomem *addr, u64 val)
238 {
239 	out_le64(addr, swab64(val));
240 }
241 
242 #endif
243 #endif /* __powerpc64__ */
244 
245 
246 /*
247  * Simple Cache inhibited accessors
248  * Unlike the DEF_MMIO_* macros, these don't include any h/w memory
249  * barriers, callers need to manage memory barriers on their own.
250  * These can only be used in hypervisor real mode.
251  */
252 
253 static inline u32 _lwzcix(unsigned long addr)
254 {
255 	u32 ret;
256 
257 	__asm__ __volatile__("lwzcix %0,0, %1"
258 			     : "=r" (ret) : "r" (addr) : "memory");
259 	return ret;
260 }
261 
262 static inline void _stbcix(u64 addr, u8 val)
263 {
264 	__asm__ __volatile__("stbcix %0,0,%1"
265 		: : "r" (val), "r" (addr) : "memory");
266 }
267 
268 static inline void _stwcix(u64 addr, u32 val)
269 {
270 	__asm__ __volatile__("stwcix %0,0,%1"
271 		: : "r" (val), "r" (addr) : "memory");
272 }
273 
274 /*
275  * Low level IO stream instructions are defined out of line for now
276  */
277 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
278 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
279 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
280 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
281 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
282 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
283 
284 /* The _ns naming is historical and will be removed. For now, just #define
285  * the non _ns equivalent names
286  */
287 #define _insw	_insw_ns
288 #define _insl	_insl_ns
289 #define _outsw	_outsw_ns
290 #define _outsl	_outsl_ns
291 
292 
293 /*
294  * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
295  */
296 
297 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
298 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
299 			   unsigned long n);
300 extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
301 			 unsigned long n);
302 
303 /*
304  *
305  * PCI and standard ISA accessors
306  *
307  * Those are globally defined linux accessors for devices on PCI or ISA
308  * busses. They follow the Linux defined semantics. The current implementation
309  * for PowerPC is as close as possible to the x86 version of these, and thus
310  * provides fairly heavy weight barriers for the non-raw versions
311  *
312  * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
313  * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
314  * own implementation of some or all of the accessors.
315  */
316 
317 /*
318  * Include the EEH definitions when EEH is enabled only so they don't get
319  * in the way when building for 32 bits
320  */
321 #ifdef CONFIG_EEH
322 #include <asm/eeh.h>
323 #endif
324 
325 /* Shortcut to the MMIO argument pointer */
326 #define PCI_IO_ADDR	volatile void __iomem *
327 
328 /* Indirect IO address tokens:
329  *
330  * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
331  * on all MMIOs. (Note that this is all 64 bits only for now)
332  *
333  * To help platforms who may need to differentiate MMIO addresses in
334  * their hooks, a bitfield is reserved for use by the platform near the
335  * top of MMIO addresses (not PIO, those have to cope the hard way).
336  *
337  * This bit field is 12 bits and is at the top of the IO virtual
338  * addresses PCI_IO_INDIRECT_TOKEN_MASK.
339  *
340  * The kernel virtual space is thus:
341  *
342  *  0xD000000000000000		: vmalloc
343  *  0xD000080000000000		: PCI PHB IO space
344  *  0xD000080080000000		: ioremap
345  *  0xD0000fffffffffff		: end of ioremap region
346  *
347  * Since the top 4 bits are reserved as the region ID, we use thus
348  * the next 12 bits and keep 4 bits available for the future if the
349  * virtual address space is ever to be extended.
350  *
351  * The direct IO mapping operations will then mask off those bits
352  * before doing the actual access, though that only happen when
353  * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
354  * mechanism
355  *
356  * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
357  * all PIO functions call through a hook.
358  */
359 
360 #ifdef CONFIG_PPC_INDIRECT_MMIO
361 #define PCI_IO_IND_TOKEN_MASK	0x0fff000000000000ul
362 #define PCI_IO_IND_TOKEN_SHIFT	48
363 #define PCI_FIX_ADDR(addr)						\
364 	((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
365 #define PCI_GET_ADDR_TOKEN(addr)					\
366 	(((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> 		\
367 		PCI_IO_IND_TOKEN_SHIFT)
368 #define PCI_SET_ADDR_TOKEN(addr, token) 				\
369 do {									\
370 	unsigned long __a = (unsigned long)(addr);			\
371 	__a &= ~PCI_IO_IND_TOKEN_MASK;					\
372 	__a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;	\
373 	(addr) = (void __iomem *)__a;					\
374 } while(0)
375 #else
376 #define PCI_FIX_ADDR(addr) (addr)
377 #endif
378 
379 
380 /*
381  * Non ordered and non-swapping "raw" accessors
382  */
383 
384 static inline unsigned char __raw_readb(const volatile void __iomem *addr)
385 {
386 	return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
387 }
388 static inline unsigned short __raw_readw(const volatile void __iomem *addr)
389 {
390 	return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
391 }
392 static inline unsigned int __raw_readl(const volatile void __iomem *addr)
393 {
394 	return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
395 }
396 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
397 {
398 	*(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
399 }
400 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
401 {
402 	*(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
403 }
404 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
405 {
406 	*(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
407 }
408 
409 #ifdef __powerpc64__
410 static inline unsigned long __raw_readq(const volatile void __iomem *addr)
411 {
412 	return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
413 }
414 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
415 {
416 	*(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
417 }
418 
419 /*
420  * Real mode version of the above. stdcix is only supposed to be used
421  * in hypervisor real mode as per the architecture spec.
422  */
423 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
424 {
425 	__asm__ __volatile__("stdcix %0,0,%1"
426 		: : "r" (val), "r" (paddr) : "memory");
427 }
428 
429 #endif /* __powerpc64__ */
430 
431 /*
432  *
433  * PCI PIO and MMIO accessors.
434  *
435  *
436  * On 32 bits, PIO operations have a recovery mechanism in case they trigger
437  * machine checks (which they occasionally do when probing non existing
438  * IO ports on some platforms, like PowerMac and 8xx).
439  * I always found it to be of dubious reliability and I am tempted to get
440  * rid of it one of these days. So if you think it's important to keep it,
441  * please voice up asap. We never had it for 64 bits and I do not intend
442  * to port it over
443  */
444 
445 #ifdef CONFIG_PPC32
446 
447 #define __do_in_asm(name, op)				\
448 static inline unsigned int name(unsigned int port)	\
449 {							\
450 	unsigned int x;					\
451 	__asm__ __volatile__(				\
452 		"sync\n"				\
453 		"0:"	op "	%0,0,%1\n"		\
454 		"1:	twi	0,%0,0\n"		\
455 		"2:	isync\n"			\
456 		"3:	nop\n"				\
457 		"4:\n"					\
458 		".section .fixup,\"ax\"\n"		\
459 		"5:	li	%0,-1\n"		\
460 		"	b	4b\n"			\
461 		".previous\n"				\
462 		EX_TABLE(0b, 5b)			\
463 		EX_TABLE(1b, 5b)			\
464 		EX_TABLE(2b, 5b)			\
465 		EX_TABLE(3b, 5b)			\
466 		: "=&r" (x)				\
467 		: "r" (port + _IO_BASE)			\
468 		: "memory");  				\
469 	return x;					\
470 }
471 
472 #define __do_out_asm(name, op)				\
473 static inline void name(unsigned int val, unsigned int port) \
474 {							\
475 	__asm__ __volatile__(				\
476 		"sync\n"				\
477 		"0:" op " %0,0,%1\n"			\
478 		"1:	sync\n"				\
479 		"2:\n"					\
480 		EX_TABLE(0b, 2b)			\
481 		EX_TABLE(1b, 2b)			\
482 		: : "r" (val), "r" (port + _IO_BASE)	\
483 		: "memory");   	   	   		\
484 }
485 
486 __do_in_asm(_rec_inb, "lbzx")
487 __do_in_asm(_rec_inw, "lhbrx")
488 __do_in_asm(_rec_inl, "lwbrx")
489 __do_out_asm(_rec_outb, "stbx")
490 __do_out_asm(_rec_outw, "sthbrx")
491 __do_out_asm(_rec_outl, "stwbrx")
492 
493 #endif /* CONFIG_PPC32 */
494 
495 /* The "__do_*" operations below provide the actual "base" implementation
496  * for each of the defined accessors. Some of them use the out_* functions
497  * directly, some of them still use EEH, though we might change that in the
498  * future. Those macros below provide the necessary argument swapping and
499  * handling of the IO base for PIO.
500  *
501  * They are themselves used by the macros that define the actual accessors
502  * and can be used by the hooks if any.
503  *
504  * Note that PIO operations are always defined in terms of their corresonding
505  * MMIO operations. That allows platforms like iSeries who want to modify the
506  * behaviour of both to only hook on the MMIO version and get both. It's also
507  * possible to hook directly at the toplevel PIO operation if they have to
508  * be handled differently
509  */
510 #define __do_writeb(val, addr)	out_8(PCI_FIX_ADDR(addr), val)
511 #define __do_writew(val, addr)	out_le16(PCI_FIX_ADDR(addr), val)
512 #define __do_writel(val, addr)	out_le32(PCI_FIX_ADDR(addr), val)
513 #define __do_writeq(val, addr)	out_le64(PCI_FIX_ADDR(addr), val)
514 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
515 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
516 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
517 
518 #ifdef CONFIG_EEH
519 #define __do_readb(addr)	eeh_readb(PCI_FIX_ADDR(addr))
520 #define __do_readw(addr)	eeh_readw(PCI_FIX_ADDR(addr))
521 #define __do_readl(addr)	eeh_readl(PCI_FIX_ADDR(addr))
522 #define __do_readq(addr)	eeh_readq(PCI_FIX_ADDR(addr))
523 #define __do_readw_be(addr)	eeh_readw_be(PCI_FIX_ADDR(addr))
524 #define __do_readl_be(addr)	eeh_readl_be(PCI_FIX_ADDR(addr))
525 #define __do_readq_be(addr)	eeh_readq_be(PCI_FIX_ADDR(addr))
526 #else /* CONFIG_EEH */
527 #define __do_readb(addr)	in_8(PCI_FIX_ADDR(addr))
528 #define __do_readw(addr)	in_le16(PCI_FIX_ADDR(addr))
529 #define __do_readl(addr)	in_le32(PCI_FIX_ADDR(addr))
530 #define __do_readq(addr)	in_le64(PCI_FIX_ADDR(addr))
531 #define __do_readw_be(addr)	in_be16(PCI_FIX_ADDR(addr))
532 #define __do_readl_be(addr)	in_be32(PCI_FIX_ADDR(addr))
533 #define __do_readq_be(addr)	in_be64(PCI_FIX_ADDR(addr))
534 #endif /* !defined(CONFIG_EEH) */
535 
536 #ifdef CONFIG_PPC32
537 #define __do_outb(val, port)	_rec_outb(val, port)
538 #define __do_outw(val, port)	_rec_outw(val, port)
539 #define __do_outl(val, port)	_rec_outl(val, port)
540 #define __do_inb(port)		_rec_inb(port)
541 #define __do_inw(port)		_rec_inw(port)
542 #define __do_inl(port)		_rec_inl(port)
543 #else /* CONFIG_PPC32 */
544 #define __do_outb(val, port)	writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
545 #define __do_outw(val, port)	writew(val,(PCI_IO_ADDR)_IO_BASE+port);
546 #define __do_outl(val, port)	writel(val,(PCI_IO_ADDR)_IO_BASE+port);
547 #define __do_inb(port)		readb((PCI_IO_ADDR)_IO_BASE + port);
548 #define __do_inw(port)		readw((PCI_IO_ADDR)_IO_BASE + port);
549 #define __do_inl(port)		readl((PCI_IO_ADDR)_IO_BASE + port);
550 #endif /* !CONFIG_PPC32 */
551 
552 #ifdef CONFIG_EEH
553 #define __do_readsb(a, b, n)	eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
554 #define __do_readsw(a, b, n)	eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
555 #define __do_readsl(a, b, n)	eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
556 #else /* CONFIG_EEH */
557 #define __do_readsb(a, b, n)	_insb(PCI_FIX_ADDR(a), (b), (n))
558 #define __do_readsw(a, b, n)	_insw(PCI_FIX_ADDR(a), (b), (n))
559 #define __do_readsl(a, b, n)	_insl(PCI_FIX_ADDR(a), (b), (n))
560 #endif /* !CONFIG_EEH */
561 #define __do_writesb(a, b, n)	_outsb(PCI_FIX_ADDR(a),(b),(n))
562 #define __do_writesw(a, b, n)	_outsw(PCI_FIX_ADDR(a),(b),(n))
563 #define __do_writesl(a, b, n)	_outsl(PCI_FIX_ADDR(a),(b),(n))
564 
565 #define __do_insb(p, b, n)	readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
566 #define __do_insw(p, b, n)	readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
567 #define __do_insl(p, b, n)	readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
568 #define __do_outsb(p, b, n)	writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
569 #define __do_outsw(p, b, n)	writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
570 #define __do_outsl(p, b, n)	writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
571 
572 #define __do_memset_io(addr, c, n)	\
573 				_memset_io(PCI_FIX_ADDR(addr), c, n)
574 #define __do_memcpy_toio(dst, src, n)	\
575 				_memcpy_toio(PCI_FIX_ADDR(dst), src, n)
576 
577 #ifdef CONFIG_EEH
578 #define __do_memcpy_fromio(dst, src, n)	\
579 				eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
580 #else /* CONFIG_EEH */
581 #define __do_memcpy_fromio(dst, src, n)	\
582 				_memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
583 #endif /* !CONFIG_EEH */
584 
585 #ifdef CONFIG_PPC_INDIRECT_PIO
586 #define DEF_PCI_HOOK_pio(x)	x
587 #else
588 #define DEF_PCI_HOOK_pio(x)	NULL
589 #endif
590 
591 #ifdef CONFIG_PPC_INDIRECT_MMIO
592 #define DEF_PCI_HOOK_mem(x)	x
593 #else
594 #define DEF_PCI_HOOK_mem(x)	NULL
595 #endif
596 
597 /* Structure containing all the hooks */
598 extern struct ppc_pci_io {
599 
600 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)	ret (*name) at;
601 #define DEF_PCI_AC_NORET(name, at, al, space, aa)	void (*name) at;
602 
603 #include <asm/io-defs.h>
604 
605 #undef DEF_PCI_AC_RET
606 #undef DEF_PCI_AC_NORET
607 
608 } ppc_pci_io;
609 
610 /* The inline wrappers */
611 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)		\
612 static inline ret name at					\
613 {								\
614 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)	\
615 		return ppc_pci_io.name al;			\
616 	return __do_##name al;					\
617 }
618 
619 #define DEF_PCI_AC_NORET(name, at, al, space, aa)		\
620 static inline void name at					\
621 {								\
622 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)		\
623 		ppc_pci_io.name al;				\
624 	else							\
625 		__do_##name al;					\
626 }
627 
628 #include <asm/io-defs.h>
629 
630 #undef DEF_PCI_AC_RET
631 #undef DEF_PCI_AC_NORET
632 
633 /* Some drivers check for the presence of readq & writeq with
634  * a #ifdef, so we make them happy here.
635  */
636 #ifdef __powerpc64__
637 #define readq	readq
638 #define writeq	writeq
639 #endif
640 
641 /*
642  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
643  * access
644  */
645 #define xlate_dev_mem_ptr(p)	__va(p)
646 
647 /*
648  * Convert a virtual cached pointer to an uncached pointer
649  */
650 #define xlate_dev_kmem_ptr(p)	p
651 
652 /*
653  * We don't do relaxed operations yet, at least not with this semantic
654  */
655 #define readb_relaxed(addr)	readb(addr)
656 #define readw_relaxed(addr)	readw(addr)
657 #define readl_relaxed(addr)	readl(addr)
658 #define readq_relaxed(addr)	readq(addr)
659 #define writeb_relaxed(v, addr)	writeb(v, addr)
660 #define writew_relaxed(v, addr)	writew(v, addr)
661 #define writel_relaxed(v, addr)	writel(v, addr)
662 #define writeq_relaxed(v, addr)	writeq(v, addr)
663 
664 #ifdef CONFIG_PPC32
665 #define mmiowb()
666 #else
667 /*
668  * Enforce synchronisation of stores vs. spin_unlock
669  * (this does it explicitly, though our implementation of spin_unlock
670  * does it implicitely too)
671  */
672 static inline void mmiowb(void)
673 {
674 	unsigned long tmp;
675 
676 	__asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
677 	: "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
678 	: "memory");
679 }
680 #endif /* !CONFIG_PPC32 */
681 
682 static inline void iosync(void)
683 {
684         __asm__ __volatile__ ("sync" : : : "memory");
685 }
686 
687 /* Enforce in-order execution of data I/O.
688  * No distinction between read/write on PPC; use eieio for all three.
689  * Those are fairly week though. They don't provide a barrier between
690  * MMIO and cacheable storage nor do they provide a barrier vs. locks,
691  * they only provide barriers between 2 __raw MMIO operations and
692  * possibly break write combining.
693  */
694 #define iobarrier_rw() eieio()
695 #define iobarrier_r()  eieio()
696 #define iobarrier_w()  eieio()
697 
698 
699 /*
700  * output pause versions need a delay at least for the
701  * w83c105 ide controller in a p610.
702  */
703 #define inb_p(port)             inb(port)
704 #define outb_p(val, port)       (udelay(1), outb((val), (port)))
705 #define inw_p(port)             inw(port)
706 #define outw_p(val, port)       (udelay(1), outw((val), (port)))
707 #define inl_p(port)             inl(port)
708 #define outl_p(val, port)       (udelay(1), outl((val), (port)))
709 
710 
711 #define IO_SPACE_LIMIT ~(0UL)
712 
713 
714 /**
715  * ioremap     -   map bus memory into CPU space
716  * @address:   bus address of the memory
717  * @size:      size of the resource to map
718  *
719  * ioremap performs a platform specific sequence of operations to
720  * make bus memory CPU accessible via the readb/readw/readl/writeb/
721  * writew/writel functions and the other mmio helpers. The returned
722  * address is not guaranteed to be usable directly as a virtual
723  * address.
724  *
725  * We provide a few variations of it:
726  *
727  * * ioremap is the standard one and provides non-cacheable guarded mappings
728  *   and can be hooked by the platform via ppc_md
729  *
730  * * ioremap_prot allows to specify the page flags as an argument and can
731  *   also be hooked by the platform via ppc_md.
732  *
733  * * ioremap_nocache is identical to ioremap
734  *
735  * * ioremap_wc enables write combining
736  *
737  * * iounmap undoes such a mapping and can be hooked
738  *
739  * * __ioremap_at (and the pending __iounmap_at) are low level functions to
740  *   create hand-made mappings for use only by the PCI code and cannot
741  *   currently be hooked. Must be page aligned.
742  *
743  * * __ioremap is the low level implementation used by ioremap and
744  *   ioremap_prot and cannot be hooked (but can be used by a hook on one
745  *   of the previous ones)
746  *
747  * * __ioremap_caller is the same as above but takes an explicit caller
748  *   reference rather than using __builtin_return_address(0)
749  *
750  * * __iounmap, is the low level implementation used by iounmap and cannot
751  *   be hooked (but can be used by a hook on iounmap)
752  *
753  */
754 extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
755 extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
756 				  unsigned long flags);
757 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
758 #define ioremap_nocache(addr, size)	ioremap((addr), (size))
759 #define ioremap_uc(addr, size)		ioremap((addr), (size))
760 
761 extern void iounmap(volatile void __iomem *addr);
762 
763 extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
764 			       unsigned long flags);
765 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
766 				      unsigned long flags, void *caller);
767 
768 extern void __iounmap(volatile void __iomem *addr);
769 
770 extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
771 				   unsigned long size, unsigned long flags);
772 extern void __iounmap_at(void *ea, unsigned long size);
773 
774 /*
775  * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
776  * which needs some additional definitions here. They basically allow PIO
777  * space overall to be 1GB. This will work as long as we never try to use
778  * iomap to map MMIO below 1GB which should be fine on ppc64
779  */
780 #define HAVE_ARCH_PIO_SIZE		1
781 #define PIO_OFFSET			0x00000000UL
782 #define PIO_MASK			(FULL_IO_SIZE - 1)
783 #define PIO_RESERVED			(FULL_IO_SIZE)
784 
785 #define mmio_read16be(addr)		readw_be(addr)
786 #define mmio_read32be(addr)		readl_be(addr)
787 #define mmio_write16be(val, addr)	writew_be(val, addr)
788 #define mmio_write32be(val, addr)	writel_be(val, addr)
789 #define mmio_insb(addr, dst, count)	readsb(addr, dst, count)
790 #define mmio_insw(addr, dst, count)	readsw(addr, dst, count)
791 #define mmio_insl(addr, dst, count)	readsl(addr, dst, count)
792 #define mmio_outsb(addr, src, count)	writesb(addr, src, count)
793 #define mmio_outsw(addr, src, count)	writesw(addr, src, count)
794 #define mmio_outsl(addr, src, count)	writesl(addr, src, count)
795 
796 /**
797  *	virt_to_phys	-	map virtual addresses to physical
798  *	@address: address to remap
799  *
800  *	The returned physical address is the physical (CPU) mapping for
801  *	the memory address given. It is only valid to use this function on
802  *	addresses directly mapped or allocated via kmalloc.
803  *
804  *	This function does not give bus mappings for DMA transfers. In
805  *	almost all conceivable cases a device driver should not be using
806  *	this function
807  */
808 static inline unsigned long virt_to_phys(volatile void * address)
809 {
810 	return __pa((unsigned long)address);
811 }
812 
813 /**
814  *	phys_to_virt	-	map physical address to virtual
815  *	@address: address to remap
816  *
817  *	The returned virtual address is a current CPU mapping for
818  *	the memory address given. It is only valid to use this function on
819  *	addresses that have a kernel mapping
820  *
821  *	This function does not handle bus mappings for DMA transfers. In
822  *	almost all conceivable cases a device driver should not be using
823  *	this function
824  */
825 static inline void * phys_to_virt(unsigned long address)
826 {
827 	return (void *)__va(address);
828 }
829 
830 /*
831  * Change "struct page" to physical address.
832  */
833 #define page_to_phys(page)	((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT)
834 
835 /*
836  * 32 bits still uses virt_to_bus() for it's implementation of DMA
837  * mappings se we have to keep it defined here. We also have some old
838  * drivers (shame shame shame) that use bus_to_virt() and haven't been
839  * fixed yet so I need to define it here.
840  */
841 #ifdef CONFIG_PPC32
842 
843 static inline unsigned long virt_to_bus(volatile void * address)
844 {
845         if (address == NULL)
846 		return 0;
847         return __pa(address) + PCI_DRAM_OFFSET;
848 }
849 
850 static inline void * bus_to_virt(unsigned long address)
851 {
852         if (address == 0)
853 		return NULL;
854         return __va(address - PCI_DRAM_OFFSET);
855 }
856 
857 #define page_to_bus(page)	(page_to_phys(page) + PCI_DRAM_OFFSET)
858 
859 #endif /* CONFIG_PPC32 */
860 
861 /* access ports */
862 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v))
863 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
864 
865 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v))
866 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
867 
868 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v))
869 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
870 
871 /* Clear and set bits in one shot.  These macros can be used to clear and
872  * set multiple bits in a register using a single read-modify-write.  These
873  * macros can also be used to set a multiple-bit bit pattern using a mask,
874  * by specifying the mask in the 'clear' parameter and the new bit pattern
875  * in the 'set' parameter.
876  */
877 
878 #define clrsetbits(type, addr, clear, set) \
879 	out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
880 
881 #ifdef __powerpc64__
882 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
883 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
884 #endif
885 
886 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
887 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
888 
889 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
890 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
891 
892 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
893 
894 #endif /* __KERNEL__ */
895 
896 #endif /* _ASM_POWERPC_IO_H */
897