xref: /openbmc/linux/arch/powerpc/include/asm/io.h (revision 82c29810)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 #ifndef _ASM_POWERPC_IO_H
3 #define _ASM_POWERPC_IO_H
4 #ifdef __KERNEL__
5 
6 #define ARCH_HAS_IOREMAP_WC
7 #ifdef CONFIG_PPC32
8 #define ARCH_HAS_IOREMAP_WT
9 #endif
10 
11 /*
12  */
13 
14 /* Check of existence of legacy devices */
15 extern int check_legacy_ioport(unsigned long base_port);
16 #define I8042_DATA_REG	0x60
17 #define FDC_BASE	0x3f0
18 
19 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
20 extern struct pci_dev *isa_bridge_pcidev;
21 /*
22  * has legacy ISA devices ?
23  */
24 #define arch_has_dev_port()	(isa_bridge_pcidev != NULL || isa_io_special)
25 #endif
26 
27 #include <linux/device.h>
28 #include <linux/compiler.h>
29 #include <linux/mm.h>
30 #include <asm/page.h>
31 #include <asm/byteorder.h>
32 #include <asm/synch.h>
33 #include <asm/delay.h>
34 #include <asm/mmiowb.h>
35 #include <asm/mmu.h>
36 #include <asm/ppc_asm.h>
37 #include <asm/pgtable.h>
38 
39 #define SIO_CONFIG_RA	0x398
40 #define SIO_CONFIG_RD	0x399
41 
42 #define SLOW_DOWN_IO
43 
44 /* 32 bits uses slightly different variables for the various IO
45  * bases. Most of this file only uses _IO_BASE though which we
46  * define properly based on the platform
47  */
48 #ifndef CONFIG_PCI
49 #define _IO_BASE	0
50 #define _ISA_MEM_BASE	0
51 #define PCI_DRAM_OFFSET 0
52 #elif defined(CONFIG_PPC32)
53 #define _IO_BASE	isa_io_base
54 #define _ISA_MEM_BASE	isa_mem_base
55 #define PCI_DRAM_OFFSET	pci_dram_offset
56 #else
57 #define _IO_BASE	pci_io_base
58 #define _ISA_MEM_BASE	isa_mem_base
59 #define PCI_DRAM_OFFSET	0
60 #endif
61 
62 extern unsigned long isa_io_base;
63 extern unsigned long pci_io_base;
64 extern unsigned long pci_dram_offset;
65 
66 extern resource_size_t isa_mem_base;
67 
68 /* Boolean set by platform if PIO accesses are suppored while _IO_BASE
69  * is not set or addresses cannot be translated to MMIO. This is typically
70  * set when the platform supports "special" PIO accesses via a non memory
71  * mapped mechanism, and allows things like the early udbg UART code to
72  * function.
73  */
74 extern bool isa_io_special;
75 
76 #ifdef CONFIG_PPC32
77 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
78 #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
79 #endif
80 #endif
81 
82 /*
83  *
84  * Low level MMIO accessors
85  *
86  * This provides the non-bus specific accessors to MMIO. Those are PowerPC
87  * specific and thus shouldn't be used in generic code. The accessors
88  * provided here are:
89  *
90  *	in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
91  *	out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
92  *	_insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
93  *
94  * Those operate directly on a kernel virtual address. Note that the prototype
95  * for the out_* accessors has the arguments in opposite order from the usual
96  * linux PCI accessors. Unlike those, they take the address first and the value
97  * next.
98  *
99  * Note: I might drop the _ns suffix on the stream operations soon as it is
100  * simply normal for stream operations to not swap in the first place.
101  *
102  */
103 
104 #define DEF_MMIO_IN_X(name, size, insn)				\
105 static inline u##size name(const volatile u##size __iomem *addr)	\
106 {									\
107 	u##size ret;							\
108 	__asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"	\
109 		: "=r" (ret) : "Z" (*addr) : "memory");			\
110 	return ret;							\
111 }
112 
113 #define DEF_MMIO_OUT_X(name, size, insn)				\
114 static inline void name(volatile u##size __iomem *addr, u##size val)	\
115 {									\
116 	__asm__ __volatile__("sync;"#insn" %1,%y0"			\
117 		: "=Z" (*addr) : "r" (val) : "memory");			\
118 	mmiowb_set_pending();						\
119 }
120 
121 #define DEF_MMIO_IN_D(name, size, insn)				\
122 static inline u##size name(const volatile u##size __iomem *addr)	\
123 {									\
124 	u##size ret;							\
125 	__asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
126 		: "=r" (ret) : "m" (*addr) : "memory");			\
127 	return ret;							\
128 }
129 
130 #define DEF_MMIO_OUT_D(name, size, insn)				\
131 static inline void name(volatile u##size __iomem *addr, u##size val)	\
132 {									\
133 	__asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"			\
134 		: "=m" (*addr) : "r" (val) : "memory");			\
135 	mmiowb_set_pending();						\
136 }
137 
138 DEF_MMIO_IN_D(in_8,     8, lbz);
139 DEF_MMIO_OUT_D(out_8,   8, stb);
140 
141 #ifdef __BIG_ENDIAN__
142 DEF_MMIO_IN_D(in_be16, 16, lhz);
143 DEF_MMIO_IN_D(in_be32, 32, lwz);
144 DEF_MMIO_IN_X(in_le16, 16, lhbrx);
145 DEF_MMIO_IN_X(in_le32, 32, lwbrx);
146 
147 DEF_MMIO_OUT_D(out_be16, 16, sth);
148 DEF_MMIO_OUT_D(out_be32, 32, stw);
149 DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
150 DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
151 #else
152 DEF_MMIO_IN_X(in_be16, 16, lhbrx);
153 DEF_MMIO_IN_X(in_be32, 32, lwbrx);
154 DEF_MMIO_IN_D(in_le16, 16, lhz);
155 DEF_MMIO_IN_D(in_le32, 32, lwz);
156 
157 DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
158 DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
159 DEF_MMIO_OUT_D(out_le16, 16, sth);
160 DEF_MMIO_OUT_D(out_le32, 32, stw);
161 
162 #endif /* __BIG_ENDIAN */
163 
164 #ifdef __powerpc64__
165 
166 #ifdef __BIG_ENDIAN__
167 DEF_MMIO_OUT_D(out_be64, 64, std);
168 DEF_MMIO_IN_D(in_be64, 64, ld);
169 
170 /* There is no asm instructions for 64 bits reverse loads and stores */
171 static inline u64 in_le64(const volatile u64 __iomem *addr)
172 {
173 	return swab64(in_be64(addr));
174 }
175 
176 static inline void out_le64(volatile u64 __iomem *addr, u64 val)
177 {
178 	out_be64(addr, swab64(val));
179 }
180 #else
181 DEF_MMIO_OUT_D(out_le64, 64, std);
182 DEF_MMIO_IN_D(in_le64, 64, ld);
183 
184 /* There is no asm instructions for 64 bits reverse loads and stores */
185 static inline u64 in_be64(const volatile u64 __iomem *addr)
186 {
187 	return swab64(in_le64(addr));
188 }
189 
190 static inline void out_be64(volatile u64 __iomem *addr, u64 val)
191 {
192 	out_le64(addr, swab64(val));
193 }
194 
195 #endif
196 #endif /* __powerpc64__ */
197 
198 /*
199  * Low level IO stream instructions are defined out of line for now
200  */
201 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
202 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
203 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
204 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
205 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
206 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
207 
208 /* The _ns naming is historical and will be removed. For now, just #define
209  * the non _ns equivalent names
210  */
211 #define _insw	_insw_ns
212 #define _insl	_insl_ns
213 #define _outsw	_outsw_ns
214 #define _outsl	_outsl_ns
215 
216 
217 /*
218  * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
219  */
220 
221 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
222 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
223 			   unsigned long n);
224 extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
225 			 unsigned long n);
226 
227 /*
228  *
229  * PCI and standard ISA accessors
230  *
231  * Those are globally defined linux accessors for devices on PCI or ISA
232  * busses. They follow the Linux defined semantics. The current implementation
233  * for PowerPC is as close as possible to the x86 version of these, and thus
234  * provides fairly heavy weight barriers for the non-raw versions
235  *
236  * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
237  * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
238  * own implementation of some or all of the accessors.
239  */
240 
241 /*
242  * Include the EEH definitions when EEH is enabled only so they don't get
243  * in the way when building for 32 bits
244  */
245 #ifdef CONFIG_EEH
246 #include <asm/eeh.h>
247 #endif
248 
249 /* Shortcut to the MMIO argument pointer */
250 #define PCI_IO_ADDR	volatile void __iomem *
251 
252 /* Indirect IO address tokens:
253  *
254  * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
255  * on all MMIOs. (Note that this is all 64 bits only for now)
256  *
257  * To help platforms who may need to differentiate MMIO addresses in
258  * their hooks, a bitfield is reserved for use by the platform near the
259  * top of MMIO addresses (not PIO, those have to cope the hard way).
260  *
261  * The highest address in the kernel virtual space are:
262  *
263  *  d0003fffffffffff	# with Hash MMU
264  *  c00fffffffffffff	# with Radix MMU
265  *
266  * The top 4 bits are reserved as the region ID on hash, leaving us 8 bits
267  * that can be used for the field.
268  *
269  * The direct IO mapping operations will then mask off those bits
270  * before doing the actual access, though that only happen when
271  * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
272  * mechanism
273  *
274  * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
275  * all PIO functions call through a hook.
276  */
277 
278 #ifdef CONFIG_PPC_INDIRECT_MMIO
279 #define PCI_IO_IND_TOKEN_SHIFT	52
280 #define PCI_IO_IND_TOKEN_MASK	(0xfful << PCI_IO_IND_TOKEN_SHIFT)
281 #define PCI_FIX_ADDR(addr)						\
282 	((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
283 #define PCI_GET_ADDR_TOKEN(addr)					\
284 	(((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> 		\
285 		PCI_IO_IND_TOKEN_SHIFT)
286 #define PCI_SET_ADDR_TOKEN(addr, token) 				\
287 do {									\
288 	unsigned long __a = (unsigned long)(addr);			\
289 	__a &= ~PCI_IO_IND_TOKEN_MASK;					\
290 	__a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;	\
291 	(addr) = (void __iomem *)__a;					\
292 } while(0)
293 #else
294 #define PCI_FIX_ADDR(addr) (addr)
295 #endif
296 
297 
298 /*
299  * Non ordered and non-swapping "raw" accessors
300  */
301 
302 static inline unsigned char __raw_readb(const volatile void __iomem *addr)
303 {
304 	return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
305 }
306 static inline unsigned short __raw_readw(const volatile void __iomem *addr)
307 {
308 	return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
309 }
310 static inline unsigned int __raw_readl(const volatile void __iomem *addr)
311 {
312 	return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
313 }
314 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
315 {
316 	*(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
317 }
318 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
319 {
320 	*(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
321 }
322 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
323 {
324 	*(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
325 }
326 
327 #ifdef __powerpc64__
328 static inline unsigned long __raw_readq(const volatile void __iomem *addr)
329 {
330 	return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
331 }
332 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
333 {
334 	*(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
335 }
336 
337 static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr)
338 {
339 	__raw_writeq((__force unsigned long)cpu_to_be64(v), addr);
340 }
341 
342 /*
343  * Real mode versions of the above. Those instructions are only supposed
344  * to be used in hypervisor real mode as per the architecture spec.
345  */
346 static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr)
347 {
348 	__asm__ __volatile__("stbcix %0,0,%1"
349 		: : "r" (val), "r" (paddr) : "memory");
350 }
351 
352 static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr)
353 {
354 	__asm__ __volatile__("sthcix %0,0,%1"
355 		: : "r" (val), "r" (paddr) : "memory");
356 }
357 
358 static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr)
359 {
360 	__asm__ __volatile__("stwcix %0,0,%1"
361 		: : "r" (val), "r" (paddr) : "memory");
362 }
363 
364 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
365 {
366 	__asm__ __volatile__("stdcix %0,0,%1"
367 		: : "r" (val), "r" (paddr) : "memory");
368 }
369 
370 static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr)
371 {
372 	__raw_rm_writeq((__force u64)cpu_to_be64(val), paddr);
373 }
374 
375 static inline u8 __raw_rm_readb(volatile void __iomem *paddr)
376 {
377 	u8 ret;
378 	__asm__ __volatile__("lbzcix %0,0, %1"
379 			     : "=r" (ret) : "r" (paddr) : "memory");
380 	return ret;
381 }
382 
383 static inline u16 __raw_rm_readw(volatile void __iomem *paddr)
384 {
385 	u16 ret;
386 	__asm__ __volatile__("lhzcix %0,0, %1"
387 			     : "=r" (ret) : "r" (paddr) : "memory");
388 	return ret;
389 }
390 
391 static inline u32 __raw_rm_readl(volatile void __iomem *paddr)
392 {
393 	u32 ret;
394 	__asm__ __volatile__("lwzcix %0,0, %1"
395 			     : "=r" (ret) : "r" (paddr) : "memory");
396 	return ret;
397 }
398 
399 static inline u64 __raw_rm_readq(volatile void __iomem *paddr)
400 {
401 	u64 ret;
402 	__asm__ __volatile__("ldcix %0,0, %1"
403 			     : "=r" (ret) : "r" (paddr) : "memory");
404 	return ret;
405 }
406 #endif /* __powerpc64__ */
407 
408 /*
409  *
410  * PCI PIO and MMIO accessors.
411  *
412  *
413  * On 32 bits, PIO operations have a recovery mechanism in case they trigger
414  * machine checks (which they occasionally do when probing non existing
415  * IO ports on some platforms, like PowerMac and 8xx).
416  * I always found it to be of dubious reliability and I am tempted to get
417  * rid of it one of these days. So if you think it's important to keep it,
418  * please voice up asap. We never had it for 64 bits and I do not intend
419  * to port it over
420  */
421 
422 #ifdef CONFIG_PPC32
423 
424 #define __do_in_asm(name, op)				\
425 static inline unsigned int name(unsigned int port)	\
426 {							\
427 	unsigned int x;					\
428 	__asm__ __volatile__(				\
429 		"sync\n"				\
430 		"0:"	op "	%0,0,%1\n"		\
431 		"1:	twi	0,%0,0\n"		\
432 		"2:	isync\n"			\
433 		"3:	nop\n"				\
434 		"4:\n"					\
435 		".section .fixup,\"ax\"\n"		\
436 		"5:	li	%0,-1\n"		\
437 		"	b	4b\n"			\
438 		".previous\n"				\
439 		EX_TABLE(0b, 5b)			\
440 		EX_TABLE(1b, 5b)			\
441 		EX_TABLE(2b, 5b)			\
442 		EX_TABLE(3b, 5b)			\
443 		: "=&r" (x)				\
444 		: "r" (port + _IO_BASE)			\
445 		: "memory");  				\
446 	return x;					\
447 }
448 
449 #define __do_out_asm(name, op)				\
450 static inline void name(unsigned int val, unsigned int port) \
451 {							\
452 	__asm__ __volatile__(				\
453 		"sync\n"				\
454 		"0:" op " %0,0,%1\n"			\
455 		"1:	sync\n"				\
456 		"2:\n"					\
457 		EX_TABLE(0b, 2b)			\
458 		EX_TABLE(1b, 2b)			\
459 		: : "r" (val), "r" (port + _IO_BASE)	\
460 		: "memory");   	   	   		\
461 }
462 
463 __do_in_asm(_rec_inb, "lbzx")
464 __do_in_asm(_rec_inw, "lhbrx")
465 __do_in_asm(_rec_inl, "lwbrx")
466 __do_out_asm(_rec_outb, "stbx")
467 __do_out_asm(_rec_outw, "sthbrx")
468 __do_out_asm(_rec_outl, "stwbrx")
469 
470 #endif /* CONFIG_PPC32 */
471 
472 /* The "__do_*" operations below provide the actual "base" implementation
473  * for each of the defined accessors. Some of them use the out_* functions
474  * directly, some of them still use EEH, though we might change that in the
475  * future. Those macros below provide the necessary argument swapping and
476  * handling of the IO base for PIO.
477  *
478  * They are themselves used by the macros that define the actual accessors
479  * and can be used by the hooks if any.
480  *
481  * Note that PIO operations are always defined in terms of their corresonding
482  * MMIO operations. That allows platforms like iSeries who want to modify the
483  * behaviour of both to only hook on the MMIO version and get both. It's also
484  * possible to hook directly at the toplevel PIO operation if they have to
485  * be handled differently
486  */
487 #define __do_writeb(val, addr)	out_8(PCI_FIX_ADDR(addr), val)
488 #define __do_writew(val, addr)	out_le16(PCI_FIX_ADDR(addr), val)
489 #define __do_writel(val, addr)	out_le32(PCI_FIX_ADDR(addr), val)
490 #define __do_writeq(val, addr)	out_le64(PCI_FIX_ADDR(addr), val)
491 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
492 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
493 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
494 
495 #ifdef CONFIG_EEH
496 #define __do_readb(addr)	eeh_readb(PCI_FIX_ADDR(addr))
497 #define __do_readw(addr)	eeh_readw(PCI_FIX_ADDR(addr))
498 #define __do_readl(addr)	eeh_readl(PCI_FIX_ADDR(addr))
499 #define __do_readq(addr)	eeh_readq(PCI_FIX_ADDR(addr))
500 #define __do_readw_be(addr)	eeh_readw_be(PCI_FIX_ADDR(addr))
501 #define __do_readl_be(addr)	eeh_readl_be(PCI_FIX_ADDR(addr))
502 #define __do_readq_be(addr)	eeh_readq_be(PCI_FIX_ADDR(addr))
503 #else /* CONFIG_EEH */
504 #define __do_readb(addr)	in_8(PCI_FIX_ADDR(addr))
505 #define __do_readw(addr)	in_le16(PCI_FIX_ADDR(addr))
506 #define __do_readl(addr)	in_le32(PCI_FIX_ADDR(addr))
507 #define __do_readq(addr)	in_le64(PCI_FIX_ADDR(addr))
508 #define __do_readw_be(addr)	in_be16(PCI_FIX_ADDR(addr))
509 #define __do_readl_be(addr)	in_be32(PCI_FIX_ADDR(addr))
510 #define __do_readq_be(addr)	in_be64(PCI_FIX_ADDR(addr))
511 #endif /* !defined(CONFIG_EEH) */
512 
513 #ifdef CONFIG_PPC32
514 #define __do_outb(val, port)	_rec_outb(val, port)
515 #define __do_outw(val, port)	_rec_outw(val, port)
516 #define __do_outl(val, port)	_rec_outl(val, port)
517 #define __do_inb(port)		_rec_inb(port)
518 #define __do_inw(port)		_rec_inw(port)
519 #define __do_inl(port)		_rec_inl(port)
520 #else /* CONFIG_PPC32 */
521 #define __do_outb(val, port)	writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
522 #define __do_outw(val, port)	writew(val,(PCI_IO_ADDR)_IO_BASE+port);
523 #define __do_outl(val, port)	writel(val,(PCI_IO_ADDR)_IO_BASE+port);
524 #define __do_inb(port)		readb((PCI_IO_ADDR)_IO_BASE + port);
525 #define __do_inw(port)		readw((PCI_IO_ADDR)_IO_BASE + port);
526 #define __do_inl(port)		readl((PCI_IO_ADDR)_IO_BASE + port);
527 #endif /* !CONFIG_PPC32 */
528 
529 #ifdef CONFIG_EEH
530 #define __do_readsb(a, b, n)	eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
531 #define __do_readsw(a, b, n)	eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
532 #define __do_readsl(a, b, n)	eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
533 #else /* CONFIG_EEH */
534 #define __do_readsb(a, b, n)	_insb(PCI_FIX_ADDR(a), (b), (n))
535 #define __do_readsw(a, b, n)	_insw(PCI_FIX_ADDR(a), (b), (n))
536 #define __do_readsl(a, b, n)	_insl(PCI_FIX_ADDR(a), (b), (n))
537 #endif /* !CONFIG_EEH */
538 #define __do_writesb(a, b, n)	_outsb(PCI_FIX_ADDR(a),(b),(n))
539 #define __do_writesw(a, b, n)	_outsw(PCI_FIX_ADDR(a),(b),(n))
540 #define __do_writesl(a, b, n)	_outsl(PCI_FIX_ADDR(a),(b),(n))
541 
542 #define __do_insb(p, b, n)	readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
543 #define __do_insw(p, b, n)	readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
544 #define __do_insl(p, b, n)	readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
545 #define __do_outsb(p, b, n)	writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
546 #define __do_outsw(p, b, n)	writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
547 #define __do_outsl(p, b, n)	writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
548 
549 #define __do_memset_io(addr, c, n)	\
550 				_memset_io(PCI_FIX_ADDR(addr), c, n)
551 #define __do_memcpy_toio(dst, src, n)	\
552 				_memcpy_toio(PCI_FIX_ADDR(dst), src, n)
553 
554 #ifdef CONFIG_EEH
555 #define __do_memcpy_fromio(dst, src, n)	\
556 				eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
557 #else /* CONFIG_EEH */
558 #define __do_memcpy_fromio(dst, src, n)	\
559 				_memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
560 #endif /* !CONFIG_EEH */
561 
562 #ifdef CONFIG_PPC_INDIRECT_PIO
563 #define DEF_PCI_HOOK_pio(x)	x
564 #else
565 #define DEF_PCI_HOOK_pio(x)	NULL
566 #endif
567 
568 #ifdef CONFIG_PPC_INDIRECT_MMIO
569 #define DEF_PCI_HOOK_mem(x)	x
570 #else
571 #define DEF_PCI_HOOK_mem(x)	NULL
572 #endif
573 
574 /* Structure containing all the hooks */
575 extern struct ppc_pci_io {
576 
577 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)	ret (*name) at;
578 #define DEF_PCI_AC_NORET(name, at, al, space, aa)	void (*name) at;
579 
580 #include <asm/io-defs.h>
581 
582 #undef DEF_PCI_AC_RET
583 #undef DEF_PCI_AC_NORET
584 
585 } ppc_pci_io;
586 
587 /* The inline wrappers */
588 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)		\
589 static inline ret name at					\
590 {								\
591 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)	\
592 		return ppc_pci_io.name al;			\
593 	return __do_##name al;					\
594 }
595 
596 #define DEF_PCI_AC_NORET(name, at, al, space, aa)		\
597 static inline void name at					\
598 {								\
599 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)		\
600 		ppc_pci_io.name al;				\
601 	else							\
602 		__do_##name al;					\
603 }
604 
605 #include <asm/io-defs.h>
606 
607 #undef DEF_PCI_AC_RET
608 #undef DEF_PCI_AC_NORET
609 
610 /* Some drivers check for the presence of readq & writeq with
611  * a #ifdef, so we make them happy here.
612  */
613 #ifdef __powerpc64__
614 #define readq	readq
615 #define writeq	writeq
616 #endif
617 
618 /*
619  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
620  * access
621  */
622 #define xlate_dev_mem_ptr(p)	__va(p)
623 
624 /*
625  * Convert a virtual cached pointer to an uncached pointer
626  */
627 #define xlate_dev_kmem_ptr(p)	p
628 
629 /*
630  * We don't do relaxed operations yet, at least not with this semantic
631  */
632 #define readb_relaxed(addr)	readb(addr)
633 #define readw_relaxed(addr)	readw(addr)
634 #define readl_relaxed(addr)	readl(addr)
635 #define readq_relaxed(addr)	readq(addr)
636 #define writeb_relaxed(v, addr)	writeb(v, addr)
637 #define writew_relaxed(v, addr)	writew(v, addr)
638 #define writel_relaxed(v, addr)	writel(v, addr)
639 #define writeq_relaxed(v, addr)	writeq(v, addr)
640 
641 #include <asm-generic/iomap.h>
642 
643 static inline void iosync(void)
644 {
645         __asm__ __volatile__ ("sync" : : : "memory");
646 }
647 
648 /* Enforce in-order execution of data I/O.
649  * No distinction between read/write on PPC; use eieio for all three.
650  * Those are fairly week though. They don't provide a barrier between
651  * MMIO and cacheable storage nor do they provide a barrier vs. locks,
652  * they only provide barriers between 2 __raw MMIO operations and
653  * possibly break write combining.
654  */
655 #define iobarrier_rw() eieio()
656 #define iobarrier_r()  eieio()
657 #define iobarrier_w()  eieio()
658 
659 
660 /*
661  * output pause versions need a delay at least for the
662  * w83c105 ide controller in a p610.
663  */
664 #define inb_p(port)             inb(port)
665 #define outb_p(val, port)       (udelay(1), outb((val), (port)))
666 #define inw_p(port)             inw(port)
667 #define outw_p(val, port)       (udelay(1), outw((val), (port)))
668 #define inl_p(port)             inl(port)
669 #define outl_p(val, port)       (udelay(1), outl((val), (port)))
670 
671 
672 #define IO_SPACE_LIMIT ~(0UL)
673 
674 
675 /**
676  * ioremap     -   map bus memory into CPU space
677  * @address:   bus address of the memory
678  * @size:      size of the resource to map
679  *
680  * ioremap performs a platform specific sequence of operations to
681  * make bus memory CPU accessible via the readb/readw/readl/writeb/
682  * writew/writel functions and the other mmio helpers. The returned
683  * address is not guaranteed to be usable directly as a virtual
684  * address.
685  *
686  * We provide a few variations of it:
687  *
688  * * ioremap is the standard one and provides non-cacheable guarded mappings
689  *   and can be hooked by the platform via ppc_md
690  *
691  * * ioremap_prot allows to specify the page flags as an argument and can
692  *   also be hooked by the platform via ppc_md.
693  *
694  * * ioremap_nocache is identical to ioremap
695  *
696  * * ioremap_wc enables write combining
697  *
698  * * ioremap_wt enables write through
699  *
700  * * ioremap_coherent maps coherent cached memory
701  *
702  * * iounmap undoes such a mapping and can be hooked
703  *
704  * * __ioremap_at (and the pending __iounmap_at) are low level functions to
705  *   create hand-made mappings for use only by the PCI code and cannot
706  *   currently be hooked. Must be page aligned.
707  *
708  * * __ioremap is the low level implementation used by ioremap and
709  *   ioremap_prot and cannot be hooked (but can be used by a hook on one
710  *   of the previous ones)
711  *
712  * * __ioremap_caller is the same as above but takes an explicit caller
713  *   reference rather than using __builtin_return_address(0)
714  *
715  * * __iounmap, is the low level implementation used by iounmap and cannot
716  *   be hooked (but can be used by a hook on iounmap)
717  *
718  */
719 extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
720 extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
721 				  unsigned long flags);
722 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
723 void __iomem *ioremap_wt(phys_addr_t address, unsigned long size);
724 void __iomem *ioremap_coherent(phys_addr_t address, unsigned long size);
725 #define ioremap_nocache(addr, size)	ioremap((addr), (size))
726 #define ioremap_uc(addr, size)		ioremap((addr), (size))
727 #define ioremap_cache(addr, size) \
728 	ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL))
729 
730 extern void iounmap(volatile void __iomem *addr);
731 
732 extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
733 			       unsigned long flags);
734 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
735 				      pgprot_t prot, void *caller);
736 
737 extern void __iounmap(volatile void __iomem *addr);
738 
739 extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
740 				   unsigned long size, pgprot_t prot);
741 extern void __iounmap_at(void *ea, unsigned long size);
742 
743 /*
744  * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
745  * which needs some additional definitions here. They basically allow PIO
746  * space overall to be 1GB. This will work as long as we never try to use
747  * iomap to map MMIO below 1GB which should be fine on ppc64
748  */
749 #define HAVE_ARCH_PIO_SIZE		1
750 #define PIO_OFFSET			0x00000000UL
751 #define PIO_MASK			(FULL_IO_SIZE - 1)
752 #define PIO_RESERVED			(FULL_IO_SIZE)
753 
754 #define mmio_read16be(addr)		readw_be(addr)
755 #define mmio_read32be(addr)		readl_be(addr)
756 #define mmio_read64be(addr)		readq_be(addr)
757 #define mmio_write16be(val, addr)	writew_be(val, addr)
758 #define mmio_write32be(val, addr)	writel_be(val, addr)
759 #define mmio_write64be(val, addr)	writeq_be(val, addr)
760 #define mmio_insb(addr, dst, count)	readsb(addr, dst, count)
761 #define mmio_insw(addr, dst, count)	readsw(addr, dst, count)
762 #define mmio_insl(addr, dst, count)	readsl(addr, dst, count)
763 #define mmio_outsb(addr, src, count)	writesb(addr, src, count)
764 #define mmio_outsw(addr, src, count)	writesw(addr, src, count)
765 #define mmio_outsl(addr, src, count)	writesl(addr, src, count)
766 
767 /**
768  *	virt_to_phys	-	map virtual addresses to physical
769  *	@address: address to remap
770  *
771  *	The returned physical address is the physical (CPU) mapping for
772  *	the memory address given. It is only valid to use this function on
773  *	addresses directly mapped or allocated via kmalloc.
774  *
775  *	This function does not give bus mappings for DMA transfers. In
776  *	almost all conceivable cases a device driver should not be using
777  *	this function
778  */
779 static inline unsigned long virt_to_phys(volatile void * address)
780 {
781 	WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !virt_addr_valid(address));
782 
783 	return __pa((unsigned long)address);
784 }
785 
786 /**
787  *	phys_to_virt	-	map physical address to virtual
788  *	@address: address to remap
789  *
790  *	The returned virtual address is a current CPU mapping for
791  *	the memory address given. It is only valid to use this function on
792  *	addresses that have a kernel mapping
793  *
794  *	This function does not handle bus mappings for DMA transfers. In
795  *	almost all conceivable cases a device driver should not be using
796  *	this function
797  */
798 static inline void * phys_to_virt(unsigned long address)
799 {
800 	return (void *)__va(address);
801 }
802 
803 /*
804  * Change "struct page" to physical address.
805  */
806 static inline phys_addr_t page_to_phys(struct page *page)
807 {
808 	unsigned long pfn = page_to_pfn(page);
809 
810 	WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !pfn_valid(pfn));
811 
812 	return PFN_PHYS(pfn);
813 }
814 
815 /*
816  * 32 bits still uses virt_to_bus() for it's implementation of DMA
817  * mappings se we have to keep it defined here. We also have some old
818  * drivers (shame shame shame) that use bus_to_virt() and haven't been
819  * fixed yet so I need to define it here.
820  */
821 #ifdef CONFIG_PPC32
822 
823 static inline unsigned long virt_to_bus(volatile void * address)
824 {
825         if (address == NULL)
826 		return 0;
827         return __pa(address) + PCI_DRAM_OFFSET;
828 }
829 
830 static inline void * bus_to_virt(unsigned long address)
831 {
832         if (address == 0)
833 		return NULL;
834         return __va(address - PCI_DRAM_OFFSET);
835 }
836 
837 #define page_to_bus(page)	(page_to_phys(page) + PCI_DRAM_OFFSET)
838 
839 #endif /* CONFIG_PPC32 */
840 
841 /* access ports */
842 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v))
843 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
844 
845 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v))
846 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
847 
848 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v))
849 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
850 
851 /* Clear and set bits in one shot.  These macros can be used to clear and
852  * set multiple bits in a register using a single read-modify-write.  These
853  * macros can also be used to set a multiple-bit bit pattern using a mask,
854  * by specifying the mask in the 'clear' parameter and the new bit pattern
855  * in the 'set' parameter.
856  */
857 
858 #define clrsetbits(type, addr, clear, set) \
859 	out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
860 
861 #ifdef __powerpc64__
862 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
863 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
864 #endif
865 
866 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
867 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
868 
869 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
870 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
871 
872 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
873 
874 #endif /* __KERNEL__ */
875 
876 #endif /* _ASM_POWERPC_IO_H */
877