xref: /openbmc/linux/arch/powerpc/include/asm/io.h (revision 458a445deb9c9fb13cec46fe9b179a84d2ff514f)
1 #ifndef _ASM_POWERPC_IO_H
2 #define _ASM_POWERPC_IO_H
3 #ifdef __KERNEL__
4 
5 #define ARCH_HAS_IOREMAP_WC
6 #ifdef CONFIG_PPC32
7 #define ARCH_HAS_IOREMAP_WT
8 #endif
9 
10 /*
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version
14  * 2 of the License, or (at your option) any later version.
15  */
16 
17 /* Check of existence of legacy devices */
18 extern int check_legacy_ioport(unsigned long base_port);
19 #define I8042_DATA_REG	0x60
20 #define FDC_BASE	0x3f0
21 
22 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
23 extern struct pci_dev *isa_bridge_pcidev;
24 /*
25  * has legacy ISA devices ?
26  */
27 #define arch_has_dev_port()	(isa_bridge_pcidev != NULL || isa_io_special)
28 #endif
29 
30 #include <linux/device.h>
31 #include <linux/compiler.h>
32 #include <asm/page.h>
33 #include <asm/byteorder.h>
34 #include <asm/synch.h>
35 #include <asm/delay.h>
36 #include <asm/mmu.h>
37 #include <asm/ppc_asm.h>
38 
39 #ifdef CONFIG_PPC64
40 #include <asm/paca.h>
41 #endif
42 
43 #define SIO_CONFIG_RA	0x398
44 #define SIO_CONFIG_RD	0x399
45 
46 #define SLOW_DOWN_IO
47 
48 /* 32 bits uses slightly different variables for the various IO
49  * bases. Most of this file only uses _IO_BASE though which we
50  * define properly based on the platform
51  */
52 #ifndef CONFIG_PCI
53 #define _IO_BASE	0
54 #define _ISA_MEM_BASE	0
55 #define PCI_DRAM_OFFSET 0
56 #elif defined(CONFIG_PPC32)
57 #define _IO_BASE	isa_io_base
58 #define _ISA_MEM_BASE	isa_mem_base
59 #define PCI_DRAM_OFFSET	pci_dram_offset
60 #else
61 #define _IO_BASE	pci_io_base
62 #define _ISA_MEM_BASE	isa_mem_base
63 #define PCI_DRAM_OFFSET	0
64 #endif
65 
66 extern unsigned long isa_io_base;
67 extern unsigned long pci_io_base;
68 extern unsigned long pci_dram_offset;
69 
70 extern resource_size_t isa_mem_base;
71 
72 /* Boolean set by platform if PIO accesses are suppored while _IO_BASE
73  * is not set or addresses cannot be translated to MMIO. This is typically
74  * set when the platform supports "special" PIO accesses via a non memory
75  * mapped mechanism, and allows things like the early udbg UART code to
76  * function.
77  */
78 extern bool isa_io_special;
79 
80 #ifdef CONFIG_PPC32
81 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
82 #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
83 #endif
84 #endif
85 
86 /*
87  *
88  * Low level MMIO accessors
89  *
90  * This provides the non-bus specific accessors to MMIO. Those are PowerPC
91  * specific and thus shouldn't be used in generic code. The accessors
92  * provided here are:
93  *
94  *	in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
95  *	out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
96  *	_insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
97  *
98  * Those operate directly on a kernel virtual address. Note that the prototype
99  * for the out_* accessors has the arguments in opposite order from the usual
100  * linux PCI accessors. Unlike those, they take the address first and the value
101  * next.
102  *
103  * Note: I might drop the _ns suffix on the stream operations soon as it is
104  * simply normal for stream operations to not swap in the first place.
105  *
106  */
107 
108 #ifdef CONFIG_PPC64
109 #define IO_SET_SYNC_FLAG()	do { local_paca->io_sync = 1; } while(0)
110 #else
111 #define IO_SET_SYNC_FLAG()
112 #endif
113 
114 #define DEF_MMIO_IN_X(name, size, insn)				\
115 static inline u##size name(const volatile u##size __iomem *addr)	\
116 {									\
117 	u##size ret;							\
118 	__asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"	\
119 		: "=r" (ret) : "Z" (*addr) : "memory");			\
120 	return ret;							\
121 }
122 
123 #define DEF_MMIO_OUT_X(name, size, insn)				\
124 static inline void name(volatile u##size __iomem *addr, u##size val)	\
125 {									\
126 	__asm__ __volatile__("sync;"#insn" %1,%y0"			\
127 		: "=Z" (*addr) : "r" (val) : "memory");			\
128 	IO_SET_SYNC_FLAG();						\
129 }
130 
131 #define DEF_MMIO_IN_D(name, size, insn)				\
132 static inline u##size name(const volatile u##size __iomem *addr)	\
133 {									\
134 	u##size ret;							\
135 	__asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
136 		: "=r" (ret) : "m" (*addr) : "memory");			\
137 	return ret;							\
138 }
139 
140 #define DEF_MMIO_OUT_D(name, size, insn)				\
141 static inline void name(volatile u##size __iomem *addr, u##size val)	\
142 {									\
143 	__asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"			\
144 		: "=m" (*addr) : "r" (val) : "memory");			\
145 	IO_SET_SYNC_FLAG();						\
146 }
147 
148 DEF_MMIO_IN_D(in_8,     8, lbz);
149 DEF_MMIO_OUT_D(out_8,   8, stb);
150 
151 #ifdef __BIG_ENDIAN__
152 DEF_MMIO_IN_D(in_be16, 16, lhz);
153 DEF_MMIO_IN_D(in_be32, 32, lwz);
154 DEF_MMIO_IN_X(in_le16, 16, lhbrx);
155 DEF_MMIO_IN_X(in_le32, 32, lwbrx);
156 
157 DEF_MMIO_OUT_D(out_be16, 16, sth);
158 DEF_MMIO_OUT_D(out_be32, 32, stw);
159 DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
160 DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
161 #else
162 DEF_MMIO_IN_X(in_be16, 16, lhbrx);
163 DEF_MMIO_IN_X(in_be32, 32, lwbrx);
164 DEF_MMIO_IN_D(in_le16, 16, lhz);
165 DEF_MMIO_IN_D(in_le32, 32, lwz);
166 
167 DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
168 DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
169 DEF_MMIO_OUT_D(out_le16, 16, sth);
170 DEF_MMIO_OUT_D(out_le32, 32, stw);
171 
172 #endif /* __BIG_ENDIAN */
173 
174 #ifdef __powerpc64__
175 
176 #ifdef __BIG_ENDIAN__
177 DEF_MMIO_OUT_D(out_be64, 64, std);
178 DEF_MMIO_IN_D(in_be64, 64, ld);
179 
180 /* There is no asm instructions for 64 bits reverse loads and stores */
181 static inline u64 in_le64(const volatile u64 __iomem *addr)
182 {
183 	return swab64(in_be64(addr));
184 }
185 
186 static inline void out_le64(volatile u64 __iomem *addr, u64 val)
187 {
188 	out_be64(addr, swab64(val));
189 }
190 #else
191 DEF_MMIO_OUT_D(out_le64, 64, std);
192 DEF_MMIO_IN_D(in_le64, 64, ld);
193 
194 /* There is no asm instructions for 64 bits reverse loads and stores */
195 static inline u64 in_be64(const volatile u64 __iomem *addr)
196 {
197 	return swab64(in_le64(addr));
198 }
199 
200 static inline void out_be64(volatile u64 __iomem *addr, u64 val)
201 {
202 	out_le64(addr, swab64(val));
203 }
204 
205 #endif
206 #endif /* __powerpc64__ */
207 
208 /*
209  * Low level IO stream instructions are defined out of line for now
210  */
211 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
212 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
213 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
214 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
215 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
216 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
217 
218 /* The _ns naming is historical and will be removed. For now, just #define
219  * the non _ns equivalent names
220  */
221 #define _insw	_insw_ns
222 #define _insl	_insl_ns
223 #define _outsw	_outsw_ns
224 #define _outsl	_outsl_ns
225 
226 
227 /*
228  * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
229  */
230 
231 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
232 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
233 			   unsigned long n);
234 extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
235 			 unsigned long n);
236 
237 /*
238  *
239  * PCI and standard ISA accessors
240  *
241  * Those are globally defined linux accessors for devices on PCI or ISA
242  * busses. They follow the Linux defined semantics. The current implementation
243  * for PowerPC is as close as possible to the x86 version of these, and thus
244  * provides fairly heavy weight barriers for the non-raw versions
245  *
246  * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
247  * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
248  * own implementation of some or all of the accessors.
249  */
250 
251 /*
252  * Include the EEH definitions when EEH is enabled only so they don't get
253  * in the way when building for 32 bits
254  */
255 #ifdef CONFIG_EEH
256 #include <asm/eeh.h>
257 #endif
258 
259 /* Shortcut to the MMIO argument pointer */
260 #define PCI_IO_ADDR	volatile void __iomem *
261 
262 /* Indirect IO address tokens:
263  *
264  * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
265  * on all MMIOs. (Note that this is all 64 bits only for now)
266  *
267  * To help platforms who may need to differentiate MMIO addresses in
268  * their hooks, a bitfield is reserved for use by the platform near the
269  * top of MMIO addresses (not PIO, those have to cope the hard way).
270  *
271  * The highest address in the kernel virtual space are:
272  *
273  *  d0003fffffffffff	# with Hash MMU
274  *  c00fffffffffffff	# with Radix MMU
275  *
276  * The top 4 bits are reserved as the region ID on hash, leaving us 8 bits
277  * that can be used for the field.
278  *
279  * The direct IO mapping operations will then mask off those bits
280  * before doing the actual access, though that only happen when
281  * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
282  * mechanism
283  *
284  * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
285  * all PIO functions call through a hook.
286  */
287 
288 #ifdef CONFIG_PPC_INDIRECT_MMIO
289 #define PCI_IO_IND_TOKEN_SHIFT	52
290 #define PCI_IO_IND_TOKEN_MASK	(0xfful << PCI_IO_IND_TOKEN_SHIFT)
291 #define PCI_FIX_ADDR(addr)						\
292 	((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
293 #define PCI_GET_ADDR_TOKEN(addr)					\
294 	(((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> 		\
295 		PCI_IO_IND_TOKEN_SHIFT)
296 #define PCI_SET_ADDR_TOKEN(addr, token) 				\
297 do {									\
298 	unsigned long __a = (unsigned long)(addr);			\
299 	__a &= ~PCI_IO_IND_TOKEN_MASK;					\
300 	__a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;	\
301 	(addr) = (void __iomem *)__a;					\
302 } while(0)
303 #else
304 #define PCI_FIX_ADDR(addr) (addr)
305 #endif
306 
307 
308 /*
309  * Non ordered and non-swapping "raw" accessors
310  */
311 
312 static inline unsigned char __raw_readb(const volatile void __iomem *addr)
313 {
314 	return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
315 }
316 static inline unsigned short __raw_readw(const volatile void __iomem *addr)
317 {
318 	return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
319 }
320 static inline unsigned int __raw_readl(const volatile void __iomem *addr)
321 {
322 	return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
323 }
324 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
325 {
326 	*(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
327 }
328 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
329 {
330 	*(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
331 }
332 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
333 {
334 	*(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
335 }
336 
337 #ifdef __powerpc64__
338 static inline unsigned long __raw_readq(const volatile void __iomem *addr)
339 {
340 	return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
341 }
342 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
343 {
344 	*(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
345 }
346 
347 static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr)
348 {
349 	__raw_writeq((__force unsigned long)cpu_to_be64(v), addr);
350 }
351 
352 /*
353  * Real mode versions of the above. Those instructions are only supposed
354  * to be used in hypervisor real mode as per the architecture spec.
355  */
356 static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr)
357 {
358 	__asm__ __volatile__("stbcix %0,0,%1"
359 		: : "r" (val), "r" (paddr) : "memory");
360 }
361 
362 static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr)
363 {
364 	__asm__ __volatile__("sthcix %0,0,%1"
365 		: : "r" (val), "r" (paddr) : "memory");
366 }
367 
368 static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr)
369 {
370 	__asm__ __volatile__("stwcix %0,0,%1"
371 		: : "r" (val), "r" (paddr) : "memory");
372 }
373 
374 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
375 {
376 	__asm__ __volatile__("stdcix %0,0,%1"
377 		: : "r" (val), "r" (paddr) : "memory");
378 }
379 
380 static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr)
381 {
382 	__raw_rm_writeq((__force u64)cpu_to_be64(val), paddr);
383 }
384 
385 static inline u8 __raw_rm_readb(volatile void __iomem *paddr)
386 {
387 	u8 ret;
388 	__asm__ __volatile__("lbzcix %0,0, %1"
389 			     : "=r" (ret) : "r" (paddr) : "memory");
390 	return ret;
391 }
392 
393 static inline u16 __raw_rm_readw(volatile void __iomem *paddr)
394 {
395 	u16 ret;
396 	__asm__ __volatile__("lhzcix %0,0, %1"
397 			     : "=r" (ret) : "r" (paddr) : "memory");
398 	return ret;
399 }
400 
401 static inline u32 __raw_rm_readl(volatile void __iomem *paddr)
402 {
403 	u32 ret;
404 	__asm__ __volatile__("lwzcix %0,0, %1"
405 			     : "=r" (ret) : "r" (paddr) : "memory");
406 	return ret;
407 }
408 
409 static inline u64 __raw_rm_readq(volatile void __iomem *paddr)
410 {
411 	u64 ret;
412 	__asm__ __volatile__("ldcix %0,0, %1"
413 			     : "=r" (ret) : "r" (paddr) : "memory");
414 	return ret;
415 }
416 #endif /* __powerpc64__ */
417 
418 /*
419  *
420  * PCI PIO and MMIO accessors.
421  *
422  *
423  * On 32 bits, PIO operations have a recovery mechanism in case they trigger
424  * machine checks (which they occasionally do when probing non existing
425  * IO ports on some platforms, like PowerMac and 8xx).
426  * I always found it to be of dubious reliability and I am tempted to get
427  * rid of it one of these days. So if you think it's important to keep it,
428  * please voice up asap. We never had it for 64 bits and I do not intend
429  * to port it over
430  */
431 
432 #ifdef CONFIG_PPC32
433 
434 #define __do_in_asm(name, op)				\
435 static inline unsigned int name(unsigned int port)	\
436 {							\
437 	unsigned int x;					\
438 	__asm__ __volatile__(				\
439 		"sync\n"				\
440 		"0:"	op "	%0,0,%1\n"		\
441 		"1:	twi	0,%0,0\n"		\
442 		"2:	isync\n"			\
443 		"3:	nop\n"				\
444 		"4:\n"					\
445 		".section .fixup,\"ax\"\n"		\
446 		"5:	li	%0,-1\n"		\
447 		"	b	4b\n"			\
448 		".previous\n"				\
449 		EX_TABLE(0b, 5b)			\
450 		EX_TABLE(1b, 5b)			\
451 		EX_TABLE(2b, 5b)			\
452 		EX_TABLE(3b, 5b)			\
453 		: "=&r" (x)				\
454 		: "r" (port + _IO_BASE)			\
455 		: "memory");  				\
456 	return x;					\
457 }
458 
459 #define __do_out_asm(name, op)				\
460 static inline void name(unsigned int val, unsigned int port) \
461 {							\
462 	__asm__ __volatile__(				\
463 		"sync\n"				\
464 		"0:" op " %0,0,%1\n"			\
465 		"1:	sync\n"				\
466 		"2:\n"					\
467 		EX_TABLE(0b, 2b)			\
468 		EX_TABLE(1b, 2b)			\
469 		: : "r" (val), "r" (port + _IO_BASE)	\
470 		: "memory");   	   	   		\
471 }
472 
473 __do_in_asm(_rec_inb, "lbzx")
474 __do_in_asm(_rec_inw, "lhbrx")
475 __do_in_asm(_rec_inl, "lwbrx")
476 __do_out_asm(_rec_outb, "stbx")
477 __do_out_asm(_rec_outw, "sthbrx")
478 __do_out_asm(_rec_outl, "stwbrx")
479 
480 #endif /* CONFIG_PPC32 */
481 
482 /* The "__do_*" operations below provide the actual "base" implementation
483  * for each of the defined accessors. Some of them use the out_* functions
484  * directly, some of them still use EEH, though we might change that in the
485  * future. Those macros below provide the necessary argument swapping and
486  * handling of the IO base for PIO.
487  *
488  * They are themselves used by the macros that define the actual accessors
489  * and can be used by the hooks if any.
490  *
491  * Note that PIO operations are always defined in terms of their corresonding
492  * MMIO operations. That allows platforms like iSeries who want to modify the
493  * behaviour of both to only hook on the MMIO version and get both. It's also
494  * possible to hook directly at the toplevel PIO operation if they have to
495  * be handled differently
496  */
497 #define __do_writeb(val, addr)	out_8(PCI_FIX_ADDR(addr), val)
498 #define __do_writew(val, addr)	out_le16(PCI_FIX_ADDR(addr), val)
499 #define __do_writel(val, addr)	out_le32(PCI_FIX_ADDR(addr), val)
500 #define __do_writeq(val, addr)	out_le64(PCI_FIX_ADDR(addr), val)
501 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
502 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
503 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
504 
505 #ifdef CONFIG_EEH
506 #define __do_readb(addr)	eeh_readb(PCI_FIX_ADDR(addr))
507 #define __do_readw(addr)	eeh_readw(PCI_FIX_ADDR(addr))
508 #define __do_readl(addr)	eeh_readl(PCI_FIX_ADDR(addr))
509 #define __do_readq(addr)	eeh_readq(PCI_FIX_ADDR(addr))
510 #define __do_readw_be(addr)	eeh_readw_be(PCI_FIX_ADDR(addr))
511 #define __do_readl_be(addr)	eeh_readl_be(PCI_FIX_ADDR(addr))
512 #define __do_readq_be(addr)	eeh_readq_be(PCI_FIX_ADDR(addr))
513 #else /* CONFIG_EEH */
514 #define __do_readb(addr)	in_8(PCI_FIX_ADDR(addr))
515 #define __do_readw(addr)	in_le16(PCI_FIX_ADDR(addr))
516 #define __do_readl(addr)	in_le32(PCI_FIX_ADDR(addr))
517 #define __do_readq(addr)	in_le64(PCI_FIX_ADDR(addr))
518 #define __do_readw_be(addr)	in_be16(PCI_FIX_ADDR(addr))
519 #define __do_readl_be(addr)	in_be32(PCI_FIX_ADDR(addr))
520 #define __do_readq_be(addr)	in_be64(PCI_FIX_ADDR(addr))
521 #endif /* !defined(CONFIG_EEH) */
522 
523 #ifdef CONFIG_PPC32
524 #define __do_outb(val, port)	_rec_outb(val, port)
525 #define __do_outw(val, port)	_rec_outw(val, port)
526 #define __do_outl(val, port)	_rec_outl(val, port)
527 #define __do_inb(port)		_rec_inb(port)
528 #define __do_inw(port)		_rec_inw(port)
529 #define __do_inl(port)		_rec_inl(port)
530 #else /* CONFIG_PPC32 */
531 #define __do_outb(val, port)	writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
532 #define __do_outw(val, port)	writew(val,(PCI_IO_ADDR)_IO_BASE+port);
533 #define __do_outl(val, port)	writel(val,(PCI_IO_ADDR)_IO_BASE+port);
534 #define __do_inb(port)		readb((PCI_IO_ADDR)_IO_BASE + port);
535 #define __do_inw(port)		readw((PCI_IO_ADDR)_IO_BASE + port);
536 #define __do_inl(port)		readl((PCI_IO_ADDR)_IO_BASE + port);
537 #endif /* !CONFIG_PPC32 */
538 
539 #ifdef CONFIG_EEH
540 #define __do_readsb(a, b, n)	eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
541 #define __do_readsw(a, b, n)	eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
542 #define __do_readsl(a, b, n)	eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
543 #else /* CONFIG_EEH */
544 #define __do_readsb(a, b, n)	_insb(PCI_FIX_ADDR(a), (b), (n))
545 #define __do_readsw(a, b, n)	_insw(PCI_FIX_ADDR(a), (b), (n))
546 #define __do_readsl(a, b, n)	_insl(PCI_FIX_ADDR(a), (b), (n))
547 #endif /* !CONFIG_EEH */
548 #define __do_writesb(a, b, n)	_outsb(PCI_FIX_ADDR(a),(b),(n))
549 #define __do_writesw(a, b, n)	_outsw(PCI_FIX_ADDR(a),(b),(n))
550 #define __do_writesl(a, b, n)	_outsl(PCI_FIX_ADDR(a),(b),(n))
551 
552 #define __do_insb(p, b, n)	readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
553 #define __do_insw(p, b, n)	readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
554 #define __do_insl(p, b, n)	readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
555 #define __do_outsb(p, b, n)	writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
556 #define __do_outsw(p, b, n)	writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
557 #define __do_outsl(p, b, n)	writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
558 
559 #define __do_memset_io(addr, c, n)	\
560 				_memset_io(PCI_FIX_ADDR(addr), c, n)
561 #define __do_memcpy_toio(dst, src, n)	\
562 				_memcpy_toio(PCI_FIX_ADDR(dst), src, n)
563 
564 #ifdef CONFIG_EEH
565 #define __do_memcpy_fromio(dst, src, n)	\
566 				eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
567 #else /* CONFIG_EEH */
568 #define __do_memcpy_fromio(dst, src, n)	\
569 				_memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
570 #endif /* !CONFIG_EEH */
571 
572 #ifdef CONFIG_PPC_INDIRECT_PIO
573 #define DEF_PCI_HOOK_pio(x)	x
574 #else
575 #define DEF_PCI_HOOK_pio(x)	NULL
576 #endif
577 
578 #ifdef CONFIG_PPC_INDIRECT_MMIO
579 #define DEF_PCI_HOOK_mem(x)	x
580 #else
581 #define DEF_PCI_HOOK_mem(x)	NULL
582 #endif
583 
584 /* Structure containing all the hooks */
585 extern struct ppc_pci_io {
586 
587 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)	ret (*name) at;
588 #define DEF_PCI_AC_NORET(name, at, al, space, aa)	void (*name) at;
589 
590 #include <asm/io-defs.h>
591 
592 #undef DEF_PCI_AC_RET
593 #undef DEF_PCI_AC_NORET
594 
595 } ppc_pci_io;
596 
597 /* The inline wrappers */
598 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)		\
599 static inline ret name at					\
600 {								\
601 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)	\
602 		return ppc_pci_io.name al;			\
603 	return __do_##name al;					\
604 }
605 
606 #define DEF_PCI_AC_NORET(name, at, al, space, aa)		\
607 static inline void name at					\
608 {								\
609 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)		\
610 		ppc_pci_io.name al;				\
611 	else							\
612 		__do_##name al;					\
613 }
614 
615 #include <asm/io-defs.h>
616 
617 #undef DEF_PCI_AC_RET
618 #undef DEF_PCI_AC_NORET
619 
620 /* Some drivers check for the presence of readq & writeq with
621  * a #ifdef, so we make them happy here.
622  */
623 #ifdef __powerpc64__
624 #define readq	readq
625 #define writeq	writeq
626 #endif
627 
628 /*
629  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
630  * access
631  */
632 #define xlate_dev_mem_ptr(p)	__va(p)
633 
634 /*
635  * Convert a virtual cached pointer to an uncached pointer
636  */
637 #define xlate_dev_kmem_ptr(p)	p
638 
639 /*
640  * We don't do relaxed operations yet, at least not with this semantic
641  */
642 #define readb_relaxed(addr)	readb(addr)
643 #define readw_relaxed(addr)	readw(addr)
644 #define readl_relaxed(addr)	readl(addr)
645 #define readq_relaxed(addr)	readq(addr)
646 #define writeb_relaxed(v, addr)	writeb(v, addr)
647 #define writew_relaxed(v, addr)	writew(v, addr)
648 #define writel_relaxed(v, addr)	writel(v, addr)
649 #define writeq_relaxed(v, addr)	writeq(v, addr)
650 
651 #include <asm-generic/iomap.h>
652 
653 #ifdef CONFIG_PPC32
654 #define mmiowb()
655 #else
656 /*
657  * Enforce synchronisation of stores vs. spin_unlock
658  * (this does it explicitly, though our implementation of spin_unlock
659  * does it implicitely too)
660  */
661 static inline void mmiowb(void)
662 {
663 	unsigned long tmp;
664 
665 	__asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
666 	: "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
667 	: "memory");
668 }
669 #endif /* !CONFIG_PPC32 */
670 
671 static inline void iosync(void)
672 {
673         __asm__ __volatile__ ("sync" : : : "memory");
674 }
675 
676 /* Enforce in-order execution of data I/O.
677  * No distinction between read/write on PPC; use eieio for all three.
678  * Those are fairly week though. They don't provide a barrier between
679  * MMIO and cacheable storage nor do they provide a barrier vs. locks,
680  * they only provide barriers between 2 __raw MMIO operations and
681  * possibly break write combining.
682  */
683 #define iobarrier_rw() eieio()
684 #define iobarrier_r()  eieio()
685 #define iobarrier_w()  eieio()
686 
687 
688 /*
689  * output pause versions need a delay at least for the
690  * w83c105 ide controller in a p610.
691  */
692 #define inb_p(port)             inb(port)
693 #define outb_p(val, port)       (udelay(1), outb((val), (port)))
694 #define inw_p(port)             inw(port)
695 #define outw_p(val, port)       (udelay(1), outw((val), (port)))
696 #define inl_p(port)             inl(port)
697 #define outl_p(val, port)       (udelay(1), outl((val), (port)))
698 
699 
700 #define IO_SPACE_LIMIT ~(0UL)
701 
702 
703 /**
704  * ioremap     -   map bus memory into CPU space
705  * @address:   bus address of the memory
706  * @size:      size of the resource to map
707  *
708  * ioremap performs a platform specific sequence of operations to
709  * make bus memory CPU accessible via the readb/readw/readl/writeb/
710  * writew/writel functions and the other mmio helpers. The returned
711  * address is not guaranteed to be usable directly as a virtual
712  * address.
713  *
714  * We provide a few variations of it:
715  *
716  * * ioremap is the standard one and provides non-cacheable guarded mappings
717  *   and can be hooked by the platform via ppc_md
718  *
719  * * ioremap_prot allows to specify the page flags as an argument and can
720  *   also be hooked by the platform via ppc_md.
721  *
722  * * ioremap_nocache is identical to ioremap
723  *
724  * * ioremap_wc enables write combining
725  *
726  * * ioremap_wt enables write through
727  *
728  * * ioremap_coherent maps coherent cached memory
729  *
730  * * iounmap undoes such a mapping and can be hooked
731  *
732  * * __ioremap_at (and the pending __iounmap_at) are low level functions to
733  *   create hand-made mappings for use only by the PCI code and cannot
734  *   currently be hooked. Must be page aligned.
735  *
736  * * __ioremap is the low level implementation used by ioremap and
737  *   ioremap_prot and cannot be hooked (but can be used by a hook on one
738  *   of the previous ones)
739  *
740  * * __ioremap_caller is the same as above but takes an explicit caller
741  *   reference rather than using __builtin_return_address(0)
742  *
743  * * __iounmap, is the low level implementation used by iounmap and cannot
744  *   be hooked (but can be used by a hook on iounmap)
745  *
746  */
747 extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
748 extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
749 				  unsigned long flags);
750 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
751 void __iomem *ioremap_wt(phys_addr_t address, unsigned long size);
752 void __iomem *ioremap_coherent(phys_addr_t address, unsigned long size);
753 #define ioremap_nocache(addr, size)	ioremap((addr), (size))
754 #define ioremap_uc(addr, size)		ioremap((addr), (size))
755 #define ioremap_cache(addr, size) \
756 	ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL))
757 
758 extern void iounmap(volatile void __iomem *addr);
759 
760 extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
761 			       unsigned long flags);
762 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
763 				      pgprot_t prot, void *caller);
764 
765 extern void __iounmap(volatile void __iomem *addr);
766 
767 extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
768 				   unsigned long size, pgprot_t prot);
769 extern void __iounmap_at(void *ea, unsigned long size);
770 
771 /*
772  * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
773  * which needs some additional definitions here. They basically allow PIO
774  * space overall to be 1GB. This will work as long as we never try to use
775  * iomap to map MMIO below 1GB which should be fine on ppc64
776  */
777 #define HAVE_ARCH_PIO_SIZE		1
778 #define PIO_OFFSET			0x00000000UL
779 #define PIO_MASK			(FULL_IO_SIZE - 1)
780 #define PIO_RESERVED			(FULL_IO_SIZE)
781 
782 #define mmio_read16be(addr)		readw_be(addr)
783 #define mmio_read32be(addr)		readl_be(addr)
784 #define mmio_write16be(val, addr)	writew_be(val, addr)
785 #define mmio_write32be(val, addr)	writel_be(val, addr)
786 #define mmio_insb(addr, dst, count)	readsb(addr, dst, count)
787 #define mmio_insw(addr, dst, count)	readsw(addr, dst, count)
788 #define mmio_insl(addr, dst, count)	readsl(addr, dst, count)
789 #define mmio_outsb(addr, src, count)	writesb(addr, src, count)
790 #define mmio_outsw(addr, src, count)	writesw(addr, src, count)
791 #define mmio_outsl(addr, src, count)	writesl(addr, src, count)
792 
793 /**
794  *	virt_to_phys	-	map virtual addresses to physical
795  *	@address: address to remap
796  *
797  *	The returned physical address is the physical (CPU) mapping for
798  *	the memory address given. It is only valid to use this function on
799  *	addresses directly mapped or allocated via kmalloc.
800  *
801  *	This function does not give bus mappings for DMA transfers. In
802  *	almost all conceivable cases a device driver should not be using
803  *	this function
804  */
805 static inline unsigned long virt_to_phys(volatile void * address)
806 {
807 	return __pa((unsigned long)address);
808 }
809 
810 /**
811  *	phys_to_virt	-	map physical address to virtual
812  *	@address: address to remap
813  *
814  *	The returned virtual address is a current CPU mapping for
815  *	the memory address given. It is only valid to use this function on
816  *	addresses that have a kernel mapping
817  *
818  *	This function does not handle bus mappings for DMA transfers. In
819  *	almost all conceivable cases a device driver should not be using
820  *	this function
821  */
822 static inline void * phys_to_virt(unsigned long address)
823 {
824 	return (void *)__va(address);
825 }
826 
827 /*
828  * Change "struct page" to physical address.
829  */
830 #define page_to_phys(page)	((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT)
831 
832 /*
833  * 32 bits still uses virt_to_bus() for it's implementation of DMA
834  * mappings se we have to keep it defined here. We also have some old
835  * drivers (shame shame shame) that use bus_to_virt() and haven't been
836  * fixed yet so I need to define it here.
837  */
838 #ifdef CONFIG_PPC32
839 
840 static inline unsigned long virt_to_bus(volatile void * address)
841 {
842         if (address == NULL)
843 		return 0;
844         return __pa(address) + PCI_DRAM_OFFSET;
845 }
846 
847 static inline void * bus_to_virt(unsigned long address)
848 {
849         if (address == 0)
850 		return NULL;
851         return __va(address - PCI_DRAM_OFFSET);
852 }
853 
854 #define page_to_bus(page)	(page_to_phys(page) + PCI_DRAM_OFFSET)
855 
856 #endif /* CONFIG_PPC32 */
857 
858 /* access ports */
859 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v))
860 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
861 
862 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v))
863 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
864 
865 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v))
866 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
867 
868 /* Clear and set bits in one shot.  These macros can be used to clear and
869  * set multiple bits in a register using a single read-modify-write.  These
870  * macros can also be used to set a multiple-bit bit pattern using a mask,
871  * by specifying the mask in the 'clear' parameter and the new bit pattern
872  * in the 'set' parameter.
873  */
874 
875 #define clrsetbits(type, addr, clear, set) \
876 	out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
877 
878 #ifdef __powerpc64__
879 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
880 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
881 #endif
882 
883 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
884 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
885 
886 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
887 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
888 
889 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
890 
891 #endif /* __KERNEL__ */
892 
893 #endif /* _ASM_POWERPC_IO_H */
894